Article1388.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Article1388.Pdf PUBLICATIONS 2004 http://forageresearch.tamu.edu Forage Research in Texas 2004. CPR-5267 Native, Perennial, Warm-Season, Herbaceous Legumes for the Cross Timbers Catherine Packard, Judy Taylor and James P. Muir bundleflowers. All entries maintained seed production and improved forage Summary and Application yield after perenniating the third season. Perennial, herbaceous native warm- season legumes were evaluated to Introduction determine forage yield, crude protein (CP), and seed production. Fifteen Pasture and range comprise about 90% of entries were planted in 2000 and the agricultural land use in the south-central evaluated in 2001 and 2002. The species USA (Greene, 1997; Anonymous, 1995). evaluated were yellow puff neptunia Summer pasture forage quality for this (Neptunia lutea), tropical neptunia region is often insufficient to meet the (Neptunia pubescens), prairie acacia nutritional needs of livestock and wildlife. (Acacia angustissima), prairie bundle- Legumes are known for improving soil flower (Desmanthus leptolobus), velvet fertility by fixing atmospheric nitrogen and bundle-flower (Desmanthus velutinus), producing forage with high protein content Illinois bundle-flower (Desmanthus (Iglesias and Lloveras, 1998). Legumes can illinoensis), sharp-pod bundle-flower also have double the CP concentration of (Desmanthus acuminatus), scarlet-pea grasses without the need for expensive N (Indigofera miniata var. leptosephala), fertilizers (White and Wight, 1984). downy milk-pea (Galactia volubilis), tall Native warm-season herbaceous legumes bush-clover (Lespedeza stuevei), trailing from the Texas Cross Timbers are bush-clover (Lespedeza procumbens), potentially useful for native prairie and Tweedy’s tick-clover (Desmodium woodland restoration, deer plots, goat tweedyi), Nuttall’s tick-clover (Desmodium browse, and cattle pastures. These native nuttallii), American snout-bean legumes provide food and protection for (Rhynchosia americana) and Texan snout- wildlife; they also increase forage quality for bean (Rhynchosia senna var. texana). livestock during the warm season (Osman et Sub-plots were harvested after flowering al., 2002). At present, native warm-season or the plants had reached the perimeter herbaceous legumes are not being widely of the 3 ft X 6 ft plot and continued to be seeded in rangelands and cultivated pastures harvested monthly until the end of the to compliment native and introduced season. Prairie acacia and yellow-puff grasses. Illinois bundleflower cv. Sabine and neptunia had forage yields over 4,500 showy partridge-pea (Chamaecrista lbs/acre/year. Both tall and sharp-pod fasciculata) are the only native legumes bush-clovers had forage CP commercially available and both have concentrations below 12% while sharp- limitations in forage distribution (Sabine is pod and prairie bundleflowers had CP productive only in early summer) or concentrations over 20%. Average seed palatability (partridge pea is rejected by yields from unharvested plants, most herbivores). measurable on only 8 entries, were The objectives of this study were to greatest for Illinois and prairie evaluate forage yield and nutritional value as http://forageresearch.tamu.edu Forage Research in Texas 2004. CPR-5267 well as seed production of 15 herbaceous, Seed Yield perennial legumes native to the Texas Cross Timbers. Illinois and prairie bundle-flowers both produced about the equivalent of 700 lbs Methods and Materials seed/acre/year on unharvested plants (Fig. 1) while other entries produced considerably The data was collected at the less. Stephenville Texas Agricultural Experiment Station during the spring and summer of 800 2001 and 2002. Fifteen perennial, native, 700 warm-season herbaceous legumes originally 600 collected in the Cross Timbers were 500 evaluated to determine forage and seed yields as well as forage nutritional value. 