A Homozygous MRPL24 Mutation Causes a Complex Movement Disorder and Affects the Mitoribosome Assembly T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
L-Leucine Increases Translation of RPS14 and LARP1 in Erythroblasts
LETTERS TO THE EDITOR Table 1. Top 20 differentially translated known 5’TOP mRNAs in L-leucine increases translation of RPS14 and LARP1 L-leucine treated erythroblasts from del(5q) myelodysplastic syn- in erythroblasts from del(5q) myelodysplastic drome patients. syndrome patients Genes LogFC of TE in patients z score patients Deletion of the long arm of chromosome 5 [del(5q)] is RPS15 3.55 2.46 the most common cytogenetic abnormality found in the RPS27A 3.48 2.40 1 myelodysplastic syndromes (MDS). Patients with the 5q- RPS25 3.47 2.39 syndrome have macrocytic anemia and the del(5q) as the RPS20 3.43 2.35 sole karyotypic abnormality.1 Haploinsufficiency of the ribosomal protein gene RPS14, mapping to the common- RPL12 3.35 2.29 ly deleted region (CDR) on chromosome 5q,2 underlies PABPC4 3.01 2.01 3 the erythroid defect found in the 5q- syndrome, and is RPS24 2.97 1.98 associated with p53 activation,4-6 a block in the process- ing of pre-ribosomal RNA,3 and deregulation of riboso- RPS3 2.95 1.96 mal- and translation-related genes.7 Defective mRNA EEF2 2.83 1.86 translation represents a potential therapeutic target in the RPS18 2.76 1.80 5q- syndrome and other ribosomopathies, such as RPS26 2.75 1.79 Diamond-Blackfan anemia (DBA).8 Evidence suggests that the translation enhancer L- RPS5 2.69 1.74 leucine may have some efficacy in the treatment of the RPS21 2.64 1.70 8 5q- syndrome and DBA. A DBA patient treated with L- RPS9 2.54 1.62 leucine showed a marked improvement in anemia and 8 EIF3E 2.53 1.61 achieved transfusion independence. -
Evolution of Translation EF-Tu: Trna
University of Illinois at Urbana-Champaign Luthey-Schulten Group NIH Resource for Macromolecular Modeling and Bioinformatics Computational Biophysics Workshop Evolution of Translation EF-Tu: tRNA VMD Developer: John Stone MultiSeq Developers Tutorial Authors Elijah Roberts Ke Chen John Eargle John Eargle Dan Wright Zhaleh Ghaemi Jonathan Lai Zan Luthey-Schulten August 2014 A current version of this tutorial is available at http://www.scs.illinois.edu/~schulten/tutorials/ef-tu CONTENTS 2 Contents 1 Introduction 3 1.1 The Elongation Factor Tu . 3 1.2 Getting Started . 4 1.2.1 Requirements . 4 1.2.2 Copying the tutorial files . 4 1.2.3 Working directory . 4 1.2.4 Preferences . 4 1.3 Configuring BLAST for MultiSeq . 5 2 Comparative Analysis of EF-Tu 5 2.1 Finding archaeal EF1A sequences . 6 2.2 Aligning archaeal sequences and removing redundancy . 8 2.3 Finding bacteria EF-Tu sequences . 11 2.4 Performing ClustalW Multiple Sequence and Profile-Profile Align- ments . 12 2.5 Creating Multiple Sequence with MAFFT . 16 2.6 Conservation of EF-Tu among the Bacteria . 16 2.7 Finding conserved residues across the bacterial and archaeal do- mains . 20 2.8 EF-Tu Interface with the Ribosome . 21 3 Computing a Maximum Likelihood Phylogenetic Tree with RAxML 23 3.1 Load the Phylogenetic Tree into MultiSeq . 25 3.2 Reroot and Manipulate the Phylogenetic Tree . 25 4 MultiSeq TCL Scripting: Genomic Context 27 5 Appendix A 30 5.1 Building a BLAST Database . 30 6 Appendix B 31 6.1 Saving QR subset of alignments in PHYLIP and FASTA format 31 6.2 Calculating Maximum Likelihood Trees with RAxML . -
Dynamics of Translation Can Determine the Spatial Organization Of
Dynamics of translation can determine the spatial organization of membrane-bound proteins and their mRNA Elgin Korkmazhana, Hamid Teimourib,c, Neil Petermanb,c, and Erel Levineb,c,1 aHarvard College, Harvard University, Cambridge, MA 02138; bDepartment of Physics, Harvard University, Cambridge, MA 02138; and cFAS Center for Systems Biology, Harvard University, Cambridge, MA 02138 Edited by William Bialek, Princeton University, Princeton, NJ, and approved October 17, 2017 (received for review January 17, 2017) Unlike most macromolecules that are homogeneously distributed these patterns are determined by the organization of the cod- in the bacterial cell, mRNAs that encode inner-membrane proteins ing sequence, the presence of slow codons, the rate of transla- can be concentrated near the inner membrane. Cotranslational tion initiation, and the availability