Keiferia Lycopersicella
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integrated Pest Management: Current and Future Strategies
Integrated Pest Management: Current and Future Strategies Council for Agricultural Science and Technology, Ames, Iowa, USA Printed in the United States of America Cover design by Lynn Ekblad, Different Angles, Ames, Iowa Graphics and layout by Richard Beachler, Instructional Technology Center, Iowa State University, Ames ISBN 1-887383-23-9 ISSN 0194-4088 06 05 04 03 4 3 2 1 Library of Congress Cataloging–in–Publication Data Integrated Pest Management: Current and Future Strategies. p. cm. -- (Task force report, ISSN 0194-4088 ; no. 140) Includes bibliographical references and index. ISBN 1-887383-23-9 (alk. paper) 1. Pests--Integrated control. I. Council for Agricultural Science and Technology. II. Series: Task force report (Council for Agricultural Science and Technology) ; no. 140. SB950.I4573 2003 632'.9--dc21 2003006389 Task Force Report No. 140 June 2003 Council for Agricultural Science and Technology Ames, Iowa, USA Task Force Members Kenneth R. Barker (Chair), Department of Plant Pathology, North Carolina State University, Raleigh Esther Day, American Farmland Trust, DeKalb, Illinois Timothy J. Gibb, Department of Entomology, Purdue University, West Lafayette, Indiana Maud A. Hinchee, ArborGen, Summerville, South Carolina Nancy C. Hinkle, Department of Entomology, University of Georgia, Athens Barry J. Jacobsen, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman James Knight, Department of Animal and Range Science, Montana State University, Bozeman Kenneth A. Langeland, Department of Agronomy, University of Florida, Institute of Food and Agricultural Sciences, Gainesville Evan Nebeker, Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State David A. Rosenberger, Plant Pathology Department, Cornell University–Hudson Valley Laboratory, High- land, New York Donald P. -
Hymenoptera Parasitoid Complex of Prays Oleae (Bernard) (Lepidoptera: Praydidae) in Portugal
Turkish Journal of Zoology Turk J Zool (2017) 41: 502-512 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1603-50 Hymenoptera parasitoid complex of Prays oleae (Bernard) (Lepidoptera: Praydidae) in Portugal 1, 1 2 3 4 1 Anabela NAVE *, Fátima GONÇALVES , Rita TEIXEIRA , Cristina AMARO COSTA , Mercedes CAMPOS , Laura TORRES 1 Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal 2 Agrarian and Forestry Systems and Plant Health, National Institute of Agricultural and Veterinary Research, Oeiras, Portugal 3 Department of Ecology and Sustainable Agriculture, Agrarian School, Polytechnic Institute of Viseu, Viseu, Portugal 4 Department of Environmental Protection, Experimental Station Zaidín, Granada, Spain Received: 23.03.2016 Accepted/Published Online: 29.11.2016 Final Version: 23.05.2017 Abstract: The olive moth, Prays oleae (Bernard) (Lepidoptera: Praydidae), is one of the most important pests of olive trees throughout the Mediterranean region, the Black Sea, the Middle East, and the Canary Islands. Thus, it is particularly important to develop alternative strategies to control this pest. Over a 4-year period, a survey was done in order to acquire knowledge about the complex of parasitoids associated with this pest. Leaves, flowers, and fruit infested with larvae and pupae of P. oleae were collected from olive groves, conditioned in vials, and kept under laboratory conditions until the emergence of P. ol e ae adults or parasitoids. The abundance and richness of parasitoids as well as the rate of parasitism was estimated. Hymenoptera parasitoids were found to be responsible for 43% of the mean mortality of the sampled individuals. -
Tropical Insect Chemical Ecology - Edi A
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world. -
Acronicta Rubticoma Guenee. Black Light; Lakehurst, June 4. Acronicta Dactylina Grote, Melanic Form
