Diagnostic Test: MALATTIE CEREBELLARI

Total Page:16

File Type:pdf, Size:1020Kb

Diagnostic Test: MALATTIE CEREBELLARI Diagnostic test: MALATTIE CEREBELLARI CEREBELLAR DISEASES Panel / Illumina Custom panel, Nextera Enrichment Technology / Coding exons and flanking regions of genes List of gene(s) and disease(s) tested: ABCB7, ABHD12, ACO2, COQ8A, AFG3L2, ANO10, APTX, ATCAY, ATG5, ATM, ATP1A3, ATP2B3, ATP8A2, C9orf72, CACNA1A, CACNA1G, CACNB4, CASK, CCDC88C, CLCN2, CLN5, CWF19L1, CYP27A1, DNMT1, EEF2, ELOVL4, ELOVL5, FAT2, FGF12, FGF14, FLVCR1, FXN, GDAP2, GOSR2, GRID2, GRM1, ITPR1, KCNA1, KCNC3, KCND3, KCNJ10, KIF1C, LAMA1, MARS2, MME, MTPAP, NKX6-2, OPHN1, PDYN, PEX7, PHYH, PLD3, PMPCA, PNKP, PNPLA6, POLG, POLR3A, POLR3B, PRKCG, PTF1A, PUM1, RNF216, RUBCN, SACS, SCN2A, SCYL1, SETX, SIL1, SLC1A3, SLC25A46, SLC9A1, SLC9A6, SNX14, SPG7, SPTBN2, SQSTM1, STUB1, SYNE1, SYT14, TDP1, TDP2, TGM6, TMEM240, TPP1, TRPC3, TSFM, TTBK2, TTPA, TUBB4A, TWNK, TXN2, UBA5, VAMP1, VLDLR, VPS13D, VWA3B, WDR73, WFS1, WWOX, XRCC1, ADAR, ALDH18A1, ALDH3A2, AMPD2, AP4B1, AP4E1, AP4M1, AP4S1, AP5Z1, ARL6IP1, ATAD3A, ATL1, ATP13A2, ATP2B4, B4GALNT1, BICD2, BSCL2, C12orf65, C19orf12, CAPN1, CPT1C, CYP2U1, CYP7B1, DDHD1, DDHD2, DNM2, DSTYK, ENTPD1, ERLIN1, ERLIN2, FA2H, FARS2, GAD1, GBA2, GJC2, HSPD1, IBA57, KIF1A, KIF5A, KLC2, KLC4, L1CAM, MAG, MARS, NIPA1, NT5C2, PGAP1, PLP1, REEP1, REEP2, RTN2, SLC16A2, SLC33A1, SPART, SPAST, SPG11, SPG21, TECPR2, TFG, UCHL1, USP8, VPS37A, WASHC5, WDR48, ZFYVE26, ZFYVE27 Atassia cerebellare autosomica dominante Atassia cerebellare autosomica recessive Atassia cerebellare legata all'X Atassia cerebellare - areflessia - piede cavo - atrofia ottica - sordità neurosensoriale Atassia episodica Atassia spastica autosomica recessiva Atassia spastica autosomica dominante Paraplegia spastica autosomica recessiva Paraplegia spastica autosomica dominante Sindrome MASA Sindrome CRASH Tabella Elenco delle forme di MALATTIE CEREBELLARI e la loro eziologia genetica ATASSIA CEREBELLARE AUTOSOMICA DOMINANTE (ADCA) OMIM# Phenotype Phenotype Gene OMIM# Gene / Reference SCA28 610246 AFG3L2 604581 Rapid-onset ataxia (1) ATP1A3 182350 Pure cerebellar ataxia (1) C9orf72 614260 SCA42 616795 CACNA1G 604065 SCA40 616053 CCDC88C 611204 ADCADN 604121 DNMT1 126375 SCA26 609306 EEF2 130610 SCA34 133190 ELOVL4 605512 SCA38 615957 ELOVL5 611805 SCA45 617769 FAT2 604269 Cerebellar atrophy with epileptic encephalopathy (1) FGF12 601513 SCA27 609307 FGF14 601515 GRID2-related spinocerebellar ataxia (1) GRID2 602368 SCA44 617691 GRM1 604473 SCA15 606658 ITPR1 147265 SCA29 117360 ITPR1 147265 SCA13 605259 KCNC3 176264 SCA19 607346 KCND3 605411 SCA43 617018 MME 120520 SCA23 610245 PDYN 131340 SCA46 617770 PLD3 615698 SCA14 605361 PRKCG 176980 SCA47 617931 PUM1 607204 SCA5 600224 SPTBN2 604985 SCA48 618093 STUB1 607207 SCA35 613908 TGM6 613900 SCA21 607454 TMEM240 616101 SCA41 616410 TRPC3 602345 SCA11 604432 TTBK2 611695 Hypomyelinating leukoencephalopathy 612438 TUBB4A 602662 ATASSIA CEREBELLARE AUTOSOMICA RECESSIVA (SCAR) (Disordini Singolo-gene) OMIM# Phenotype / Phenotype Gene OMIM# Gene Reference Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and 612674 ABHD12 613599 cataract Infantile cerebellar-retinal degeneration 614559 ACO2 100850 Coenzyme Q10 deficiency, primary, 4 612016 ADCK3 (COQ8A) 606980 Spinocerebellar ataxia, autosomal recessive 10 613728 ANO10 613726 Ataxia, early-onset, with