Special Edition – Bridges and Viaducts 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design and Infrastructure – Sector Review of Attitudes
Design and Infrastructure – Sector Review of Attitudes National Infrastructure Commission | Design and Infrastructure - Sector Review of Attitudes 1 © Crown copyright 2018 This report was commissioned as part of the evidence base for the National Infrastructure Assessment. The views expressed and recommendations set out in this report are the authors’ own and do not necessarily reflect the position of the National Infrastructure Commission. This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. To view this licence, visit nationalarchives.gov.uk/doc/open-government- licence/version/3 Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned. This publication is available at www.nic.org.uk/ publications Any enquiries regarding this publication should be sent to us [email protected] July 2018 Contents Foreword 5 1 Introduction 7 2 Research Approach and Methodology 8 3 Findings 11 3.1 Existing Barriers 11 3.2 Opportunities for New Approaches 26 4 Conclusions 34 Appendix 35 Survey Questionnaire Results 36 Associations and Business 56 Interviewee List 57 Workshop Attendee List 58 National Infrastructure Commission | Design and Infrastructure - Sector Review of Attitudes 3 4 National Infrastructure Commission | Design and Infrastructure - Sector Review of Attitudes Foreword The National Infrastructure Commission set up the Design Task Force to advise on how best to ensure quality design in future major infrastructure. We have reviewed experience of infrastructure design, interrogated infrastructure professionals, and looked at examples from the UK and beyond. Our work has been supported by three important pieces of research, including this study of sector attitudes to design and infrastructure. -
Special Issue – Territorial Information No. 1 What Goes on in Turkey
IMIA NEWS Special Issue – Territorial Information No. 1 Dec 2013 What goes on in Turkey Construction of the Gebze Izmir Motorway & Gebze Bay Crossing see more on page 4 More info p.2 The Turkish Insurance Market is growing by 24.8% as at end of September 2013. The Engineering Lines overall are growing by 37.7% when compared to the same period of time. When we look at the September results of the insurance companies in Turkey, Machinery Breakdown Insurances have grown by 24%, Electronic Equipment Insurance has grown by 21.2% and the Erection All Risks, together with Construction All Risks Insurances have grown by almost 60%. The major effect in this growth is one specific Project covering the highway construction from Istanbul to Izmir and the bridge to be built in the Izmit Bay. There are many other Engineering projects in the pipeline to come. Here are some examples: 1 THE THIRD BOSPHORUS BRIDGE Bridge of Firsts The 3rd Bridge, which is going to be built on the Bosphorus, Istanbul within the Northern Marmara Motorway Project executed by IC Ictas – Astaldi Consortium, is considered the future of transportation and commerce. The 3rd bridge, which is going to be built on the Bosphorus, Istanbul after the Bogazici Bridge, which started operating in 1972, and the Fatih Sultan Mehmet Bridge, which was completed in 1988, is regarded as the bridge of firsts. 8 lanes of motorway and 2 lanes of railway will be located at the same level on the 3rd Bosphorus Bridge, which will be a product of professional engineering and advanced technology built by a team, most of whom are Turkish engineers. -
Millau Viaduct, France
Recent Structures Worldwide: An Introduction Both our regular readers, the IABSE members, as well as it may be. IABSE is the prime professional organization for new readers who may be getting this special issue of “Struc- structural engineers truly committed to the exchange of tural Engineering International” at the Structures Congress knowledge and to the advancement of the practice of struc- 2005 in New York City, will be delighted to go through this tural engineering worldwide, as reflected in this and in every Recent Structures series, aimed at showcasing a wide range of SEI issue, and, if you are not a member yet, I invite you to structures recently completed. They all share common fea- join! tures: they were challenging to design and to build, uncon- This carefully selected group of recent structures, many of ventional in their own way, and innovative. They were built which will be presented by their designers at Structures Con- all over the world, and in many cases by a truly global part- gress 2005, is certain to stimulate our creativity. I invite you to nership of designers, detailers, fabricators and constructors. read the articles, and to attend the Congress. While in New As structural engineers in a world where country borders are York, hometown to some of the best and internationally rec- increasingly just a line on a map, we strive to feed on the ex- ognized structural engineering firms, don’t forget to visit the perience of other engineers, geographically or by specialty local outstanding structures, both new and old. both near and far from us. -