VOLUME 24, NUMBER 1 3 NOcruIDAE Acronicta rubTicoma Guenee. Black light; Lakehurst, June 4. Acronicta dactylina Grote, melanic form. Black light; Lebanon, June 27. A new record for the State. Eurois occulta Linnaeus. Black light; Montague, August 27. Oncocnemis saundersiana Grote. Black light; Lebanon, October 28. Agrotis buchholzi Barnes & Benjamin. Black light, Lakehurst, June 4. Eupsilia morrisoni Grote. Black light; Lebanon, November 18 and 23. Neperigea costa Barnes & Benjamin. Black light; Montague, July 27. A new record for the State. Magusa orbifera, "divaricata" Grote. Black light, Lebanon, August 21. Amolita roseola Smith. Black light; Montague, July 30. A new record for the State. Abrostola urentis Guenee. Black light; Montague, October 10. Catocala maestosa Hulst. Bait trap; Lebanon, August 28. A new record for the State. Zale phaeocapna Franclemont. Black light; Lebanon, April 27. Deter mined by genitalic dissection. A new record for the State. Zale metatoides McDunnough. Black light; Montague, June 10. A new record for the State. Gabara pulverosalis Walker. Black light; Lakehurst August 14. A new record for the State. Rivula propinqaZis Guenee. Black light; Lebanon, October 28. I wish to thank C. F. dos Passos and A. E. Brower for determining some of the specimens. A NEW SUBSPECIES OF BREPHIDIUM EXILIS FROM YUCATAN (LEPIDOPTERA: LYCAENIDAE) HARTIY K. CLENCH Carnegie Museum, Pittsburgh, Pennsylvania 15213 Some years ago Eduardo C. Welling, of Merida, Yucatan, Mexico, sent me a few specimens of a Brephidium he had taken on the north coast of Yucatan. It was obvious, as soon as they had been examined genitalically, that they represented exilis Boisduval, but they belonged to 4 JOURNAL OF THE LEPIDOPTERISTS' SOCIETY Fig. -
VINEYARD BIODIVERSITY and INSECT INTERACTIONS! ! - Establishing and Monitoring Insectariums! !
! VINEYARD BIODIVERSITY AND INSECT INTERACTIONS! ! - Establishing and monitoring insectariums! ! Prepared for : GWRDC Regional - SA Central (Adelaide Hills, Currency Creek, Kangaroo Island, Langhorne Creek, McLaren Vale and Southern Fleurieu Wine Regions) By : Mary Retallack Date : August 2011 ! ! ! !"#$%&'(&)'*!%*!+& ,- .*!/'01)!.'*&----------------------------------------------------------------------------------------------------------------&2 3-! "&(')1+&'*&4.*%5"/0&#.'0.4%/+.!5&-----------------------------------------------------------------------------&6! ! &ABA <%5%+3!C0-72D0E2!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!F! &A&A! ;D,!*2!G*0.*1%-2*3,!*HE0-3#+3I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!J! &AKA! ;#,2!0L!%+D#+5*+$!G*0.*1%-2*3,!*+!3D%!1*+%,#-.!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!B&! 7- .*+%)!"/.18+&--------------------------------------------------------------------------------------------------------------&,2! ! ! KABA ;D#3!#-%!*+2%53#-*MH2I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!BN! KA&A! O3D%-!C#,2!0L!L0-H*+$!#!2M*3#G8%!D#G*3#3!L0-!G%+%L*5*#82!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&P! KAKA! ?%8%53*+$!3D%!-*$D3!2E%5*%2!30!E8#+3!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&B! 9- :$"*!.*;&5'1/&.*+%)!"/.18&-------------------------------------------------------------------------------------&3<! -
Using the Larval Parasitoid, Agathis Bishopi (Nixon) (Hymenoptera
Using the larval parasitoid, Agathis bishopi (Nixon) (Hymenoptera: Braconidae), for early detection of False Codling Moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) infested fruit Thesis submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE at RHODES UNIVERSITY by Kennedy Josaya Zimba December 2014 Abstract Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) is one of the major citrus pests of economic importance for South Africa’s citrus industry. It is endemic to Africa, and therefore a phytosanitary pest with zero tolerance by most export markets. The cryptic nature of T. leucotreta makes visual inspection an inefficient method for detecting neonate larvae in fruit in the packhouse. Therefore, a more accurate method for sorting infested fruit at the packhouse, particularly for newly infested fruit could ensure market access. A recent study showed that fruit infested by T. leucotreta emit a chemical profile different from that of a healthy fruit. Several studies provide evidence that parasitoids locate their hosts feeding on fruit by exploiting the novel chemical profiles produced due to host herbivory. The aim of this study was to evaluate the potential of using the naturally occurring behaviour of a larval parasitoid Agathis bishopi (Nixon) (Hymenoptera: Braconidae) for detection of T. leucotreta infested fruit, by determining which compound in infested fruit is attractive to parasitoids. Y- tube olfactometer and flight-tunnel bioassays with healthy and T. leucotreta infested fruit showed a significantly stronger response of A. bishopi female parasitoids to infested fruit. Among the volatile compounds associated with T. leucotreta infested fruit, D-limonene elicited the strongest attraction to A. bishopi female parasitoids. -
