Control of Eukaryotic Translation

Total Page:16

File Type:pdf, Size:1020Kb

Control of Eukaryotic Translation SHOWCASE ON RESEARCH Control of Eukaryotic Translation Thomas Preiss1,2 1Molecular Genetics Program, Victor Chang Cardiac Research Institute, NSW 2010 2School of Biotechnology & Biomolecular Sciences and St Vincent's Clinical School, University of New South Wales, NSW 2052 A common view holds that most control mechanisms This is particularly true during translation initiation on to regulate eukaryotic gene expression target the eukaryotic mRNAs (Fig. 2). This process depends on primary step, namely transcription in the nucleus. In the 5' m7G(5')ppp(5')N cap structure and the 3' poly(A) contrast to this, it is becoming increasingly apparent tail of a typical mRNA and at least 12 eukaryotic that controls acting on post-transcriptional steps of initiation factors (eIFs) (1, 2). Initiation begins with the mRNA metabolism, in particular at the level of binding of several eIFs and other components to the translation, are also of critical importance (Fig. 1). small (40S) ribosomal subunit. This complex is Translation is carried out on the ribosomes and is recruited to the (capped) 5' end of the mRNA, then usually divided into three phases: (i) initiation, (ii) 'scans' the 5' untranslated region (UTR) of the mRNA elongation and (iii) termination. The initiation phase and recognises the start codon. Joining of a large (60S) represents all processes required for the assembly of a subunit completes the assembly of a complete (80S) ribosome at the start codon of the mRNA. The actual ribosome. The 40S subunit is primed for initiation polypeptide synthesis takes place during the elongation through binding of a ternary complex comprising eIF2, Met phase. When ribosomes reach the stop codon this Met-tRNAi and GTP. The mRNA is prepared by the signals termination − the dissociation of the completed action of the eIF4 group of factors. eIF4E binds the cap polypeptide and the ribosome from the mRNA. Why structure and eIF4A is an ATP-dependent RNA control translation? The best answer to this question helicase that is able, upon stimulation by eIF4B, to probably is that it affords desirable complexity to gene unwind secondary structure in the cap-proximal regulation. There are several features of translational region of the mRNA (Fig. 2A). eIF4G is an adaptor control that are particularly advantageous in certain protein that interacts with eIF4E, eIF4A, and eIF3, cellular situations. It is a fast response, which may another 40S-bound factor. The poly(A) tail-binding explain why it is commonly involved in cellular stress protein PABP also has a critical function at this stage: it responses. Translation can also be controlled locally in helps to recruit eIF4G and confers a pseudo-circular areas distant from the nucleus, for instance to support conformation to the mRNA, the exact functional synaptic function in the nervous system. Furthermore, it significance of which still remains to be determined. can operate in the absence of nuclear activity, a feature Scanning of the mRNA 5' UTR by the 40S subunit o f e a r l y d e v e l o p m e n t o r t h e l a t e s t a g e s o f requires contributions by several of the assembled eIFs erythropoiesis. (Fig. 2B). Base-pairing between the start codon and Met anticodon loop of the Met-tRNAi triggers GTP The Mechanism of Translation Initiation hydrolysis by eIF2, dissociation of eIFs and 60S subunit Ribosomes cannot carry out their functions alone; they joining (Fig. 2C). A second GTP hydrolysis step by depend on auxiliary factors that help them to engage the eIF5B completes 80S ribosome assembly. An important mRNA template, to select the activated building blocks feature of eIF2 is that it requires eIF2B to exchange for polypeptide synthesis and to mediate termination. bound GDP for GTP after each round of initiation. Fig. 1. 'Strict Tempo' models of eukaryotic gene regulation. Contrary to an extreme view (step diagram on the left), the o u t c o m e o f t h e g e n e expression cascade does not only depend on mechanisms to control gene transcription. Instead, virtually all aspects of m R N A a n d p r o t e i n metabolism are subject to controlling influences that can affect the outcome of gene expression in a quantitative and qualitative manner (step diagram on the right). Vol 36 No 3 December 2005 AUSTRALIAN BIOCHEMIST Page 9 SHOWCASE ON Control of Eukaryotic Translation RESEARCH altering availability or function of eIFs, most commonly eIF2 and eIF4E. mRNA-specific control typically involves regulatory complexes that recognize particular elements, usually in the 5' or 3' UTR of the mRNA, and exclusively alter translation of the targeted mRNAs. Regulatory elements found in the 5' UTR of mRNAs include repressor protein binding sites, inhibitory RNA structural features, upstream