oculomotor apraxia and 208920 APTX 606350 hypoalbuminemia Ataxia, cerebellar, Cayman type 601238 ATCAY 608179 ?Spinocerebellar ataxia, autosomal recessive 25 617584 ATG5 604261 Ataxia-telangiectasia 208900 ATM 607585 Cerebellar ataxia, mental retardation, and dysequilibrium 615268 ATP8A2 605870 syndrome 4 Leukoencephalopathy with ataxia 615651 CLCN2 600570 Ceroid lipofuscinosis, neuronal, 5 256731 CLN5 608102 Spinocerebellar ataxia, autosomal recessive 17 616127 CWF19L1 616120 Cerebrotendinous xanthomatosis 213700 CYP27A1 606530 Ataxia, posterior column, with retinitis pigmentosa 609033 FLVCR1 609144 Friedreich ataxia 229300 FXN 606829 Spinocerebellar ataxia, autosomal recessive 27 618369 GDAP2 618128 Epilepsy, progressive myoclonic 6 614018 GOSR2 604027 Spinocerebellar ataxia, autosomal recessive 18 616204 GRID2 602368 Spinocerebellar ataxia, autosomal recessive 13 614831 GRM1 604473 SESAME syndrome 612780 KCNJ10 602208 Poretti-Boltshauser syndrome 615960 LAMA1 150320 Refsum disease 266500 PEX7 601757 (1) PHYH 602026 Spinocerebellar ataxia, autosomal recessive 2 213200 PMPCA 613036 Ataxia-oculomotor apraxia 4 616267 PNKP 605610 Boucher-Neuhauser syndrome 215470 PNPLA6 603197 Mitochondrial recessive ataxia syndrome (MIRAS) 157640 POLG 174763 (1) POLR3A 614258 Cerebellar atrophy with hypomyelination (1) POLR3B 614366 Pancreatic and cerebellar agenesis 609069 PTF1A 607194 Pancreatic and cerebellar agenesis 609069 PTF1A 607194 Cerebellar ataxia and hypogonadotropic hypogonadism 212840 RNF216 609948 Spinocerebellar ataxia, autosomal recessive 15 615705 RUBCN (KIAA0226) 613516 Spastic ataxia, Charlevoix-Saguenay type 270550 SACS 604490 Spinocerebellar ataxia, autosomal recessive 21 616719 SCYL1 607982 Spinocerebellar ataxia, autosomal recessive 1 606002 SETX 608465 Marinesco-Sjogren syndrome 248800 SIL1 608005 Pontocerebellar hypoplasia (1) SLC25A46 610826 Lichtenstein-Knorr syndrome 616291 SLC9A1 107310 Spinocerebellar ataxia, autosomal recessive 20 616354 SNX14 616105 Spinocerebellar ataxia, autosomal recessive 14 615386 SPTBN2 604985 Neurodegeneration with ataxia, dystonia, and gaze palsy, 617145 SQSTM1 601530 childhood-onset Spinocerebellar ataxia, autosomal recessive 16 615768 STUB1 607207 Spinocerebellar ataxia, autosomal recessive 8 610743 SYNE1 608441 Spinocerebellar ataxia, autosomal recessive 11 614229 SYT14 610949 Spinocerebellar ataxia, autosomal recessive with axonal 607250 TDP1 607198 neuropathy Spinocerebellar ataxia, autosomal recessive 23 616949 TDP2 605764 Spinocerebellar ataxia, autosomal recessive 7 609270 TPP1 607998 AR cardiomyopathy with ataxia (1) TSFM 604723 Ataxia with isolated vitamin E deficiency 277460 TTPA 600415 Mitochondrial DNA depletion syndrome 7 (hepatocerebral type) 271245 TWNK 606075 Early-onset neurodegeneration (1) TXN2 609063 Spinocerebellar ataxia, autosomal recessive 24 617133 UBA5 610552 Cerebellar hypoplasia and mental retardation with or without 224050 VLDLR 192977 quadrupedal locomotion 1 Spinocerebellar ataxia, autosomal recessive 4 607317 VPS13D 608877 Spinocerebellar ataxia, autosomal recessive 22 616948 VWA3B 614884 Galloway-Mowat syndrome 1 251300 WDR73 616144 Wolfram syndrome 1 222300 WFS1 606201 Spinocerebellar ataxia, autosomal recessive 12 614322 WWOX 605131 Spinocerebellar ataxia, autosomal recessive 26 617633 XRCC1 194360 ATASSIA CEREBELLARE X-LINKED (SCAX) OMIM# Phenotype Phenotype Gene OMIM# Gene / Reference Anemia, sideroblastic, with