Insects and Related Arthropods Associated with of Agriculture
USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H. -
Tomato Pinworm Keiferia Lycopersicella
Tomato pinworm Keiferia lycopersicella Figure 1. Larva of Keiferia lycopersicella showing indistinct dorsal markings. Larvae reach a maximum length of 8 mm. © Alton N. Sparks, Jr., University of Georgia, Bugwood.org Background The tomato pinworm, Keiferia lycopersicella (Walsingham) (Lepidoptera, Gelechiidae) is a pest of tomatoes in North America. It has caused foliage and fruit damage to crops in the United States, with reports of up to 80% of fruit in infested fields damaged over the growing season. In 2008, K. lycopersicella was found for the first time in Europe, in Italy, where it was causing severe damage to a crop of tomatoes along with another introduced gelechiid pest, Tuta absoluta (the South American tomato moth). Keiferia lycopersicella has not been intercepted in the UK to date. Geographical Distribution Keiferia lycopersicella is native to North America, where the species was first described. It is found in Mexico and southern states in the USA, as well as on the islands of Cuba, Haiti, the Bahamas and Hawaii. Outbreaks of the pest under glass PLANT PEST FACTSHEET have been reported from more northerly states in the USA, including Delaware and Pennsylvania, and from regions in Canada, including Ontario. Keiferia lycopersicella was reported from a site near Genova in Italy in November 2008. However, the Italian outbreak of K. lycopersicella was eradicated, and it is no longer considered to be present in Europe. Host Plants The preferred host is tomato (Lycopersicon esculentum), on which the larvae initially mine the leaves, but may start to eat fruit or stems as they grow older. Larvae will also feed on the leaves of aubergine (Solanum melongena) and potato (S. -
Tuta Absoluta, the South American Tomato Leafminer
ANR Publication 8589 | January 2018 http://anrcatalog.ucanr.edu Tuta Absoluta, The South American Tomato Leafminer he South American tomato leafminer, Tuta absoluta TMeyrick (Lepidoptera: Gelechiidae), is a serious and devastating pest of fresh market and processing tomatoes (fig. 1). Tuta absoluta, or Tuta, as it is also known, is thought to be native to South America. Currently, Tuta can be found in South America, southern Central America, southern Europe, northern Africa, the Middle East, and in localized parts of India (CABI 2016). Tuta is continuing to spread throughout the tomato-growing areas of the world (Desneux et al. 2010). Although it has not been reported in California or elsewhere in the United States, computer Figure 1. Tuta damage. Photo: J. Arno. KRIS GODFREY, University of models that are used to match the life history of an invasive California, Davis, Contained pest with climate and availability of host plants have predicted that Tuta has a moderate Research Facility; likelihood of establishing in the commercial tomato-growing regions of California, FRANK ZALOM, University of Arizona, and the southern United States (USDA 2011). California, Davis, Department of Entomology and Nematology; Tuta absoluta bores into tomato leaves, stems, flowers, apical buds, and fruit, resulting in less fruit set, poor plant and JOANNA CHIU, University of structure, and unmarketable fruit. Crop losses can be as high as 80 to 100 percent, and insecticide costs may California, Davis, Department of dramatically increase due to the need for additional insecticide applications (Lopez 1991; Estay 2000; Torres et al. Entomology and Nematology ANR Publication 8589 | Tuta Absoluta, The South American Tomato Leafminer | January 2018 | 2 2001; Desneux et al. -
Chelonus Inanitus
