Wetland and Hydric Soils 6 Carl C
Wetland and Hydric Soils 6 Carl C. Trettin, Randall K. Kolka, Anne S. Marsh, Sheel Bansal, Erik A. Lilleskov, Patrick Megonigal, Marla J. Stelk, Graeme Lockaby, David V. D’Amore, Richard A. MacKenzie, Brian Tangen, Rodney Chimner, and James Gries Introduction conterminous United States have been converted to other land uses over the past 150 years (Dahl 1990). Most of those losses Soil and the inherent biogeochemical processes in wetlands are due to draining and conversion to agriculture. States in the contrast starkly with those in upland forests and rangelands. The Midwest such as Iowa, Illinois, Missouri, Ohio, and Indiana differences stem from extended periods of anoxia, or the lack of have lost more than 85% of their original wetlands, and oxygen in the soil, that characterize wetland soils; in contrast, California has lost 96% of its wetlands. In the mid-1900s, the upland soils are nearly always oxic. As a result, wetland soil importance of wetlands in the landscape started to be under- biogeochemistry is characterized by anaerobic processes, and stood, and wetlands are now recognized for their inherent wetland vegetation exhibits specifc adaptations to grow under value that is realized through the myriad of ecosystem ser- these conditions. However, many wetlands may also have peri- vices, including storage of water to mitigate fooding, fltering ods during the year where the soils are unsaturated and aerated. water of pollutants and sediment, storing and sequestering car- This fuctuation between aerated and nonaerated soil condi- bon (C), providing critical habitat for wildlife, and recreation. tions, along with the specialized vegetation, gives rise to a wide Historically, drainage of wetlands for agricultural devel- variety of highly valued ecosystem services.
[Show full text]