ataxia 301310 ABCB7 300135 Spinocerebellar ataxia, X-linked 1 302500 ATP2B3 300014 Mental retardation and microcephaly with pontine and 300749 CASK 300172 cerebellar hypoplasia Mental retardation, X-linked, with cerebellar hypoplasia and 300486 OPHN1 300127 distinctive facial appearance Mental retardation, X-linked syndromic, Christianson type 300243 SLC9A6 300231 ATASSIA EPISODICA (EA) OMIM# Phenotype / Phenotype Gene OMIM# Gene Reference CAPOS syndrome 601338 ATP1A3 182350 EA2 108500 CACNA1A 601011 EA5 613855 CACNB4 601949 EA1 160120 KCNA1 176260 Episodic ataxia with neonatal epilepsy (1) SCN2A 182390 EA6 612656 SLC1A3 600111 DISTURBI CON SPASTICITÀ E ATASSIA CEREBELLARE (SPAX) OMIM# Phenotype / Phenotype Gene OMIM# Gene Reference Spastic ataxia 5, autosomal recessive 614487 AFG3L2 604581 Spastic ataxia 2, autosomal recessive 611302 KIF1C 603060 Spastic ataxia 3, autosomal recessive 611390 MARS2 609728 Spastic ataxia 4, autosomal recessive 613672 MTPAP 613669 Spastic ataxia 8, autosomal recessive, with hypomyelinating 617560 NKX6-2 605955 leukodystrophy Spastic ataxia, Charlevoix-Saguenay type 270550 SACS 604490 Spastic paraplegia 7, autosomal recessive 607259 SPG7 602783 Spastic ataxia 1, autosomal dominant 108600 VAMP1 185880 PARAPLEGIE SPASTICHE EREDITARIE (PSE) Phenotype OMIM# Phenotype / Gene OMIM# Gene Reference Spastic paraplegia (2) ADAR 146920 Spastic paraplegia 9A, autosomal dominant 601162 ALDH18A1 138250 Spastic paraplegia (2) ATAD3A 612316 Spastic paraplegia 3A, autosomal dominant 182600 ATL1 606439 Spastic paraplegia (2) ATP2B4 108732 Spastic paraplegia (2) BICD2 609797 Silver spastic paraplegia syndrome 270685 BSCL2 606158 Spastic paraplegia 73, autosomal dominant 616282 CPT1C 608846 Spastic paraplegia (2) DNM2 602378 Spastic paraplegia 13, autosomal dominant 605280 HSPD1 118190 Spastic paraplegia 10, autosomal dominant 604187 KIF5A 602821 Spastic paraplegia 6, autosomal dominant 600363 NIPA1 608145 Spastic paraplegia 31, autosomal dominant 610250 REEP1 609139 Spastic paraplegia 72, autosomal recessive 615625 REEP2 609347 Spastic paraplegia 12, autosomal dominant 604805 RTN2 603183 Spastic paraplegia 42, autosomal dominant 612539 SLC33A1 603690 Spastic paraplegia 4, autosomal dominant 182601 SPAST 604277 Spastic paraplegia 7, autosomal recessive 607259 SPG7 602783 Spastic paraplegia (2) TUBB4A 602662 Spastic paraplegia 8, autosomal dominant 603563 WASHC5 610657 Spastic paraplegia 33, autosomal dominant 610244 ZFYVE27 610243 Mast syndrome 248900 SPG21 608181 Spastic paraplegia 9B, autosomal recessive 616586 ALDH18A1 138250 Spastic paraplegia (2) ALDH3A2 609523 Spastic paraplegia 63 615686 AMPD2 102771 Spastic paraplegia 47, autosomal recessive 614066 AP4B1 607245 Spastic paraplegia 51, autosomal recessive 613744 AP4E1 607244 Spastic paraplegia 50, autosomal recessive
Recommended publications
  • Genetic Associations Between Voltage-Gated Calcium Channels (Vgccs) and Autism Spectrum Disorder (ASD)