Vincent et al. BMC Genomics 2010, 11:693 http://www.biomedcentral.com/1471-2164/11/693 RESEARCH ARTICLE Open Access The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach Bruno Vincent1, Martha Kaeslin2, Thomas Roth2, Manfred Heller3, Julie Poulain4, François Cousserans5, Johann Schaller6, Marylène Poirié7, Beatrice Lanzrein2, Jean-Michel Drezen1, Sébastien JM Moreau1* Abstract Background: Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp Chelonus inanitus (Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences. Results: About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein. An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with a venom protein of unknown function potentially specific of the Chelonus lineage. -
The Insect Microcosm of Western Juniper Berries by Lindsay A
The Insect Microcosm of Western Juniper Berries By Lindsay A. Dimitri, Kirk C. Tonkel, William S. Longland, and Brian G. Rector On the Ground closure reducing availability of herbaceous understory plants • Expansion of western juniper has been a major to livestock and wildlife, and intense wildfires that result in concern of ranchers and managers working on conversion to invasive annual grasslands. Extensive efforts rangelands. have been made to remove western juniper and restore the • Insects and mites associated with juniper berries shrublands being replaced. Management practices such as can impact juniper seed production, but little is prescribed burning, mechanical removal (chaining, felling known about arthropods inhabiting western juni- with chainsaws) and herbicides are used to thin or eliminate per or their effects on seeds. juniper in a given area. Despite the extensive literature de- • Our study of insects and other arthropods found tailing western juniper expansion, there are many aspects of inside juniper berries at two sites in northeastern its ecology that remain understudied, including interactions California found 37 species of insects and one with seed predators and seed dispersers that are potentially mite species, ranging from those that eat berries important aspects of the ongoing expansion. Like other juni- or seeds to parasitoid insects that develop from per species, western juniper does not reproduce vegetatively eggs laid inside other insects, ultimately killing (for example, by root sprouting), so this expansion is exclu- their host, and hyperparasitoids that parasitize sively attributable to the establishment of new seedlings. other parasitoids. Therefore, documenting the seed and seedling ecology of • We identified several granivores that consume western juniper is essential to understanding the rapid ex- western juniper seeds and, when abundant, may pansion of this species. -
Epiphyas Postvittana (Light Brown Apple Moth) Page 1 of 22
Crop Protection Compendium report - Epiphyas postvittana (light brown apple moth) Page 1 of 22 Crop Protection Compendium Selected sections for: Epiphyas postvittana (light brown apple moth) Identity Taxonomic Tree Summary of Invasiveness Notes on Taxonomy and Nomenclature Description Distribution Distribution Table History of Introduction and Spread Habitat Habitat List Hosts/Species Affected Host Plants and Other Plants Affected Growth Stages Symptoms List of Symptoms/Signs Biology and Ecology Air Temperature Means of Movement and Dispersal Pathway Vectors Plant Trade Notes on Natural Enemies Natural enemies Impact Summary Impact: Economic Risk and Impact Factors Uses List Diagnosis Detection and Inspection Similarities to Other Species/Conditions Prevention and Control References Contributors Images Datasheet Type(s): Pest Identity Preferred Scientific Name Epiphyas postvittana Walker Preferred Common Name light brown apple moth Other Scientific Names Archips postvittanus Walker Austrotortrix postvittana Walker Cacoecia postvittana Walker Teras postvittana Walker Tortrix postvittana Walker International Common Names English apple leafroller, Australian leafroller, light-brown apple moth French pyrale brun pâle de la pomme EPPO code TORTPO (Epiphyas postvittana) Taxonomic Tree Domain: Eukaryota Kingdom: Metazoa Phylum: Arthropoda Subphylum: Uniramia Class: Insecta Order: Lepidoptera Family: Tortricidae Genus: Epiphyas Species: Epiphyas postvittana Summary of Invasiveness http://www.cabi.org/cpc/DatasheetDetailsReports.aspx?&iSectionId=110*0/141*0/23*0/122*0/103*0/1... 10/13/2011 Crop Protection Compendium report - Epiphyas postvittana (light brown apple moth) Page 2 of 22 E. postvittana is a small, bell-shaped moth, whose caterpillars feed on a very wide range of plants. The eggs, larvae and pupae can be associated with plant material and readily transported.