The Effects of Our Decaying Infrastructure on National Security and Culture
The Effects of Our Decaying Infrastructure On National Security and Culture Roberto Ballarini James L. Record Professor and Head Department of Civil Engineering University of Minnesota Foresight After Four September 16, 2009 Disclaimer: What follows is the perspective of an educator who is also a concerned, proud and ultimately optimistic citizen of a great country. That said: “Human history becomes more and more a race between education and catastrophe.” H.G. Wells Oh difficulties to be endured, cries the coward, the featherhead, the shuttlecock, the faint-heart. The task is not impossible, though hard. The craven must stand aside. Ordinary, easy tasks are for the commonplace and the herd. Rare, heroic and divine men overcome the difficulties of the way and force an immortal palm from necessity. You may fail to reach your goal, but run the race nevertheless. Put forth your strength in so high a business. Strive on with your last breath. Giordano Bruno, The Ash Wednesday Supper Highway 43 Bridge, Winona, MN Detour length was 65 miles. Closed to all traffic June 3 Reopens for cars June 14 Reopens for trucks July 21 Sidewalk reopens October 2 Outline What the Nation’s infrastructure represents. What it was, what it is, what will it be? What do we do about the existing infrastructure, and what do we do about replacing it? We need to take care of a very sick and old patient whose parts were not taken care of. We also need to replace the patient. There are solutions; they involve the commitment of lots of money for construction/repair, education, research, etc., and most importantly, will. -
Vincent De Ville De Goyet Chairman of the Board of Directors of GREISCH
Vincent de Ville de Goyet Chairman of the Board of Directors of GREISCH COORDINATION ET CO-OPERATIVE, of BUREAU D’ETUDES GREISCH PLC and of GREISCH INGÉNIERIE PLC Administrator of BUREAU GREISCH LUXEMBOURG PLC Director for the entire group GREISCH 1956 Born at Huy Belgian nationality Domiciled in Huy Studied construction civil engineering at Liège university Final dissertation entitled "Contribution à l'étude de la resistance ultime dans le plan des poutres en treillis à nœuds rigides" (Contribution to the study of the ultimate strength in the plane of lattice beams with rigid intersections) 1979 Graduated Magna Cum Laude as construction civil engineer Doctorate thesis: "L'analyse statique non linéaire par la méthode des éléments finis des structures spatiales formées de poutres à section non symétrique". (Non-linear static analysis, using the finite element method, of spatial structures formed from beams of non-symmetrical section.) 1988 Graduated Summa Cum Laude as Doctor of Applied Science from Liège university Languages - french: native language, - english: written and spoken knowledge. Additional training - Liège university (Belgium): "Theory of vibrations", Prof. Géradin, - Brussels university (Belgium): "Special civil engineering problems", Mr. Sphel, senior lecturer, - Institute for Computational Engineering (France): "Non-linear Finite Element Analysis", Profs. Th. Hughes and T. Belytschko, - "École Nationale des Ponts et Chaussées" (France): "Designing buildings, bridges and other civil engineering works in an earthquake zone". -
THE OFFICIAL CITY CARDTHE OFFICIAL CITY So Machen Sie Ihre Vienna City Card Gültig
Bonus Buch / Bonus booklet 4 / 2019 – 3 / 2020 www.viennacitycard.at THE OFFICIAL CITY OFFICIAL THE CARD So machen Sie Ihre Vienna City Card gültig. This is how to validate your Vienna City Card. / Important Wichtig PUBLIC TRANSPORT 72h ÖFFENTLICHE VERKEHRSMITTEL Discounts valid 7 days from/ Vorteile gültig 7 Tage ab WTV 56_18 Vienna City Card_RZ.indd 3 15.01.19 11:01 DE Bitte tragen Sie den ersten Tag ein, EN Please enter the date of the irst day an dem Sie die Vorteile der Vienna City you would like to activate the Vienna City Card in Anspruch nehmen. Die Vorteile Card. The beneits are valid for the gelten für die Dauer Ihres Aufenthalts duration of your stay (max. 7 days). (max. 7 Tage). Achtung: der Fahrschein Please note: the travel ticket must be muss separat entwertet werden, siehe validated separately – see p. 4–5. S. 4–5. Bitte beachten Sie: Ihre Vienna City Card für die ö entlichen Verkehrsmittel (Wiener Linien) ist ohne Eintragungen und Entwerter stempel ungültig. Wie Sie sie gültig machen, lesen Sie auf Seite 4. Please note: That your Vienna City Card including travel ticket for public transport Wiener Linien is not valid unless it bears your name and the date and has been punched. Read on page 4 how to validate your card. Allgemeine Informationen / Contents General Information Inhalt Europride 2019 Verkehr & Transport Europride 2019 Traffic & Transport Sightseeing Touren & Guides Sightseeing Tours & Guides Freizeit, Unterhaltung & Sport Musik & Theater Leisure, Entertainment & Sports Music & Theater Einkaufen Essen, Trinken -