    Liao and Li Molecular Brain (2020) 13:96 https://doi.org/10.1186/s13041-020-00634-0 REVIEW Open Access Genetic associations between voltage- gated calcium channels and autism spectrum disorder: a systematic review Xiaoli Liao1,2 and Yamin Li2* Abstract Objectives: The present review systematically summarized existing publications regarding the genetic associations between voltage-gated calcium channels (VGCCs) and autism spectrum disorder (ASD). Methods: A comprehensive literature search was conducted to gather pertinent studies in three online databases. Two authors independently screened the included records based on the selection criteria. Discrepancies in each step were settled through discussions. Results: From 1163 resulting searched articles, 28 were identified for inclusion. The most prominent among the VGCCs variants found in ASD were those falling within loci encoding the α subunits, CACNA1A, CACNA1B, CACN A1C, CACNA1D, CACNA1E, CACNA1F, CACNA1G, CACNA1H, and CACNA1I as well as those of their accessory subunits CACNB2, CACNA2D3, and CACNA2D4. Two signaling pathways, the IP3-Ca2+ pathway and the MAPK pathway, were identified as scaffolds that united genetic lesions into a consensus etiology of ASD. Conclusions: Evidence generated from this review supports the role of VGCC genetic variants in the pathogenesis of ASD, making it a promising therapeutic target. Future research should focus on the specific mechanism that connects VGCC genetic variants to the complex ASD phenotype. Keywords: Autism spectrum disorder, Voltage-gated calcium
    [Show full text]
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • Identification of Candidate Substrates of the Leucine Rich Repeat Kinase 2 by Mass Spectrometry
    Identification of candidate substrates of the leucine rich repeat kinase 2 by mass spectrometry- based phosphoproteomics William Carl Edelman A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Judit Villén, Chair Leo Pallanck Deborah Nickerson Program Authorized to Offer Degree: Department of Genome Sciences 2 © Copyright 2016 William Carl Edelman 3 University of Washington Abstract Identification of candidate substrates of the leucine rich repeat kinase 2 by mass spectrometry-based phosphoproteomics William Carl Edelman Chair of the Supervisory Committee: Assistant Professor, Judit Villén Department of Genome Sciences Mutations in the kinase domain of the leucine rich repeat kinase (LRRK2) have been implicated in heritable forms of Parkinson’s disease (PD). Specifically, a glycine to serine mutation (G2019S) has demonstrated hyperactive autophosphorylation, neuronal toxicity, and locomotor deficits in the fruit fly Drosophila melanogaster— all of which are related to its pathogenicity in PD. My dissertation focuses on identifying novel substrates of LRRK2 through analysis of proteome-wide changes in protein abundance as well as identifying changes in phosphorylation of proteins in vitro and in the in vivo fruit fly model. Using mass spectrometry, I provide quantitative information on thousands of proteins and phosphorylation sites. In vitro kinase assays on peptides derived from fly heads or a neuroblastoma cell line provide evidence for direct substrates of LRRK2, while the in vivo experiment in flies expressing LRRK2 identifies both direct and indirect phosphorylation substrates of the kinase. Herein, I present evidence for novel, LRRK2-mediated phosphorylation sites in the Drosophila melanogaster and the neuroblastoma models of PD.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Clinical Vignette Novel Bi-Allelic Variants in GJC2 Associated