AUG (uAUG) or upstream short open reading frames (uORF) and internal ribosome entry sites (IRES). Bound repressors and RNA structures serve as steric 'roadblocks' that hinder the normal progression of initiation, while uAUGs and uORFs typically engage a proportion of scanning ribosomes in non-productive initiation events that lower translation of the main ORF. IRES elements are complex RNA structures that can recruit the translation initiation machinery directly to internal positions on the mRNA, bypassing the need for the cap structure at the 5' end of the mRNA. 3' UTR elements often recruit regulatory complexes that affect translation by forming a bridging interaction with initiation intermediates at the 5' end. Examples of translational control that illustrate aspects of these generic descriptions are presented below. Global Control A common means to achieve global control of translation is through changes in the phosphorylation state of eIFs or the regulators that act on them. Mammalian cells contain several kinases that phosphorylate the α subunit of eIF2, leading to a block of the GDP/GTP exchange reaction and inhibition of global translation. Each kinase is activated in response to specific cellular stress conditions: PKR (protein kinase activated by double-stranded RNA) is activated during viral replication; GCN2 (general control non- derepressible 2) is stimulated by amino acid starvation; PERK (PKR-like endoplasmic reticulum eIF2α kinase) senses unfolded protein accumulation in the endoplasmic reticulum; HRI (heme-regulated inhibitor) Fig. 2. The initiation phase of translation. reacts to heme depletion. Appropriate control of eIF2 (A) An early step in initiation is the binding of the eIF4 and eIF2B is important for normal physiology and factors to the cap structure followed by unwinding mutations in the genes for PERK or eIF2B give rise to of secondary structure in the mRNA 5' UTR. The serious human disease (4). interaction of PABP with eIF4G aids this process Extracellular cues such as insulin and growth factors and leads to circularisation of the mRNA. activate the PI3K/AKT/mTOR and Ras/MAPK (B) The 40S ribosomal subunit, associated eIFs, Met- signaling pathways that also modulate translation (5, Met 6 ) . R a s / M A P K s i g n a l l i n g i n c r e a s e s e I F 4 E tRNAi , and GTP are recruited and this complex moves along the mRNA in a 3' direction. phosphorylation (and thus translation) through the (C) Identification of the AUG start codon leads to the eIF4G-bound Mnk1/2 kinases. The mTOR pathway release of eIFs, GTP hydrolysis and binding of the leads to phosphorylation of the 4E-binding proteins, a 60S ribosomal subunit. The simplified diagrams group of small regulatory proteins that mimic the part only show a selection of participating eIFs. o f e I F 4 G t h a t i n t e r a c t s w i t h e I F 4 E ( F i g . 3 A ) . Hypophosphorylated 4E-BPs bind to eIF4E and Strategies for Translational Control competitively displace eIF4G, resulting in inhibition of translation. Hyperphosphorylated 4E-BPs are released Initiation is usually the rate-limiting step of from eIF4E, leading to activation of translation (7). translation and the most common target of regulatory Translational control through these pathways is critical intervention. Translational control mechanisms may be for appropriate regulation of cell growth. Its broadly divided into global and mRNA-specific types deregulation is involved in cancer biology (8) and of control (3). Global control affects the translation of pathological cardiac hypertrophy (9, 10). most cellular mRNAs and is usually achieved by Page 10 AUSTRALIAN BIOCHEMIST Vol 36 No 3 December 2005 SHOWCASE ON Control of Eukaryotic Translation RESEARCH Proteolytic cleavage of eIFs is also used to alter cellular translation (11). During apoptosis, caspase-3 cleaves both mammalian isoforms of eIF4G at multiple positions. Caspase-3 also cleaves the eIF4G- homologous protein, death associated protein-5 (DAP5) near its C-terminus, which may activate its function as a specialised initiation factor. Although these global controls all affect general translation, there is mounting evidence that they affect the translation of specific mRNAs in a particular manner. Such mRNAs may have structural features and/or regulatory elements that make their translation particularly sensitive or resistant to a global change in cellular translation. mRNA-Specific Control The paradigm of mRNA-specific control in the context of general eIF regulation is GCN4 mRNA, which encodes a transcriptional activator of amino acid biosynthesis genes in yeast (3, 12). The 5' region of GCN4 mRNA contains four uORFs, which collectively lead to low levels of Gcn4p synthesis u n d e r n o r m a l c o n d i t i o n s a n d , s o m e w h a t paradoxically, increased levels during amino acid starvation.