of auxiliary proteins required insertion of the nascent peptide into the membrane brings the for membrane targeting (referred to as the secretory machinery). translating ribosome and the mRNA close to the membrane. This By calculating the distribution of the number of proteins placed suggests that kinetic properties of translation can determine the together in the membrane, we suggest implications of mRNA spatial organization of these mRNAs and proteins, which can be localization on the organization of proteins on the membrane. modulated through posttranscriptional regulation. Here we use a We thus propose a mechanism for the formation of protein clus- simple stochastic model of translation to characterize the effect of ters in the membrane and investigate its implications on the reg- mRNA properties on the dynamics and statistics of its spatial distri- ulation of their size distribution. -
Allele-Specific Expression of Ribosomal Protein Genes in Interspecific Hybrid Catfish
Allele-specific Expression of Ribosomal Protein Genes in Interspecific Hybrid Catfish by Ailu Chen A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 1, 2015 Keywords: catfish, interspecific hybrids, allele-specific expression, ribosomal protein Copyright 2015 by Ailu Chen Approved by Zhanjiang Liu, Chair, Professor, School of Fisheries, Aquaculture and Aquatic Sciences Nannan Liu, Professor, Entomology and Plant Pathology Eric Peatman, Associate Professor, School of Fisheries, Aquaculture and Aquatic Sciences Aaron M. Rashotte, Associate Professor, Biological Sciences Abstract Interspecific hybridization results in a vast reservoir of allelic variations, which may potentially contribute to phenotypical enhancement in the hybrids. Whether the allelic variations are related to the downstream phenotypic differences of interspecific hybrid is still an open question. The recently developed genome-wide allele-specific approaches that harness high- throughput sequencing technology allow direct quantification of allelic variations and gene expression patterns. In this work, I investigated allele-specific expression (ASE) pattern using RNA-Seq datasets generated from interspecific catfish hybrids. The objective of the study is to determine the ASE genes and pathways in which they are involved. Specifically, my study investigated ASE-SNPs, ASE-genes, parent-of-origins of ASE allele and how ASE would possibly contribute to heterosis. My data showed that ASE was operating in the interspecific catfish system. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5,420 (8.2%) and 13,390 (7.5%) SNPs were identified as significant ASE-SNPs, respectively. -
Effects of Salvia Miltiorrhiza Extract on Lung Adenocarcinoma
EXPERIMENTAL AND THERAPEUTIC MEDICINE 22: 794, 2021 Effects of Salvia miltiorrhiza extract on lung adenocarcinoma HUIXIANG TIAN1,2, YUEQIN LI3, JIE MEI2, LEI CAO1,2, JIYE YIN2, ZHAOQIAN LIU2, JUAN CHEN1 and XIANGPING LI1,2 Departments of 1Pharmacy, 2Clinical Pharmacology and 3Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China Received June 17, 2020; Accepted April 1, 2021 DOI: 10.3892/etm.2021.10226 Abstract. Lung adenocarcinoma is the most common subtype models injected with the A549 cell line. The data revealed that of non‑small cell lung carcinoma. Tanshinone I is an impor‑ salvianolate not only suppressed lung adenocarcinoma tumor tant fat‑soluble component in the extract of Salvia miltiorrhiza growth of in nude mice, but also downregulated the expression that has been reported to inhibit lung adenocarcinoma cell levels of ATP7A and ATP7B, which are important proteins in proliferation. However, no studies have clearly demonstrated the tumorigenesis and chemotherapy of lung adenocarcinoma. changes in lung adenocarcinoma gene expression and signaling The present study provided evidence for the potential use of pathway enrichment following Tanshinone I treatment. And Salvia miltiorrhiza extract for treating lung adenocarcinomas it remains unclear whether salvianolate has an effect on lung in the clinic. adenocarcinoma. The present study downloaded the GSE9315 dataset from the Gene Expression Omnibus database to iden‑ Introduction tify differentially expressed genes (DEGs) and the underlying signaling pathways involved after Tanshinone I administra‑ Lung cancer is a type of malignant tumor that continues to tion in the lung adenocarcinoma cell line CL1‑5. The results be the leading cause of cancer‑associated mortality world‑ revealed that there were 28 and 102 DEGs in the low dosage wide (1). -