    Clinical Vignette Novel Bi-allelic Variants in GJC2 Associated Pelizaeus- Merzbacher-like Disease 1: Clinical Clues and Differential Diagnosis Veronica Arora, Sapna Sandal, Ishwar Verma Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi Correspondence to: Dr Ishwar C Verma Email: [email protected] Abstract the environment and did not follow objects. Head titubation was present. There was no facial dys- Hypomyelinating Leukodystrophy-2 (HLD2) or morphism. Anthropometric measurements were Pelizaeus-Merzbacher-like disease 1 (PMLD1) is a as follows: length 82cm (+1.2SD), weight 10.6Kg slowly progressive leukodystrophy characterized (+1.1SD) and head circumference 47.7cm (+1.2SD). by nystagmus, hypotonia, and developmental Central nervous system examination showed bilat- delay. It is a close differential diagnosis for eral pendular nystagmus, axial hypotonia, dystonic Pelizaeus- Merzbacher disease (PMD) and should posturing, and choreo-athetoid movements (Figure be suspected in patients with features of PMD but 1). Deep tendon reflexes were brisk with extensor who are negative on testing for duplication of the plantar responses. The rest of the systemic PLP1 gene. We describe a case of a 16-month-old examination was non-contributory. MRI of the boy with a novel homozygous mutation in the GJC2 brain (axial view) showed diffuse hypo-myelination gene resulting in hypomyelinating leukodystrophy- in the peri-ventricular and sub-cortical area and 2. The clinical clues as well as features of other cerebellar white matter changes (Figure 2). disorders presenting similarly are discussed. Given the presence of hypotonia, brisk reflexes, nystagmus and hypomyelination on MRI, a deletion Clinical description duplication analysis for the PLP1 gene was done which was negative.
    [Show full text]
  • A New Model for X-Linked Tremor/Ataxia
    © 2016. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2016) 9, 553-562 doi:10.1242/dmm.022848 RESEARCH ARTICLE Spontaneous shaker rat mutant – a new model for X-linked tremor/ ataxia Karla P. Figueroa1, Sharan Paul1, Tito Calì2, Raffaele Lopreiato2, Sukanya Karan1, Martina Frizzarin2, Darren Ames3, Ginevra Zanni4, Marisa Brini5, Warunee Dansithong1, Brett Milash3, Daniel R. Scoles1, Ernesto Carafoli6 and Stefan M. Pulst1,* ABSTRACT mode of inheritance. Here, we describe the genetic analysis of the The shaker rat is an X-linked recessive spontaneous model of shaker rat, a model of Purkinje cell (PC) degeneration. This mutant progressive Purkinje cell (PC) degeneration exhibiting a shaking arose spontaneously and was observed in Sprague Dawley (SD) ataxia and wide stance. Generation of Wistar Furth (WF)/Brown outbred stock in 1991 at Saint Louis University, first described by Norwegian (BN) F1 hybrids and genetic mapping of F2 sib-sib La Regina et al. (1992), and the phenotype of whole-body tremor, ‘ ’ offspring using polymorphic markers narrowed the candidate gene ataxia and wide stance designated as shaker . The shaker trait was region to 26 Mbp denoted by the last recombinant genetic marker reported as an X-linked recessive trait. DXRat21 at 133 Mbp to qter (the end of the long arm). In the WF Various animal models of spontaneously occurring mutants that background, the shaker mutation has complete penetrance, results in parallel some aspects of human hereditary ataxia have been a stereotypic phenotype and there is a narrow window for age of reported; for example, weaver, lurcher, stumbler, tottering and disease onset; by contrast, the F2 hybrid phenotype was more varied, teetering mice (Chou et al., 1991; Frankel et al., 1994; Green and with a later age of onset and likely non-penetrance of the mutation.