400 Irrigation was applied up to monthly 30-year 300 Lbs seed/acre/year precipitation averages. Plants were divided 200 into harvest and no-harvest subplots, the 100 latter used for measuring seed yields. Forage CP was determined from sub-plots harvested 0 throughout the season at intervals of thirty Scarlet-pea days, once plots were covered, at a 4 in. Prairie acacia Tall bush-clover Trailing bush-clover stubble-height. Forage yield per acre was Illinois bundle-flower Prairie bundle-flower Velvet bundle-flower American snout-bean estimated from per plant yields during the second year of the trial when most plants Fig. 1 Seed yields per unharvested plants were three years old and would be the averaged over the two-year trial period equivalent of growing these legumes in pure (LSD0.05=106) estimated from a per plant stands with no weed competition. Seed basis. production was measured on no-harvest subplots throughout the season by manually Forage Production collecting ripened pods. During the last year of the trial, most of Results and Discussion the legumes produced over a ton of forage per acre equivalent as measured on per plant May-October (growing season) rainfall in basis, indicating that these species, when 2001 was 11 in., 40% below the 30-year present in significant populations, can average, and 23 in. in 2002, 25% above the contribute considerable forage (Fig. 2). 30-year average. There were year by entry interactions for seed and forage yields, so these values are reported for the high rainfall year when plants were well established. The CP values are an average of both years. http://forageresearch.tamu.edu Forage Research in Texas 2004. CPR-5267 5000 4500 Both bush-clovers had low CP levels, close 4000 to 11%. 3500 3000 Conclusions 2500 2000 1500 Seed yield is important for stand 1000 persistence, seedling recruitment or feeding Forage lb/acre/year 500 game birds. Most of the entries where seed 0 production was measurable produced sufficient amounts of seed to guarantee soil Scarlet-pea Praire acacia seed banks, even if predation by insects, Tall bush-clover Downy milk-pea Texan snout-bean Tropical neptunia Nuttall's tick-clover Velvet bundle-flower Prairie bundle-flowerTrailing bush-clover Illinois bundle-flowerYellow-puff neptunia American snout-bean rodents or birds occurs. The next question Sharp-pod bundle-flower that needs to be studied is whether game Fig. 2 Forage yields of three-year old birds find these seeds palatable and native, herbaceous legumes (LSD = 25) 0.05 nutritious. estimated from a per plant basis. Quality and quantity of forages is of greater importance when feeding white- Prairie acacia and yellow puff neptunia had tailed deer or domesticated herbivores. The the greatest forage yields. Texan snout-bean CP levels in the legume species were and Nuttall’s tick-clover both produced less generally good, especially among the than 500 lbs/acre/year equivalent. bundle-flowers. At these levels, even if forage yields are low, they will contribute 25 considerably to the nutrition of browsing 20 herbivores capable of harvesting leaves and growing points that have the greatest 15 concentration of digestible nutrients. Three of the entries studied had forage CP % 10 yields per plant equivalent to over 2 tons/acre/year. Illinois bundle-flower is 5 notable for being among the greatest forage and seed producers. In others, there appears 0 to be a trade-off in forage and seed yield, so producers may have to choose species scarlet-pea prairie acacia according to their production priorities. tall bush-clover downy milk-pea tropical neptunia Texan snout-bean Nuttall's tick-clover trailing bush-cloverTweedy's tick-clover velvet bundle-flowerillinois bundle-floweryellow-puff neptuniaprairie bundle-flower Species with superior forage production and American snout-bean sharp-pod bundle-flower high CP concentration will be more Fig. 3 Forage crude protein concentration appropriate for white-tailed deer plantings averaged over the two-year trial period while