Supplementary Figures 1-14 and Supplementary References
SUPPORTING INFORMATION Spatial Cross-Talk Between Oxidative Stress and DNA Replication in Human Fibroblasts Marko Radulovic,1,2 Noor O Baqader,1 Kai Stoeber,3† and Jasminka Godovac-Zimmermann1* 1Division of Medicine, University College London, Center for Nephrology, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK. 2Insitute of Oncology and Radiology, Pasterova 14, 11000 Belgrade, Serbia 3Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, UK †Present Address: Shionogi Europe, 33 Kingsway, Holborn, London WC2B 6UF, UK TABLE OF CONTENTS 1. Supplementary Figures 1-14 and Supplementary References. Figure S-1. Network and joint spatial razor plot for 18 enzymes of glycolysis and the pentose phosphate shunt. Figure S-2. Correlation of SILAC ratios between OXS and OAC for proteins assigned to the SAME class. Figure S-3. Overlap matrix (r = 1) for groups of CORUM complexes containing 19 proteins of the 49-set. Figure S-4. Joint spatial razor plots for the Nop56p complex and FIB-associated complex involved in ribosome biogenesis. Figure S-5. Analysis of the response of emerin nuclear envelope complexes to OXS and OAC. Figure S-6. Joint spatial razor plots for the CCT protein folding complex, ATP synthase and V-Type ATPase. Figure S-7. Joint spatial razor plots showing changes in subcellular abundance and compartmental distribution for proteins annotated by GO to nucleocytoplasmic transport (GO:0006913). Figure S-8. Joint spatial razor plots showing changes in subcellular abundance and compartmental distribution for proteins annotated to endocytosis (GO:0006897). Figure S-9. Joint spatial razor plots for 401-set proteins annotated by GO to small GTPase mediated signal transduction (GO:0007264) and/or GTPase activity (GO:0003924). -
1 AGING Supplementary Table 2
SUPPLEMENTARY TABLES Supplementary Table 1. Details of the eight domain chains of KIAA0101. Serial IDENTITY MAX IN COMP- INTERFACE ID POSITION RESOLUTION EXPERIMENT TYPE number START STOP SCORE IDENTITY LEX WITH CAVITY A 4D2G_D 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ B 4D2G_E 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ C 6EHT_D 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ D 6EHT_E 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ E 6GWS_D 41-72 41 72 100 100 3.2Å PCNA X-RAY DIFFRACTION √ F 6GWS_E 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ G 6GWS_F 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ H 6IIW_B 2-11 2 11 100 100 1.699Å UHRF1 X-RAY DIFFRACTION √ www.aging-us.com 1 AGING Supplementary Table 2. Significantly enriched gene ontology (GO) annotations (cellular components) of KIAA0101 in lung adenocarcinoma (LinkedOmics). Leading Description FDR Leading Edge Gene EdgeNum RAD51, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, CENPW, HJURP, NDC80, CDCA5, NCAPH, BUB1, ZWILCH, CENPK, KIF2C, AURKA, CENPN, TOP2A, CENPM, PLK1, ERCC6L, CDT1, CHEK1, SPAG5, CENPH, condensed 66 0 SPC24, NUP37, BLM, CENPE, BUB3, CDK2, FANCD2, CENPO, CENPF, BRCA1, DSN1, chromosome MKI67, NCAPG2, H2AFX, HMGB2, SUV39H1, CBX3, TUBG1, KNTC1, PPP1CC, SMC2, BANF1, NCAPD2, SKA2, NUP107, BRCA2, NUP85, ITGB3BP, SYCE2, TOPBP1, DMC1, SMC4, INCENP. RAD51, OIP5, CDK1, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, ESCO2, CENPW, HJURP, TTK, NDC80, CDCA5, BUB1, ZWILCH, CENPK, KIF2C, AURKA, DSCC1, CENPN, CDCA8, CENPM, PLK1, MCM6, ERCC6L, CDT1, HELLS, CHEK1, SPAG5, CENPH, PCNA, SPC24, CENPI, NUP37, FEN1, chromosomal 94 0 CENPL, BLM, KIF18A, CENPE, MCM4, BUB3, SUV39H2, MCM2, CDK2, PIF1, DNA2, region CENPO, CENPF, CHEK2, DSN1, H2AFX, MCM7, SUV39H1, MTBP, CBX3, RECQL4, KNTC1, PPP1CC, CENPP, CENPQ, PTGES3, NCAPD2, DYNLL1, SKA2, HAT1, NUP107, MCM5, MCM3, MSH2, BRCA2, NUP85, SSB, ITGB3BP, DMC1, INCENP, THOC3, XPO1, APEX1, XRCC5, KIF22, DCLRE1A, SEH1L, XRCC3, NSMCE2, RAD21. -
Identification of Gold Nanoparticle-Resistant Mutants of Saccharomyces Cerevisiae Suggests a Role for Respiratory Metabolism in Mediating Toxicity