    [Show full text]
  • Somatic and Inherited Mutations in Primary Aldosteronism
    59 1 F L FERNANDES-ROSA, S BOULKROUN Genetic basis of 59: 1 R47–R63 Review and others primary aldosteronism Somatic and inherited mutations in primary aldosteronism Fabio Luiz Fernandes-Rosa1,2,3,*, Sheerazed Boulkroun1,2,* and Maria-Christina Zennaro1,2,3 Correspondence should be addressed 1 INSERM, UMRS_970, Paris Cardiovascular Research Center, Paris, France to F L Fernandes-Rosa or 2 University Paris Descartes, Sorbonne Paris Cité, Paris, France S Boulkroun 3 Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Email Paris, France fabio.fernandes-rosa@ *(F L Fernandes-Rosa and S Boulkroun contributed equally to this work) inserm.fr or sheerazed. [email protected] Abstract Primary aldosteronism (PA), the most common form of secondary hypertension, is caused Key Words in the majority of cases by unilateral aldosterone-producing adenoma (APA) or bilateral f primary aldosteronism adrenal hyperplasia. Over the past few years, somatic mutations in KCNJ5, CACNA1D, f aldosterone-producing ATP1A1 and ATP2B3 have been proven to be associated with APA development, adenoma representing more than 50% of sporadic APA. The identification of these mutations has f familial allowed the development of a model for APA involving modification on the intracellular hyperaldosteronism ionic equilibrium and regulation of cell membrane potential, leading to autonomous f somatic mutations aldosterone overproduction. Furthermore, somatic CTNNB1 mutations have also been f germline mutations identified in APA, but the link between these mutations and APA development remains f potassium channels unknown. The sequence of events responsible for APA formation is not completely f calcium channels understood, in particular, whether a single hit or a double hit is responsible for both f ATPase Journal of Molecular Endocrinology aldosterone overproduction and cell proliferation.
    [Show full text]
  • Cdk15 Igfals Lingo4 Gjb3 Tpbg Lrrc38 Serpinf1 Apod Trp73 Lama4 Chrnd Col9a1col11a1col5a2 Fgl2 Pitx2 Col2a1 Col3a1 Lamb3 Col24a1
    Bnc2 Wdr72 Ptchd1 Abtb2 Spag5 Zfp385a Trim17 Ier2 Il1rapl1 Tpd52l1 Fam20a Car8 Syt5 Plxnc1 Sema3e Ndrg4 Snph St6galnac5 Mcpt2 B3galt2 Sphkap Arhgap24 Prss34 Lhfpl2 Ermap Rnf165 Shroom1 Grm4 Mobp Dock2 Tmem9b Slc35d3 Otud7b Serpinb3a Sh3d19 Syt6 Zan Trim67 Clec18a Mcoln1 Tob1 Slc45a2 Pcdhb9 Pcdh17 Plscr1 Gpr143 Cela1 Frem1 Sema3f Lgi2 Igsf9 Fjx1 Cpne4 Adgb Depdc7 Gzmm C1qtnf5 Capn11 Sema3c H2-T22 Unc5c Sytl4 Galnt5 Sytl2 Arhgap11a Pcdha1 Cdh20 Slc35f2 Trim29 B3gnt5 Dock5 Trim9 Padi4 Pcdh19 Abi2 Cldn11 Slitrk1 Fam13a Nrgn Cpa4 Clmp Il1rap Trpm1 Fat4 Nexn Pmel Mmp15 Fat3 H2-M5 Prss38 Wdr41 Prtg Mlana Mettl22 Tnrc6b Cdh6 Sema3b Ptgfrn Cldn1 Cntn4 Bcl2a1b Capn6 Capn5 Pcdhb19 Tcf15 Bmf Rgs8 Tecrl Tyrp1 Rhot1 Rnf123 Cldn6 Adam9 Hlx Rilpl1 Disp1 Atcay Vwc2 Fat2 Srpx2 Cldn3 Unc13c Creb3l1 Rab39b Robo3 Gpnmb Bves Orai2 Slc22a2 Prss8 Cdh10 Scg3 Adam33 Nyx Dchs1 Chmp4c Syt9 Ap1m2 Megf10 Cthrc1 Penk Igsf9b Akap2 Ltbp3 Dnmbp Tff2 Pnoc Vldlr Cpa3 Snx18 Capn3 Btla Htr1b Gm17231 Pcdh9Rab27a Grm8 Cnih2 Scube2 Id2 Reep1 Cpeb3 Mmp16 