species that produce high seed yield (LSD0.05= 3.4). would be more useful for quail or turkey. Those interested in improving nutrition of Crude Protein both white-tailed deer and game birds would Crude Protein was highest in prairie have to choose entries that compromise bundle-flower at 22% over the two-year between seed and forage production or plant period while sharp-pod bundle-flower had mixtures of species. the second highest CP level at 20% (Fig.3). Except for Illinois bundle-flower cv. Sabine, none of these species are presently http://forageresearch.tamu.edu Forage Research in Texas 2004. CPR-5267 available on a commercial basis. Techniques for maximizing seed production and harvest need to be developed. If wildlife enthusiasts and those purely interested in re-establishing native prairie and woodland bio-diversity show an interest, there may be a huge market for these native Texas legumes in the near future. Indigofera miniata Scarlet pea Desmanthus illinoensis Desmodium tweedyi Illinois bundleflower Tweedy’s tick-clover Lespedeza stuevei Tall bush-clover Rhynchosia americana American snout-bean http://forageresearch.tamu.edu Forage Research in Texas 2004. CPR-5267 Desmodium nuttallii Desmanthus acuminatus Nuttall’s tick-clover Sharp-pod bundleflower Desmanthus velutinus Rhynchosia senna var. texana Velvet bundleflower Texan snout-bean Galactia volubilis Downy milk-pea Desmanthus leptolobus Prairie bundleflower http://forageresearch.tamu.edu Forage Research in Texas 2004. CPR-5267 Neptunia lutea Yellow puff, Yellow neptunia Lespedeza procumbens Trailing bush clover Acacia angustissima Fig. 4 Native Texas herbaceous legumes prairie
Recommended publications
  • Water Mimosa (Neptunia Oleracea)
    Invasive plant risk assessment Biosecurity Queensland Agriculture Fisheries and Department of Water mimosa NeNeptunia oleracea Dead and awake Neptunia plena Steve Csurhes First published 2008 Updated 2016 PR08–3686 © State of Queensland, 2016. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence visit http://creativecommons.org/licenses/ by/3.0/au/deed.en" http://creativecommons.org/licenses/by/3.0/au/deed.en Contents Identity and taxonomy 2 Neptunia oleracea Lour. 2 Neptunia plena (L.) Benth. 2 Taxonomy and genetics 2 Descriptions (from Windler 1966) 3 Neptunia oleracea 3 Neptunia plena 4 Reproduction and dispersal 5 Seed longevity 5 Origin 5 History of introduction 5 Worldwide distribution 6 Neptunia oleracea 6 Neptunia plena 7 Distribution in Australia 8 Preferred habitat and climate 9 History as a weed overseas and interstate 9 Impact 10 N2 fixation 10 Effect on water resources 10 Economic benefits 10 Ponded pasture 10 Horticultural crop 11 Herbal medicine 11 Pest potential in Queensland 12 Biological control 12 References 13 Invasive plant risk assessment: Water mimosa Neptunia oleracea Dead and awake Neptunia plena 1 Identity and taxonomy Neptunia oleracea Lour. Synonyms: Acacia lacustris Desf., Desmanthus lacustris Willd., D. natans Willd., D. stolonifer DC, Mimosa aquatica Pers., M.
    [Show full text]
  • A Vegetation and Flora Survey of the Brockman Syncline 4 Project Area, Near Tom Price
    AA VVeeggeettaattiioonn aanndd FFlloorraa SSuurrvveeyy ooff tthhee BBrroocckkmmaann SSyynncclliinnee 44 PPrroojjeecctt AArreeaa,, nneeaarr TToomm PPrriiccee Prepared for Hamersley Iron Pty Ltd Prepared by JJuulllyy 22000055 Biota Environmental Sciences Pty Ltd A Vegetation and Flora Survey of the Brockman Syncline 4 Project Area, near Tom Price © Biota Environmental Sciences Pty Ltd 2005 ABN 49 092 687 119 14 View Street North Perth Western Australia 6006 Ph: (08) 9328 1900 Fax: (08) 9328 6138 Project No.: 271 Prepared by: Michi Maier Checked by: Garth Humphreys This document has been prepared to the requirements of the client identified on the cover page and no representation is made to any third party. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Biota Environmental Sciences Pty Ltd. Cube:Current:271 (Brockman 4 Biological):Doc:flora:flora_survey_7.doc 2 A Vegetation and Flora Survey of the Brockman Syncline 4 Project Area, near Tom Price A Vegetation and Flora Survey of the Brockman Syncline 4 Project Area, near Tom Price Contents 1.0 Summary 6 1.1 Background 6 1.2 Vegetation 6 1.3 Flora 7 1.4 Management Recommendations 7 2.0 Introduction 9 2.1 Background to the BS4 Project and Location of the Project Area 9 2.2 Scope and Objectives of this Study 9 2.3 Purpose of this Report 12 2.4 Existing Environment 12 3.0 Methodology 18 3.1 Desktop