Identification of Gold Nanoparticle-Resistant Mutants of Saccharomyces cerevisiae Suggests a Role for Respiratory Metabolism in Mediating Toxicity Smith, M. R., Boenzli, M. G., Hindagolla, V., Ding, J., Miller, J. M., Hutchison, J. E., . Bakalinsky, A. T. (2013). Identification of gold nanoparticle-resistant mutants of saccharomyces cerevisiae suggests a role for respiratory metabolism in mediating toxicity. Applied and Environmental Microbiology, 79(2), 728-733. doi: 10.1128/AEM.01737-12 10.1128/AEM.01737-12 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Identification of Gold Nanoparticle-Resistant Mutants of Saccharomyces cerevisiae Suggests a Role for Respiratory Metabolism in Mediating Toxicity Mark R. Smith,a Matthew G. Boenzli,a Vihangi Hindagolla,a Jun Ding,a,b John M. Miller,c,d James E. Hutchison,c,d Jeffrey A. Greenwood,b Hagai Abeliovich,e Alan T. Bakalinskya Downloaded from Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USAa; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USAb; The Safer Nanomaterials and Nanomanufacturing Initiative, Eugene, Oregon, USAc; Department of Chemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon, USAd; Department of Biochemistry and Food Science, Hebrew University of Jerusalem, Rehovot, Israele Positively charged gold nanoparticles (0.8-nm core diameter) reduced yeast survival, but not growth, at a concentration of 10 to 100 g/ml. Among 17 resistant deletion mutants isolated in a genome-wide screen, highly significant enrichment was observed for respiration-deficient mutants lacking genes encoding proteins associated with the mitochondrion. http://aem.asm.org/ he increasing use of nanomaterials in industrial processes and Open Biosystems, Inc.) was screened for resistance to these gold Tcommercial products has generated a need for systematic as- nanoparticles. -
USP16 Counteracts Mono-Ubiquitination of Rps27a And
RESEARCH ARTICLE USP16 counteracts mono-ubiquitination of RPS27a and promotes maturation of the 40S ribosomal subunit Christian Montellese1†, Jasmin van den Heuvel1,2, Caroline Ashiono1, Kerstin Do¨ rner1,2, Andre´ Melnik3‡, Stefanie Jonas1§, Ivo Zemp1, Paola Picotti3, Ludovic C Gillet1, Ulrike Kutay1* 1Institute of Biochemistry, ETH Zurich, Zurich, Switzerland; 2Molecular Life Sciences Ph.D. Program, Zurich, Switzerland; 3Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland Abstract Establishment of translational competence represents a decisive cytoplasmic step in the biogenesis of 40S ribosomal subunits. This involves final 18S rRNA processing and release of residual biogenesis factors, including the protein kinase RIOK1. To identify novel proteins promoting the final maturation of human 40S subunits, we characterized pre-ribosomal subunits trapped on RIOK1 by mass spectrometry, and identified the deubiquitinase USP16 among the captured factors. We demonstrate that USP16 constitutes a component of late cytoplasmic pre-40S subunits that promotes the removal of ubiquitin from an internal lysine of ribosomal protein *For correspondence: RPS27a/eS31. USP16 deletion leads to late 40S subunit maturation defects, manifesting in [email protected] incomplete processing of 18S rRNA and retarded recycling of late-acting ribosome biogenesis Present address: †CSL Behring, factors, revealing an unexpected contribution of USP16 to the ultimate step of 40S synthesis. CSL Biologics Research Center, Finally, ubiquitination of RPS27a appears to depend on active translation, pointing at a potential ‡ Bern, Switzerland; MSD Merck connection between 40S maturation and protein synthesis. Sharp & Dohme AG, Lucerne, Switzerland; §Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland Introduction Ribosomes stand at the center of translation in all kingdoms of life, catalyzing the synthesis of pro- Competing interests: The teins by reading a messenger RNA (mRNA) template. -
GIGSEA: Genotype Imputed Gene Set Enrichment Analysis