Slc18b1 Snx33 Clcn5 Cckbr Pkp2 Drp2 Mapk8ip1 Lrrc3b Cxcl14 Zfhx3 Esrp1 Prx Dock3 Sec14l1 Prokr1 Pstpip2 Usp2 Cpvl Syn2 Ntn1 Ptger1 Rxfp3 Tyr Snap91 Htr1d Mtnr1a Gadd45g Mlph Drd4 Foxc2 Cldn4 Birc7 Cdh17 Twist2 Scnn1b Abcc4 Pkp1 Dlk2 Rab3b Amph Mreg Il33 Slit2 Hpse Micu1 Creb3l2 Dsp Lifr S1pr5 Krt15 Svep1 Ahnak Kcnh1 Sphk1 Vwce Clcf1 Ptch2 Pmp22 Sfrp1 Sema6a Lfng Hs3st5 Efcab1 Tlr5 Muc5acKalrn Vwa2 Fzd8 Lpar6 Bmp5 Slc16a9 Cacng4 Arvcf Igfbp2 Mrvi1 Dusp15 Krt5 Atp13a5 Dsg1a Kcnj14 Edn3Memo1 Ngef Prickle2 Cma1 Alx4 Bmp3 Blnk GastAgtr2
    [Show full text]
  • Caracterización De Las Bases Genéticas De Ataxias Hereditarias
    8. Appendices Appendix I: Genetic tests previously performed for patients included in WES analysis and SCA36 screening. These analyses include the most common forms of ADCA and ARCA caused by trinucleotide expansions and a panel containing genes relevant for different types of ataxia. SCA1, SCA2, SCA3, SCA6, SCA7, SCA12, SCA17 and DRPLA (Dentatorubral- pallidoluysian atrophy): caused by CAG triplet expansions. SCA8: caused by CTG triplet expansions. Friedreich’s ataxia: caused by GAA triplet expansions. SureSelect Human All Exon V6Panel (Agilent Technologies, Santa Clara, CA, USA): this panel was used to study both the coding and the intronic flanking regions of ataxia related genes through NGS. Different sets of genes were used for different types of ataxia. - Episodic ataxia: ATP1A2, ATP1A3, CACNA1A, CACNA1S, CACNB4, KCNA1, SCN1A, SCN2A, SCN4A, SLC1A3. - Dominant ataxia: AFG3L2, ATP1A3, CACNA1A, CACNA1G, CACNB4, CCDC88C, DNMT1, EEF2, ELOVL4, ELOVL5, FAT2, FGF12, FGF14, ITPR1,KCNA1, KCNC3, KCND3, PDYN, PRKCG, SCN2A, SLC1A3, SPG7, SPTBN2, TBP, TGM6, TMEM240, TTBK2, TUBB4A, TRPC2, ME, PLD3. - Recessive ataxia: ABHD12, ADCK3, ANO10, APTX, ATCAY, ATM, ATP8A2, C10orf2, CA8, CWF19L1, ADCK3, CYP27A1, DNAJC19, FXN, GRM1,KCNJ10, KIAA0226, MRE11, MTPAP, PIK3R5, PLEKHG4, PMPCA, PNKP, POLG, RNF216, SACS, SETX, SIL1, SNX14, SYNE1, SYT14, TDP1, TPP1, TTPA, VLDLR, WDR81, WWOX - Complex disorders with prominent ataxia (AR): AFG3L2, CLCN2, COX20, CP, DARS2, FLVCR1, HEXA, HEXB, ITPR1, LAMA1, MTTP, NCP1, NCP2, PLA2G6, PM2, PNPLA6, SPTBN2. - Complex disorders with occasional ataxia (AR): ACO2, AHI1, ARL13B, CC2D2A, CLN5, CLN6, EIF2B1, EIF2B2, EIF2B3, EIF2B4, EIF2B5, GOSR2, L2HGDH, OPA1, PEX7, PHYH, POLR3A, POLR3B, PTF1A, SLC17A5, SLC25A46, SLC52A2, SLC6A19, TSFM, TXN2, WFS1. - Disorders reported with ataxia but not included in the differential diagnosis: EPM2A, NHLRC1, MLC1, COL18A1, HSD17B4, PEX2, WFS1, ASPA, ARSA, SLC2A1.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • An Advance About the Genetic Causes of Epilepsy
    E3S Web of Conferences 271, 03068 (2021) https://doi.org/10.1051/e3sconf/202127103068 ICEPE 2021 An advance about the genetic causes of epilepsy Yu Sun1, a, *, †, Licheng Lu2, b, *, †, Lanxin Li3, c, *, †, Jingbo Wang4, d, *, † 1The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3633, US 2High School Affiliated to Shanghai Jiao Tong University, Shanghai, 200441, China 3Applied Biology program, University of British Columbia, Vancouver, V6r3b1, Canada 4School of Chemical