    [Show full text]
  • Plant Species List Wylie Tract Clymer
    Plant Check List Clymer/Wylie Survey Conducted on June 4, 2015 Total = 70 Species Grasses 14 Native or Date 1st Warm Season Perennial Family Name Scientific Name Common Name Introduced Observed or Cool Season or Annual Gramineae (Poaceae) Bromus japonicus Japanese Brome Introduced 6/4/2015 Cool Season Annual Gramineae (Poaceae) Bromus unioloides Rescuegrass Introduced 6/4/2015 Cool Season Annual Gramineae (Poaceae) Chasmanhium latifolium Creek Oats, Inland Sea Oats Native 6/4/2015 Warm Perennial Gramineae (Poaceae) Elymus canadensis Canada Wildrye Native 6/4/2015 Cool Season Perennial Gramineae (Poaceae) Elymus virginicus Virginia Wildrye Native 6/4/2015 Cool Season Perennial Gramineae (Poaceae) Lolium perenne Ryegrass Introduced 6/4/2015 Cool Season Annual Gramineae (Poaceae) Panicum virgatum Switch Grass Native 6/4/2015 Warm Perennial Gramineae (Poaceae) Paspalum dilitatum Dallas Grass Introduced 6/4/2015 Warm Perennial Gramineae (Poaceae) Schizachyrium scoparium Little Bluestem Native 6/4/2015 Warm Perennial Gramineae (Poaceae) Setaria geniulata Knotroot bristlegrass Native 6/4/2015 Warm Perennial Gramineae (Poaceae) Sorghum halepense Johnsongrass Introduced 6/4/2015 Warm Perennial Gramineae (Poaceae) Sporobolus compositus Meadow dropseed Naïve 6/4/2015 Warm Perennial Gramineae (Poaceae) Stipa leucotricha Texas Wintergrass Native 6/4/2015 Cool Season Perennial Gramineae (Poaceae) Tripsacum dactyloides Eastern gamagrass Naïve 6/4/2015 Warm Perennial Sedges 2 Family Name Cyperaceae (Sedges) Cyperus setigerus Umbrella sedge Native 6/4/2015
    [Show full text]
  • Flora and Plant Coummunities of Deer Park Prairie
    THE VASCULAR FLORA AND PLANT COMMUNITIES OF LAWTHER - DEER PARK PRAIRIE, HARRIS COUNTY, TEXAS, U.S.A. Jason R. Singhurst Jeffrey N. Mink Wildlife Diversity Program 176 Downsville Road Texas Parks & Wildlife Department Robinson, Texas 76706-7276, U.S.A. 4200 Smith School Road [email protected] Austin, Texas 78744, U.S.A. [email protected] [email protected] Katy Emde, Lan Shen, Don Verser Walter C. Holmes Houston Chapter of Department of Biology Native Prairie Association of Texas Baylor University 2700 Southwest Fwy. Waco, Texas 76798-7388, U.S.A. Houston, Texas 77098, U.S.A. [email protected] ABSTRACT Field studies at the Lawther - Deer Park Prairie Preserve, an area of approximately 21 ha (51 acres) of the Gulf Coast Prairies and Marshes vegetation area, have resulted in a description of the vegetation associations and an annotated checklist of the vascular flora. Six plant com- munity associations occur on the property: (1) the Upper Texas Coast Ingleside Sandy Wet Prairie; (2) Eastern Gamagrass - Switchgrass - Yellow Indiangrass Herbaceous Vegetation; (3) Gulf Cordgrass Herbaceous Vegetation; (4) Texas Gulf Coast Live Oak - Sugarberry Forest; (5) Little Bluestem - Slender Bluestem - Big Bluestem Herbaceous Vegetation, and (6) Natural Depressional Ponds. The checklist includes 407 species belonging to 247 genera and 86 families. Forty-six species are non-native. The best-represented families (with species number following) are Poaceae (84), Asteraceae (68), Cyperaceae (33), and Fabaceae (19). West Gulf Coastal Plain (eastern Texas and western Louisiana) endemics include Helenium drummondii, Liatris acidota, Oenothera lindheimeri, and Rudbeckia texana. One Texas endemic, Chloris texensis, a Species of Greater Conservation Need, is present.