GIGSEA: Genotype Imputed Gene Set Enrichment Analysis Shijia Zhu Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA August 28, 2017 Contents Abstract . .1 1. Import packages . .1 2. Quick start . .2 3. One example of MetaXcan output . .2 4. Load data of gene sets . .4 4.1 Discrete-valued gene sets: . .4 4.2 Continuous-valued gene sets: . .6 4.3 User self-defined gene set . .7 5. Gene set enrichment analysis . .9 5.1 Gene set enrichment analysis using weighted simple linear regression . .9 5.2 Gene set enrichment analysis using weighted multiple regression model . 10 5.3 One-step weightedGSEA . 11 Abstract We presented the Genotype Imputed Gene Set Enrichment Analysis (GIGSEA), a novel method that uses GWAS-and-eQTL-imputed differential gene expression to interrogate gene set enrichment for the trait-associated SNPs. By incorporating eQTL from large gene expression studies, e.g. GTEx, GIGSEA appropriately addresses such challenges for SNP enrichment as gene size, gene boundary, andmultiple-marker regulation. The weighted linear regression model, taking as weights both imputation accuracy and model completeness, was used to test the enrichment, properly adjusting the bias due to redundancy in different gene sets. The permutation test, furthermore, is used to evaluate the significance of enrichment, whose efficiency can be largely elevated by expressing the computational intensive part in terms of large matrix operation. We have shown the appropriate type I error rates for GIGSEA (<5%), and the preliminary results also demonstrate its good performance to uncover the real biological signal. -
MRPL24 Polyclonal Antibody
PRODUCT DATA SHEET Bioworld Technology,Inc. MRPL24 polyclonal antibody Catalog: BS65388 Host: Rabbit Reactivity: Human,Mouse,Ra BackGround: term. Avoid freeze-thaw cycles. mitochondrial ribosomal protein L24(MRPL24) Homo Specificity: sapiens Mammalian mitochondrial ribosomal proteins are MRP-L24 Polyclonal Antibody detects endogenous levels encoded by nuclear genes and help in protein synthesis of MRP-L24 protein. within the mitochondrion. Mitochondrial ribosomes (mi- DATA: toribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different spe- cies, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical prop- Western Blot analysis of various cells using MRP-L24 Polyclonal Anti- erties, which prevents easy recognition by sequence ho- body diluted at 1:2000 mology. This gene encodes a 39S subunit protein which is more than twice the size of its E.coli counterpart (EcoL24). Sequence analysis identified two transcript variants that encode the same protein. [provided by Ref- Seq, Jul 2008], Product: Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide. Immunohistochemistry analysis of paraffin-embedded human breast Molecular Weight: carcinoma tissue, using MRPL24 Antibody. The picture on the right is ~ 32 kDa blocked with the synthesized peptide. Swiss-Prot: Q96A35 Purification&Purity: The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific im- munogen. Applications: Western blot analysis of lysates from HUVEC cells, using MRPL24 An- Western Blot: 1/500 - 1/2000. -
Mtorc1 Controls Mitochondrial Activity and Biogenesis Through 4E-BP-Dependent Translational Regulation
Cell Metabolism Article mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation Masahiro Morita,1,2 Simon-Pierre Gravel,1,2 Vale´ rie Che´ nard,1,2 Kristina Sikstro¨ m,3 Liang Zheng,4 Tommy Alain,1,2 Valentina Gandin,5,7 Daina Avizonis,2 Meztli Arguello,1,2 Chadi Zakaria,1,2 Shannon McLaughlan,5,7 Yann Nouet,1,2 Arnim Pause,1,2 Michael Pollak,5,6,7 Eyal Gottlieb,4 Ola Larsson,3 Julie St-Pierre,1,2,* Ivan Topisirovic,5,7,* and Nahum Sonenberg1,2,* 1Department of Biochemistry 2Goodman Cancer Research Centre McGill University, Montreal, QC H3A 1A3, Canada 3Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden 4Cancer Research UK, The Beatson Institute for Cancer Research, Switchback Road, Glasgow G61 1BD, Scotland, UK 5Lady Davis Institute for Medical Research 6Cancer Prevention Center, Sir Mortimer B. Davis-Jewish General Hospital McGill University, Montreal, QC H3T 1E2, Canada 7Department of Oncology, McGill University, Montreal, QC H2W 1S6, Canada *Correspondence: [email protected] (J.S.-P.), [email protected] (I.T.), [email protected] (N.S.) http://dx.doi.org/10.1016/j.cmet.2013.10.001 SUMMARY ATP under physiological conditions in mammals and play a crit- ical role in overall energy balance (Vander Heiden et al., 2009). mRNA translation is thought to be the most energy- The mechanistic/mammalian target of rapamycin (mTOR) is a consuming process in the cell. Translation and serine/threonine kinase that has been implicated in a variety of energy metabolism are dysregulated in a variety of physiological processes and pathological states (Zoncu et al., diseases including cancer, diabetes, and heart 2011).