Recommended publications
  • L-Leucine Increases Translation of RPS14 and LARP1 in Erythroblasts
    LETTERS TO THE EDITOR Table 1. Top 20 differentially translated known 5’TOP mRNAs in L-leucine increases translation of RPS14 and LARP1 L-leucine treated erythroblasts from del(5q) myelodysplastic syn- in erythroblasts from del(5q) myelodysplastic drome patients. syndrome patients Genes LogFC of TE in patients z score patients Deletion of the long arm of chromosome 5 [del(5q)] is RPS15 3.55 2.46 the most common cytogenetic abnormality found in the RPS27A 3.48 2.40 1 myelodysplastic syndromes (MDS). Patients with the 5q- RPS25 3.47 2.39 syndrome have macrocytic anemia and the del(5q) as the RPS20 3.43 2.35 sole karyotypic abnormality.1 Haploinsufficiency of the ribosomal protein gene RPS14, mapping to the common- RPL12 3.35 2.29 ly deleted region (CDR) on chromosome 5q,2 underlies PABPC4 3.01 2.01 3 the erythroid defect found in the 5q- syndrome, and is RPS24 2.97 1.98 associated with p53 activation,4-6 a block in the process- ing of pre-ribosomal RNA,3 and deregulation of riboso- RPS3 2.95 1.96 mal- and translation-related genes.7 Defective mRNA EEF2 2.83 1.86 translation represents a potential therapeutic target in the RPS18 2.76 1.80 5q- syndrome and other ribosomopathies, such as RPS26 2.75 1.79 Diamond-Blackfan anemia (DBA).8 Evidence suggests that the translation enhancer L- RPS5 2.69 1.74 leucine may have some efficacy in the treatment of the RPS21 2.64 1.70 8 5q- syndrome and DBA. A DBA patient treated with L- RPS9 2.54 1.62 leucine showed a marked improvement in anemia and 8 EIF3E 2.53 1.61 achieved transfusion independence.
    [Show full text]
  • Evolution of Translation EF-Tu: Trna
    University of Illinois at Urbana-Champaign Luthey-Schulten Group NIH Resource for Macromolecular Modeling and Bioinformatics Computational Biophysics Workshop Evolution of Translation EF-Tu: tRNA VMD Developer: John Stone MultiSeq Developers Tutorial Authors Elijah Roberts Ke Chen John Eargle John Eargle Dan Wright Zhaleh Ghaemi Jonathan Lai Zan Luthey-Schulten August 2014 A current version of this tutorial is available at http://www.scs.illinois.edu/~schulten/tutorials/ef-tu CONTENTS 2 Contents 1 Introduction 3 1.1 The Elongation Factor Tu . 3 1.2 Getting Started . 4 1.2.1 Requirements . 4 1.2.2 Copying the tutorial files . 4 1.2.3 Working directory . 4 1.2.4 Preferences . 4 1.3 Configuring BLAST for MultiSeq . 5 2 Comparative Analysis of EF-Tu 5 2.1 Finding archaeal EF1A sequences . 6 2.2 Aligning archaeal sequences and removing redundancy . 8 2.3 Finding bacteria EF-Tu sequences . 11 2.4 Performing ClustalW Multiple Sequence and Profile-Profile Align- ments . 12 2.5 Creating Multiple Sequence with MAFFT . 16 2.6 Conservation of EF-Tu among the Bacteria . 16 2.7 Finding conserved residues across the bacterial and archaeal do- mains . 20 2.8 EF-Tu Interface with the Ribosome . 21 3 Computing a Maximum Likelihood Phylogenetic Tree with RAxML 23 3.1 Load the Phylogenetic Tree into MultiSeq . 25 3.2 Reroot and Manipulate the Phylogenetic Tree . 25 4 MultiSeq TCL Scripting: Genomic Context 27 5 Appendix A 30 5.1 Building a BLAST Database . 30 6 Appendix B 31 6.1 Saving QR subset of alignments in PHYLIP and FASTA format 31 6.2 Calculating Maximum Likelihood Trees with RAxML .