    [Show full text]
  • Dichrostachys Spicata
    Dichrostachys spicata LC Taxonomic Authority: (F.Muell.) Domin Global Assessment Regional Assessment Region: Global Endemic to region Synonyms Common Names Acacia shirleyana Domin CHINESE LANTERN English (Primary) Dichrostachys muelle Benth. PIED PIPER BUSH English Neptunia spicata F.Muell. PRICKLY BUSH English Upper Level Taxonomy Kingdom: PLANTAE Phylum: TRACHEOPHYTA Class: MAGNOLIOPSIDA Order: FABALES Family: LEGUMINOSAE Lower Level Taxonomy Rank: Infra- rank name: Plant Hybrid Subpopulation: Authority: Differs from D. cinerea in numerous respects but most conspicuously in the number of pairs of pinnae and the size of the leaflets. General Information Distribution Dichrostachya spicata is endemic to Australia, distributed in the states of Western Australia and Queensland and also in the Northern Territory. It is frequent and widespread in northern Australia, from near Mount Stuart Stn through the Northern Territory (mainly between 16°S and 20°S) with a few scattered occurrences in northern Queensland as far east as Chillagoe. Range Size Elevation Biogeographic Realm Area of Occupancy: Upper limit: 560 Afrotropical Extent of Occurrence: Lower limit: Antarctic Map Status: Depth Australasian Upper limit: Neotropical Lower limit: Oceanian Depth Zones Palearctic Shallow photic Bathyl Hadal Indomalayan Photic Abyssal Nearctic Population Total population size is not known but a recent survey suggests six individuals from a population in the Northern Territory (MSBP 2010). It has also been reported as frequent. Total Population Size Minimum Population Size: Maximum Population Size: Habitat and Ecology Shrub or tree 1–3 m tall that grows along streams and bordering swamps in sand, sandy loam, loam, clay and stony clay soils. In the Kimberley Region cattle readily eat he dry pods and leaves.
    [Show full text]
  • Tropical Aquatic Plants: Morphoanatomical Adaptations - Edna Scremin-Dias
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol. I - Tropical Aquatic Plants: Morphoanatomical Adaptations - Edna Scremin-Dias TROPICAL AQUATIC PLANTS: MORPHOANATOMICAL ADAPTATIONS Edna Scremin-Dias Botany Laboratory, Biology Department, Federal University of Mato Grosso do Sul, Brazil Keywords: Wetland plants, aquatic macrophytes, life forms, submerged plants, emergent plants, amphibian plants, aquatic plant anatomy, aquatic plant morphology, Pantanal. Contents 1. Introduction and definition 2. Origin, distribution and diversity of aquatic plants 3. Life forms of aquatic plants 3.1. Submerged Plants 3.2 Floating Plants 3.3 Emergent Plants 3.4 Amphibian Plants 4. Morphological and anatomical adaptations 5. Organs structure – Morphology and anatomy 5.1. Submerged Leaves: Structure and Adaptations 5.2. Floating Leaves: Structure and Adaptations 5.3. Emergent Leaves: Structure and Adaptations 5.4. Aeriferous Chambers: Characteristics and Function 5.5. Stem: Morphology and Anatomy 5.6. Root: Morphology and Anatomy 6. Economic importance 7. Importance to preserve wetland and wetlands plants Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS Tropical ecosystems have a high diversity of environments, many of them with high seasonal influence. Tropical regions are richer in quantity and diversity of wetlands. Aquatic plants SAMPLEare widely distributed in theseCHAPTERS areas, represented by rivers, lakes, swamps, coastal lagoons, and others. These environments also occur in non tropical regions, but aquatic plant species diversity is lower than tropical regions. Colonization of bodies of water and wetland areas by aquatic plants was only possible due to the acquisition of certain evolutionary characteristics that enable them to live and reproduce in water. Aquatic plants have several habits, known as life forms that vary from emergent, floating-leaves, submerged free, submerged fixed, amphibian and epiphyte.