Michel Virlogeux Consultant.Com
He has been expert for the Moosou bridge in Ivory Coast and the Edea bridge in Cameroon, consultant for the Evripos bridge in Greece and many important bridges in France, specially on the A75 Motorway, such as the Truyère Viaduct at Garabit, the Piou and Rioulong viaducts, the bridge over the river Lot at la Mothe, and took part in the preliminary design of the Tanus viaduct over the river Viaur. With his team he also controlled the execution design of several important bridges in addition to those of which he developed the project : the bridge over the river Marne and the Neuilly Plaisance viaducts and later the Ru de Maubuée viaduct for the Marne-la-Vallée line of the Paris Mass Transit System, the viaducts over the Gouet and Gouedic at Saint-Brieuc, the Fontenoy viaduct over the river Moselle, the Meylan and Illhof pedestrian cable-stayed bridges, the Tricastin bridge over the Donzère-Mondragon canal and the experimental bridges at La Ferté-Saint-Aubin, Cognac, Arbois and Charolles. He contributed to some technical evolutions, such as for external prestressing, cable-stayed bridges and composite structures. Between January, 1994, and January, 1995, he worked as consultant for the Highways Direction at the Ecole Nationale des Ponts et Chaussées. Since February, 1995 he works as a private consultant. As such he developed the conceptual design of the Avignon viaducts for the French Railways (for the High Speed Train) and was later Michel VIRLOGEUX consultant of the French railways for its erection, and he leaded the control of the design of the Vasco de Gama Bridge for the Portuguese administration (GATTEL). -
Engineering and Design
Omega Court Liège Science Park Luxembourg Rue Jules Cockx 8-10 Allée des noisetiers 25 Parc d’Activités Capellen 2-4 bât B B-1160 Bruxelles B-4031 Liège Belgique L-8308 Capellen + 32 (0)2 778 97 50 + 32 (0)4 366 16 16 + 32 (0)4 366 16 16 [email protected] [email protected] [email protected] Engineering www.greisch.com - Engineering and design Greisch N° 3 - Bureau and design 1 Based in Brussels and Liège, Bureau Greisch is one of the most advanced engineering and architecture firm in Europe. It was founded in 1959 by the engineer and architect René Greisch and currently has a staff of over 170 across its six companies (beg, bgroup, gi, gce, Neo-Ides and canevas). This large team is always open to collaborative ventures and carries out complex assignments in a wide variety of fields. Through his interest in both architecture and the structural design of buildings, René Greisch instilled in his team the spirit of research and innovation on which its reputation among architects has been built, leading to numerous collaborative ventures with some of the top names. Bureau Greisch also has its own archi- tectural unit (canevas) in order to create an atmosphere where engineers are constantly questioning and searching for new solutions, both formal and technical. This spirit of teamwork and cooperation, a quest for synergy and collaboration, innovation allied to ima- gination, and a questioning and dynamic approach have become the methods and principles by which Bureau Greisch works. René Greisch’s approach is embodied in a desire for perfection, in which a work is constantly refined and polished up to the very last moment. -
France : Elb Lends EUR 50 Million Towards Construction of Millau Viaduct
%(, Luxembourg, 13 November 2002 )UDQFH(,%OHQGV(85PLOOLRQWRZDUGVFRQVWUXFWLRQ RI0LOODX9LDGXFW The European Investment Bank (EIB) announces a loan of EUR 50 million to Eiffage for part- financing construction of the Millau Viaduct, an exceptional 2.5km-long cable-stayed bridge spanning the Tarn valley on the A75 Clermont Ferrand – Béziers motorway. The benefits accruing from this EIB operation will be threefold : completing an item of infrastructure of European interest; fostering regional development; and enhancing the quality of life in the town of Millau. The viaduct, the only type of structure capable of providing a crossing of the Tarn valley compatible with motorway standards, represents a key component of the A75 motorway on the Paris-Barcelona route. This highway, forming part of the Trans-European transport network, will thus serve as a fully-fledged alternative to the Rhone corridor on which the majority of traffic between North-Western Europe on the one hand and Southern France and the Iberian Peninsula on the other currently converges. The viaduct is the sole part of the A75 being built under a private concession, with the remainder implemented entirely under the responsibility of the State in view of its role in improving access to the eastern part of the Massif Central. Once the viaduct is completed, the motorway will help to give fresh impetus to this Objective 2 region where agriculture and tourism are the mainstay of the economy. In addition, by eliminating the notorious crossing of Millau, one of the largest bottlenecks in France, the project will also impact favourably on the environment, while significantly enhancing the quality of life of the town’s inhabitants. -