    [Show full text]
  • Dynamics of Translation Can Determine the Spatial Organization Of
    Dynamics of translation can determine the spatial organization of membrane-bound proteins and their mRNA Elgin Korkmazhana, Hamid Teimourib,c, Neil Petermanb,c, and Erel Levineb,c,1 aHarvard College, Harvard University, Cambridge, MA 02138; bDepartment of Physics, Harvard University, Cambridge, MA 02138; and cFAS Center for Systems Biology, Harvard University, Cambridge, MA 02138 Edited by William Bialek, Princeton University, Princeton, NJ, and approved October 17, 2017 (received for review January 17, 2017) Unlike most macromolecules that are homogeneously distributed these patterns are determined by the organization of the cod- in the bacterial cell, mRNAs that encode inner-membrane proteins ing sequence, the presence of slow codons, the rate of transla- can be concentrated near the inner membrane. Cotranslational tion initiation, and the availability of auxiliary proteins required insertion of the nascent peptide into the membrane brings the for membrane targeting (referred to as the secretory machinery). translating ribosome and the mRNA close to the membrane. This By calculating the distribution of the number of proteins placed suggests that kinetic properties of translation can determine the together in the membrane, we suggest implications of mRNA spatial organization of these mRNAs and proteins, which can be localization on the organization of proteins on the membrane. modulated through posttranscriptional regulation. Here we use a We thus propose a mechanism for the formation of protein clus- simple stochastic model of translation to characterize the effect of ters in the membrane and investigate its implications on the reg- mRNA properties on the dynamics and statistics of its spatial distri- ulation of their size distribution.
    [Show full text]
  • USP16 Counteracts Mono-Ubiquitination of Rps27a And
    RESEARCH ARTICLE USP16 counteracts mono-ubiquitination of RPS27a and promotes maturation of the 40S ribosomal subunit Christian Montellese1†, Jasmin van den Heuvel1,2, Caroline Ashiono1, Kerstin Do¨ rner1,2, Andre´ Melnik3‡, Stefanie Jonas1§, Ivo Zemp1, Paola Picotti3, Ludovic C Gillet1, Ulrike Kutay1* 1Institute of Biochemistry, ETH Zurich, Zurich, Switzerland; 2Molecular Life Sciences Ph.D. Program, Zurich, Switzerland; 3Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland Abstract Establishment of translational competence represents a decisive cytoplasmic step in the biogenesis of 40S ribosomal subunits. This involves final 18S rRNA processing and release of residual biogenesis factors, including the protein kinase RIOK1. To identify novel proteins promoting the final maturation of human 40S subunits, we characterized pre-ribosomal subunits trapped on RIOK1 by mass spectrometry, and identified the deubiquitinase USP16 among the captured factors. We demonstrate that USP16 constitutes a component of late cytoplasmic pre-40S subunits that promotes the removal of ubiquitin from an internal lysine of ribosomal protein *For correspondence: RPS27a/eS31. USP16 deletion leads to late 40S subunit maturation defects, manifesting in [email protected] incomplete processing of 18S rRNA and retarded recycling of late-acting ribosome biogenesis Present address: †CSL Behring, factors, revealing an unexpected contribution of USP16 to the ultimate step of 40S synthesis. CSL Biologics Research Center, Finally, ubiquitination of RPS27a appears to depend on active translation, pointing at a potential ‡ Bern, Switzerland; MSD Merck connection between 40S maturation and protein synthesis. Sharp & Dohme AG, Lucerne, Switzerland; §Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland Introduction Ribosomes stand at the center of translation in all kingdoms of life, catalyzing the synthesis of pro- Competing interests: The teins by reading a messenger RNA (mRNA) template.