    [Show full text]
  • Floral Ontogeny of Mimosoid Legumes. Jose Israel Ramirez-Domenech Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1989 Floral Ontogeny of Mimosoid Legumes. Jose Israel Ramirez-domenech Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Ramirez-domenech, Jose Israel, "Floral Ontogeny of Mimosoid Legumes." (1989). LSU Historical Dissertations and Theses. 4804. https://digitalcommons.lsu.edu/gradschool_disstheses/4804 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Download/Book of Abstracts.Pdf Dhileepan, K., Taylor, D
    Received: 6 August 2018 Accepted: 22 November 2018 DOI: 10.1111/aab.12499 RESEARCH ARTICLE Implications of the changing phylogenetic relationships of Acacia s.l. on the biological control of Vachellia nilotica ssp. indica in Australia Dianne B.J. Taylor | Kunjithapatham Dhileepan Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, Plant relationships have implications for many fields including weed biological control. The use of Queensland, Australia DNA sequencing and new tree building algorithms since the late 1980s and early 1990s have Correspondence revolutionised plant classification and has resulted in many changes to previously accepted taxo- Dianne B. J. Taylor, Department of Agriculture nomic relationships. It is critical that biological control researchers stay abreast of changes to plant and Fisheries, Biosecurity Queensland, Ecosciences Precinct, GPO Box 267, Brisbane, phylogenies. One of the largest plant genera, Acacia, has undergone great change over the past QLD 4001, Australia. 20 years and these changes have ramifications for weed biological control projects in a number of Email: [email protected] countries. Vachellia nilotica (prickly acacia) is a major weed in Australia, originating from the Indian Funding information subcontinent and Asia, and it has been a target for biological control since 1980. Once a member Meat and Livestock Australia of Acacia, a large (>1,000 spp.) and iconic group in Australia, prickly acacia is now part of the genus Vachellia. Current knowledge suggests that Vachellia is more closely related to mimosoid genera than it is to Acacia s.s. There has also been a recent reclassification of legume subfamilies with sub- family Mimosoideae now part of subfamily Caesalpinioideae, and four new subfamilies.
    [Show full text]
  • Herbage and Seed from Texan Native Perennial Herbaceous Legumes
    Herbage and Seed From Texan Native Perennial Herbaceous Legumes Item Type text; Article Authors Muir, James P.; Taylor, Judy; Interrante, Sindy M. Citation Muir, J. P., Taylor, J., & Interrante, S. M. (2005). Herbage and seed from Texan native perennial herbaceous legumes. Rangeland Ecology & Management, 58(6), 643-651. DOI 10.2111/04-047.1 Publisher Society for Range Management Journal Rangeland Ecology & Management Rights Copyright © Society for Range Management. Download date 27/09/2021 23:28:45 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/643393 Rangeland Ecol Manage 58:643–651 | November 2005 Herbage and Seed From Texan Native Perennial Herbaceous Legumes James P. Muir,1 Judy Taylor,2 and Sindy M. Interrante3 Authors are: 1Associate Professor, Forage Physiology, Texas Agricultural Experiment Station, 1229 North US Highway 281, Stephenville, TX 76401; 2Stephenville High School Biology Teacher, 2650 W Overhill Dr, Stephenville TX 76401; 3Graduate Student, Tarleton State University, Stephenville, TX 76401. Abstract Native seed mixes for rangeland seeding, prairie restoration, or cultivated pasture can benefit from a greater variety of forbs that more closely reflect the original vegetation of the southern Great Plains. Fifteen native, perennial herbaceous legumes were collected in central Texas and evaluated for herbage production, mineral content, and fiber concentration of established plants in research plots over 2 years. Downy milk-pea (Galactia volubilis [L.] Britton) was productive, regardless of rainfall, whereas prairie acacia (Acacia angustissima [Mill.] Kuntze var. hirta [Nutt.] B.L. Rob.) and Illinois bundle-flower (Desmanthus illinoensis [Michx.] MacMill. Ex.
    [Show full text]
  • Vertebrate and Vascular Plant Inventories
    National Park Service U.S. Department of the Interior Natural Resource Program Center A Summary of Biological Inventory Data Collected at Padre Island National Seashore Vertebrate and Vascular Plant Inventories Natural Resource Technical Report NPS/GULN/NRTR—2010/402 Pelicans are among the many species of birds present in the Laguna Madre area of PAIS. Kemp’s Ridley turtles are believed to remember the beach where they were hatched. Coyotes are among the animals known to inhabit the Padre Island National Seashore. Snapping turtles are tracked and monitored at PAIS. ON THE COVER Located along the south Texas coast, Padre Island National Seashore protects the longest undeveloped stretch of barrier islands in the world. Here, you can enjoy 70 miles of sandy beaches, wind-carved dunes, vast grasslands, fragile tidal flats, and warm, nearshore waters. Pelicans are among the many species of birds present in the Laguna Madre area of PAIS. NPS photos. A Summary of Biological Inventory Data Collected at Padre Island National Seashore Vertebrate and Vascular Plant Inventories Natural Resource Technical Report NPS/GULN/NRTR—2010/402 Gulf Coast Network National Park Service 646 Cajundome Blvd. Room 175 Lafayette, LA 70506 November 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries.