Yavuz Sultan Selim Bridge Third Bosphorus Bridge (BB3)
Yavuz Sultan Selim Bridge Third Bosphorus Bridge (BB3) North of Istanbul across the Bosphorus near the Black Sea (TR) General calculations of the steel structure, construction methods studies, dynamic studies (wind, earthquake, trains) Owner Designers Cost of the works Studies KGM - Turkish ministry of trans- Michel Virlogeux and € 700 M excl. vat. 2012 - 2016 port - Highways department Jean-François Kleïn Execution 2013 - 2016 OA In the central span, the deck is in steel with an orthotropic plate (total steel weight : 45 000 tons). In the side spans, the deck is in concrete. The preliminary design is the result of a competition won by Michel Virlogeux (France) and Jean-François Klein (Switzer- land). The final design is made by T-Ingénierie (Switzerland) and Greisch (Belgium) on behalf of the joint venture Içtas and Astaldi S.P.a. Mission : - global calculations of the structure during its service life; - proposals for construction methods; - design of the steel deck in the main span; Suspended bridge with a main span length of 1 408 m and a - dynamic studies necessary to verify the behaviour of the glo- total length of 2 240 m located at the north of Istanbul near the bal structure: Black Sea. > under the wind (during the service life and the construc- tionstages - verifications made with numerical simulations Like the Brooklyn bridge, the main span is partially suspended and by tests in wind tunnel laboratory), at the pylons by stiffening cables and at the main cables with > under the earthquake and/or the passages of trains. vertical hangers. The top of the pylons is located at 320 m, they are composed of 2 concrete shafts (77 000 tons). -
France Millau Viaduct Viaduc De Millau
BARTLETT SCHOOL OF PLANNING France Millau Viaduct Viaduc de Millau LATTS 1 This report was compiled by the French OMEGA Team, Ecole Nationales Ponts et Chaussees, Paris, France. Please Note: This Project Profile has been prepared as part of the ongoing OMEGA Centre of Excellence work on Mega Urban Transport Projects. The information presented in the Profile is essentially a 'work in progress' and will be updated/amended as necessary as work proceeds. Readers are therefore advised to periodically check for any updates or revisions. The Centre and its collaborators/partners have obtained data from sources believed to be reliable and have made every reasonable effort to ensure its accuracy. However, the Centre and its collaborators/partners cannot assume responsibility for errors and omissions in the data nor in the documentation accompanying them. 2 CONTENTS Project timeline and decision making process A INTRODUCTION Type of project Current status and parent project: the Highway 75 (A75.) Location Technical attributes: from Normandy Bridge to Millau Viaduct B BACKGROUND TO PROJECTS Principal project objectives Project story line Main actors Key enabling mechanism Outcome Local economic development C MAIN CHARACTERISTICS OF THE PROJECT The choice of the route: integrating local and environmental interests (1988-1990) The project: difficult choice and thorough investigations (1991-1996) Choosing between the high and low solution Definition of the project Competition for the design Selection of the design Conception of the project: elaborating -
Viaduct of Millau
Millau Viaduct: Steel content of deck: 36,000 t Dillinger Hütte gtS Facts and figures Total weight: 290,000 t Length: 2,460 m Total costs: 394 million E Pier height: up to 245 m Total height: 343 m Spans: 6 x 342 m 2 x 204 m Height of deck: 4.20 m Width of deck: 32 m S T E E L S F O R C O N S T R U C T I O N A L S T E E L W O R K : D I - M C Seven towers: Individual weight each: 650 t Height: 88 m 22 cables per tower All good things Although it is the Millau Viaduct which has captured the attention of the world, we Duration of construction work: 38 months come in threes should not forget that the completion of this alternative traffic route also necessita ted (2 million working hours) the construction of two other exceptional bridges. Duration of concession: 78 years (including construction) One is the Verrières Viaduct, a 720 m long composite bridge with a main span of 144 m at heights of up to 140 m, located 20 km to the north of Millau. This bridge‘s cross-section is made up of a rectangular 7 m wide and 4.5 m high box section stiff- Partners involved Concessionaire: Compagnie Eiffage du Viaduc de Millau ened with trapeze hollow stiffeners with projecting hollow sections and the resiliently Designer: Michel Virlogeux braced concrete carriageway deck. Dillinger Hütte GTS supplied 4,900 t of heavy plate Architect: Norman Foster for this structure, including significant quantities of its high-strength DI-MC 460 fine- Preliminary draft: SETRA grained structural steel, especially for the highly-stressed towers.