    [Show full text]
  • Archaeal Translation Initiation Revisited: the Initiation Factor 2 and Eukaryotic Initiation Factor 2B ␣-␤-␦ Subunit Families
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 3726–3730, March 1998 Evolution Archaeal translation initiation revisited: The initiation factor 2 and eukaryotic initiation factor 2B a-b-d subunit families NIKOS C. KYRPIDES* AND CARL R. WOESE Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemical and Life Sciences, MC 110, 407 S. Goodwin, Urbana, IL 61801 Contributed by Carl R. Woese, December 31, 1997 ABSTRACT As the amount of available sequence data bacterial and eukaryotic translation initiation mechanisms, increases, it becomes apparent that our understanding of although mechanistically generally similar, were molecularly translation initiation is far from comprehensive and that unrelated and so had evolved independently. The Methano- prior conclusions concerning the origin of the process are coccus jannaschii genome (7–9), which gave us our first wrong. Contrary to earlier conclusions, key elements of trans- comprehensive look at the componentry of archaeal transla- lation initiation originated at the Universal Ancestor stage, for tion initiation, revealed that archaeal translation initiation homologous counterparts exist in all three primary taxa. showed considerable homology with eukaryotic initiation, Herein, we explore the evolutionary relationships among the which, if anything, reinforced the divide between bacterial components of bacterial initiation factor 2 (IF-2) and eukary- initiation and that seen in the other domains. We recently have otic IF-2 (eIF-2)/eIF-2B, i.e., the initiation factors involved in shown, however, that bacterial translation initiation factor 1 introducing the initiator tRNA into the translation mecha- (IF-1), contrary to previously accepted opinion, is related in nism and performing the first step in the peptide chain sequence to its eukaryotic/archaeal (functional) counterpart, elongation cycle.
    [Show full text]
  • Initiation Factor Eif5b Catalyzes Second GTP-Dependent Step in Eukaryotic Translation Initiation
    Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation Joon H. Lee*†, Tatyana V. Pestova†‡§, Byung-Sik Shin*, Chune Cao*, Sang K. Choi*, and Thomas E. Dever*¶ *Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2716; ‡Department of Microbiology and Immunology, State University of New York Health Science Center, Brooklyn, NY 11203; and §A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia Edited by Harry F. Noller, University of California, Santa Cruz, CA, and approved October 31, 2002 (received for review September 19, 2002) Initiation factors IF2 in bacteria and eIF2 in eukaryotes are GTPases In addition, when nonhydrolyzable GDPNP was substituted Met that bind Met-tRNAi to the small ribosomal subunit. eIF5B, the for GTP, eIF5B catalyzed subunit joining; however, the factor eukaryotic ortholog of IF2, is a GTPase that promotes ribosomal was unable to dissociate from the 80S ribosome after subunit subunit joining. Here we show that eIF5B GTPase activity is re- joining (7). quired for protein synthesis. Mutation of the conserved Asp-759 in To dissect the function of the eIF5B G domain and test the human eIF5B GTP-binding domain to Asn converts eIF5B to an model that two GTP molecules are required in translation XTPase and introduces an XTP requirement for subunit joining and initiation, we mutated conserved residues in the eIF5B G translation initiation. Thus, in contrast to bacteria where the single domain and tested the function of the mutant proteins in GTPase IF2 is sufficient to catalyze translation initiation, eukaryotic translation initiation.
    [Show full text]
  • The Solution Structure of the Guanine Nucleotide Exchange Domain Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Researchprovided Articleby Elsevier -217 Publisher Connector The solution structure of the guanine nucleotide exchange domain of human elongation factor 1b reveals a striking resemblance to that of EF-Ts from Escherichia coli Janice MJ Pérez1,2‡, Gregg Siegal2*‡, Jan Kriek1, Karl Hård2†, Jan Dijk1, Gerard W Canters2 and Wim Möller1 Background: In eukaryotic protein synthesis, the multi-subunit elongation Addresses: 1Department of Molecular Cell Biology, factor 1 (EF-1) plays an important role in ensuring the fidelity and regulating the Sylvius Laboratory, University of Leiden, Wassenaarseweg 72, NL-2333 AL Leiden, The rate of translation. EF-1α, which transports the aminoacyl tRNA to the Netherlands and 2Leiden Institute of Chemistry, β ribosome, is a member of the G-protein superfamily. EF-1 regulates the activity Gorlaeus Laboratory, University of Leiden, of EF-1α by catalyzing the exchange of GDP for GTP and thereby regenerating Einsteinweg 55, NL-2333 CC Leiden, The the active form of EF-1α. The structure of the bacterial analog of EF-1α, EF-Tu Netherlands. has been solved in complex with its GDP exchange factor, EF-Ts. These †Present address: Astra Structural Chemistry structures indicate a mechanism for GDP–GTP exchange in prokaryotes. Laboratory, S-43183 Mölndal, Sweden. Although there is good sequence conservation between EF-1α and EF-Tu, there is essentially no sequence similarity between EF-1β and EF-Ts. We ‡These two authors contributed equally to this work. wished to explore whether the prokaryotic exchange mechanism could shed any *Corresponding author.