    [Show full text]
  • Field Release of Megamelus Scutellaris, Berg (Hemiptera: Delphacidae), for Biological Control of Water Hyacinth Eichhornia Crassipes Mart
    United States Department of Agriculture Field Release of Marketing and Regulatory Megamelus scutellaris, Programs Animal and Berg (Hemiptera: Plant Health Inspection Service Delphacidae), for Biological Control of Water Hyacinth Eichhornia crassipes Mart. (Solms) (Pontederiales: Pontederiaceae) in the Continental United States Environmental Assessment, January 2010 Field Release of Megamelus scutellaris, Berg (Hemiptera: Delphacidae), for Biological Control of Water Hyacinth Eichhornia crassipes Mart. (Solms) (Pontederiales: Pontederiaceae) in the Continental United States Environmental Assessment, January 2010 Agency Contact: Shirley Wager-Page, Branch Chief Pest Permitting Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Road, Unit 133 Riverdale, MD 20737–1236 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250–9410 or call (202) 720–5964 (voice and TDD). USDA is an equal opportunity provider and employer. Mention of companies or commercial products in this report does not imply recommendation or endorsement by the U.S. Department of Agriculture (USDA) over others not mentioned. USDA neither guarantees or warrants the standard of any product mentioned.
    [Show full text]
  • Systematic Analysis (Morphology, Anatomy and Palynology) of an Aquatic Medicinal Plant Water Mimosa (Neptunia Oleracea Lour.) in Eastern India
    Int. J. LifeSc. Bt & Pharm. Res. 2012 Debasis Bhunia and Amal Kumar Mondal, 2012 ISSN 2250-3137 www.ijlbpr.com Vol. 1, No. 2, April 2012 © 2012 IJLBPR. All Rights Reserved Research Paper SYSTEMATIC ANALYSIS (MORPHOLOGY, ANATOMY AND PALYNOLOGY) OF AN AQUATIC MEDICINAL PLANT WATER MIMOSA (NEPTUNIA OLERACEA LOUR.) IN EASTERN INDIA Debasis Bhunia1 and Amal Kumar Mondal1* *Corresponding Author: Amal Kumar Mondal, Email: [email protected] Neptunia oleracea Lour. is commonly known as water sensitive plant or water mimosa, belonging to the family Mimosaceae. Morphologically they look like Mimosa pudica except the presence of white spongy aerenchyma tissues that covered the stem and absence of thorns. The plant is herb, perennial, aquatic, floating or prostrate near water’s edge. Tap root thick, becoming woody. Stem to 1.5 m long. Leaves bipinnate, with 2-3 9-4 pairs of pinnae; petioles 2.0-6.8 cm long. Upper flowers are perfect, sessile Lower flowers sterile. Root epidermis is multi layered, composed 3-4 row of closely set thin walled parenchyma tissue rectangular cells. In the transvers section of stem the outermost epidermis are single layered and composed of closely set rectangular or spheroidal cell with thin cuticle. Paracytic stomata were present on both sides of epidermis. In SEM study swelling cell with hair like appendages are observed in between the stomata. Upper Stomata length 10.33µm and width 1.2µm, lower stomata length 10.76µm, width 2.3µm. Pollen grains are tricolpate and prolate (P= 66.83µm /E=59.83µm) in size and shape. The studies also highlights the morphological, anatomical and palynological characters using scanning electron microscope (SEM), light microscope (LM) and ethnomedicinal aspects of these water sensitive plant used by crush twigs are mixed with paste of un boiled rice (called atapchal in Bengali) and made into large size pills, fried and taken orally or with meals to prevent gastritis, acidity and constipation.These analytical results are showed different special characters which have most importance in taxonomical applications.
    [Show full text]