Machinery and Safety, Dalian University of Technology, Dalian, 116023, China †These authors contributed equally. Abstract: Human hereditary epilepsy has been found related to ion channel mutations in voltage-gated channels (Na+, K+, Ca2+, Cl-), ligand gated channels (GABA receptors), and G-protein coupled receptors, such as Mass1. In addition, some transmembrane proteins or receptor genes, including PRRT2 and nAChR, and glucose transporter genes, such as GLUT1 and SLC2A1, are also about the onset of epilepsy. The discovery of these genetic defects has contributed greatly to our understanding of the pathology of epilepsy. This review focuses on introducing and summarizing epilepsy-associated genes and related findings in recent decades, pointing out related mutant genes that need to be further studied in the future. 1 Introduction Epilepsy is a neurological disorder characterized by 2 Malfunction of Ion channel epileptic seizures caused by abnormal brain activity. 1 in Functional variation in voltage or ligand-gated ion 100 (50 million people) people are affected by symptoms channel mutations is a major cause of idiopathic epilepsy, of this disorder worldwide, with men, young children, and especially in rare genetic forms.
    [Show full text]
  • Essential Trace Elements in Human Health: a Physician's View
    Margarita G. Skalnaya, Anatoly V. Skalny ESSENTIAL TRACE ELEMENTS IN HUMAN HEALTH: A PHYSICIAN'S VIEW Reviewers: Philippe Collery, M.D., Ph.D. Ivan V. Radysh, M.D., Ph.D., D.Sc. Tomsk Publishing House of Tomsk State University 2018 2 Essential trace elements in human health UDK 612:577.1 LBC 52.57 S66 Skalnaya Margarita G., Skalny Anatoly V. S66 Essential trace elements in human health: a physician's view. – Tomsk : Publishing House of Tomsk State University, 2018. – 224 p. ISBN 978-5-94621-683-8 Disturbances in trace element homeostasis may result in the development of pathologic states and diseases. The most characteristic patterns of a modern human being are deficiency of essential and excess of toxic trace elements. Such a deficiency frequently occurs due to insufficient trace element content in diets or increased requirements of an organism. All these changes of trace element homeostasis form an individual trace element portrait of a person. Consequently, impaired balance of every trace element should be analyzed in the view of other patterns of trace element portrait. Only personalized approach to diagnosis can meet these requirements and result in successful treatment. Effective management and timely diagnosis of trace element deficiency and toxicity may occur only in the case of adequate assessment of trace element status of every individual based on recent data on trace element metabolism. Therefore, the most recent basic data on participation of essential trace elements in physiological processes, metabolism, routes and volumes of entering to the body, relation to various diseases, medical applications with a special focus on iron (Fe), copper (Cu), manganese (Mn), zinc (Zn), selenium (Se), iodine (I), cobalt (Co), chromium, and molybdenum (Mo) are reviewed.
    [Show full text]