    [Show full text]
  • History of the Ribosome and the Origin of Translation
    History of the ribosome and the origin of translation Anton S. Petrova,1, Burak Gulena, Ashlyn M. Norrisa, Nicholas A. Kovacsa, Chad R. Berniera, Kathryn A. Laniera, George E. Foxb, Stephen C. Harveyc, Roger M. Wartellc, Nicholas V. Huda, and Loren Dean Williamsa,1 aSchool of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332; bDepartment of Biology and Biochemistry, University of Houston, Houston, TX, 77204; and cSchool of Biology, Georgia Institute of Technology, Atlanta, GA 30332 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved November 6, 2015 (received for review May 18, 2015) We present a molecular-level model for the origin and evolution of building up of the functional centers, proceeds to the establishment the translation system, using a 3D comparative method. In this model, of the common core, and continues to the development of large the ribosome evolved by accretion, recursively adding expansion metazoan rRNAs. segments, iteratively growing, subsuming, and freezing the rRNA. Incremental evolution of function is mapped out by stepwise Functions of expansion segments in the ancestral ribosome are accretion of rRNA. In the extant ribosome, specific segments of assigned by correspondence with their functions in the extant rRNA perform specific functions including peptidyl transfer, ribosome. The model explains the evolution of the large ribosomal subunit association, decoding, and energy-driven translocation subunit, the small ribosomal subunit, tRNA, and mRNA. Prokaryotic (11). The model assumes that the correlations of rRNA segments ribosomes evolved in six phases, sequentially acquiring capabilities with their functions have been reasonably maintained over the for RNA folding, catalysis, subunit association, correlated evolution, broad course of ribosomal evolution.
    [Show full text]
  • Translation Initiation Factor Modifications and the Regulation of Protein Synthesis in Apoptotic Cells
    Cell Death and Differentiation (2000) 7, 603 ± 615 ã 2000 Macmillan Publishers Ltd All rights reserved 1350-9047/00 $15.00 www.nature.com/cdd Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells ,1 1 1 2 MJ Clemens* , M Bushell , IW Jeffrey , VM Pain and Introduction SJ Morley2 Apoptosis is now recognized to be an important physiological 1 Department of Biochemistry and Immunology, Cellular and Molecular process by which cell and tissue growth, differentiation and Sciences Group, St George's Hospital Medical School, Cranmer Terrace, programmes of development are regulated. The molecular London SW17 ORE, UK mechanisms of apoptosis have been the subject of intense 2 Biochemistry Group, School of Biological Sciences, University of Sussex, research in recent years (for reviews see1±5). Cell death is Brighton BN1 9QG, UK induced following the stimulation of specific cell surface * Corresponding author: MJ Clemens, Department of Biochemistry and Immunology, Cellular and Molecular Sciences Group, St George's Hospital receptors such as the CD95 (Apo-1/Fas) antigen or the 6 Medical School, Cranmer Terrace, London SW17 ORE, UK. Tel: +44 20 8725 tumour necrosis factor-a (TNFa) receptor-1 (TNFR-1). It can 5770; Fax: +44 20 8725 2992; E-mail: [email protected] also result from intracellular events such as DNA damage or from a lack of specific growth factors. The relative importance Received 6.12.99; revised 25.1.00; accepted 20.3.00 of these different influences varies between cell types. The Edited by M Piacentini apoptotic process can be divided into a commitment phase and an execution phase.
    [Show full text]
  • The Mechanism of Eukaryotic Translation Initiation and Principles of Its Regulation
    REVIEWS POST-TRANSCRIPTIONAL CONTROL The mechanism of eukaryotic translation initiation and principles of its regulation Richard J. Jackson*, Christopher U. T. Hellen‡ and Tatyana V. Pestova‡ Abstract | Protein synthesis is principally regulated at the initiation stage (rather than during elongation or termination), allowing rapid, reversible and spatial control of gene expression. Progress over recent years in determining the structures and activities of initiation factors, and in mapping their interactions in ribosomal initiation complexes, have advanced our understanding of the complex translation initiation process. These developments have provided a solid foundation for studying the regulation of translation initiation by mechanisms that include the modulation of initiation factor activity (which affects almost all scanning-dependent initiation) and through sequence-specific RNA-binding proteins and microRNAs (which affect individual mRNAs). Met Translation initiation is the process of assembly of significance is particularly high, and we include evi- Met-tRNA i The unique initiator tRNA, elongation-competent 80S ribosomes, in which the ini- dence from lower eukaryotes only when it enhances our aminoacylated with tiation codon is base-paired with the anticodon loop understanding of the mechanisms in vertebrates. methionine, that is used to Met 1 of initiator tRNA (Met-tRNA i) in the ribosomal P-site . initiate protein synthesis. Mechanism of 5′ end-dependent initiation Its anticodon is complementary It requires at least nine eukaryotic initiation factors to the AUG initiation codon; (eIFs; TABLE 1) and comprises two steps: the formation The canonical mechanism of translation initiation can be it forms a specific ternary of 48S initiation complexes with established codon– divided into several stages (FIG.1), as described below.
    [Show full text]
  • Mrna Stem-Loops Can Pause the Ribosome by Hindering A-Site Trna
    RESEARCH ARTICLE mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding Chen Bao1†, Sarah Loerch2†, Clarence Ling1, Andrei A Korostelev3,4, Nikolaus Grigorieff2,4*, Dmitri N Ermolenko1* 1Department of Biochemistry and Biophysics at School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, United States; 2Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; 3Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States; 4RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States Abstract Although the elongating ribosome is an efficient helicase, certain mRNA stem-loop structures are known to impede ribosome movement along mRNA and stimulate programmed ribosome frameshifting via mechanisms that are not well understood. Using biochemical and single- molecule Fo¨ rster resonance energy transfer (smFRET) experiments, we studied how frameshift- inducing stem-loops from E. coli dnaX mRNA and the gag-pol transcript of Human Immunodeficiency Virus (HIV) perturb translation elongation. We find that upon encountering the ribosome, the stem-loops strongly inhibit A-site tRNA binding and ribosome intersubunit rotation *For correspondence: that accompanies translation elongation. Electron cryo-microscopy (cryo-EM) reveals that the HIV [email protected] (NG); stem-loop docks into the A site of the ribosome. Our results suggest that mRNA stem-loops can Dmitri_Ermolenko@urmc. transiently escape the ribosome helicase by binding to the A site. Thus, the stem-loops can rochester.edu (DNE) modulate gene expression by sterically hindering tRNA binding and inhibiting translation †These authors contributed elongation. equally to this work Competing interest: See page 22 Introduction Funding: See page 22 During translation elongation, the ribosome moves along mRNA in a codon-by-codon manner while Received: 06 February 2020 the mRNA is threaded through the mRNA channel of the small ribosomal subunit.
    [Show full text]
  • Rps3/Us3 Promotes Mrna Binding at the 40S Ribosome Entry Channel and Stabilizes Preinitiation Complexes at Start Codons
    Rps3/uS3 promotes mRNA binding at the 40S ribosome entry channel and stabilizes preinitiation complexes at start codons Jinsheng Donga, Colin Echeverría Aitkenb, Anil Thakura, Byung-Sik Shina, Jon R. Lorschb,1, and Alan G. Hinnebuscha,1 aLaboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and bLaboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 Contributed by Alan G. Hinnebusch, January 24, 2017 (sent for review December 15, 2016; reviewed by Jamie H. D. Cate and Matthew S. Sachs) Met The eukaryotic 43S preinitiation complex (PIC) bearing Met-tRNAi rearrangement to PIN at both near-cognate start codons (e.g., in a ternary complex (TC) with eukaryotic initiation factor (eIF)2-GTP UUG) and cognate (AUG) codons in poor Kozak context; hence scans the mRNA leader for an AUG codon in favorable “Kozak” eIF1 must dissociate from the 40S subunit for start-codon rec- context. AUG recognition provokes rearrangement from an open ognition (Fig. 1A). Consistent with this, structural analyses of PIC conformation with TC bound in a state not fully engaged with partial PICs reveal that eIF1 and eIF1A promote rotation of the “ ” the P site ( POUT ) to a closed, arrested conformation with TC tightly 40S head relative to the body (2, 3), thought to be instrumental bound in the “P ” state. Yeast ribosomal protein Rps3/uS3 resides IN in TC binding in the POUT conformation, but that eIF1 physically in the mRNA entry channel of the 40S subunit and contacts mRNA Met clashes with Met-tRNAi in the PIN state (2, 4), and is both via conserved residues whose functional importance was unknown.
    [Show full text]