A Large-Scale Analysis of Java API Usage Diplomarbeit Zur Erlangung Des Grades Eines Diplom-Informatikers Im Studiengang Informatik
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SJC – Small Java Compiler
SJC – Small Java Compiler User Manual Stefan Frenz Translation: Jonathan Brase original version: 2011/06/08 latest document update: 2011/08/24 Compiler Version: 182 Java is a registered trademark of Oracle/Sun Table of Contents 1 Quick introduction.............................................................................................................................4 1.1 Windows...........................................................................................................................................4 1.2 Linux.................................................................................................................................................5 1.3 JVM Environment.............................................................................................................................5 1.4 QEmu................................................................................................................................................5 2 Hello World.......................................................................................................................................6 2.1 Source Code......................................................................................................................................6 2.2 Compilation and Emulation...............................................................................................................8 2.3 Details...............................................................................................................................................9 -
Java (Programming Langua a (Programming Language)
Java (programming language) From Wikipedia, the free encyclopedialopedia "Java language" redirects here. For the natural language from the Indonesian island of Java, see Javanese language. Not to be confused with JavaScript. Java multi-paradigm: object-oriented, structured, imperative, Paradigm(s) functional, generic, reflective, concurrent James Gosling and Designed by Sun Microsystems Developer Oracle Corporation Appeared in 1995[1] Java Standard Edition 8 Update Stable release 5 (1.8.0_5) / April 15, 2014; 2 months ago Static, strong, safe, nominative, Typing discipline manifest Major OpenJDK, many others implementations Dialects Generic Java, Pizza Ada 83, C++, C#,[2] Eiffel,[3] Generic Java, Mesa,[4] Modula- Influenced by 3,[5] Oberon,[6] Objective-C,[7] UCSD Pascal,[8][9] Smalltalk Ada 2005, BeanShell, C#, Clojure, D, ECMAScript, Influenced Groovy, J#, JavaScript, Kotlin, PHP, Python, Scala, Seed7, Vala Implementation C and C++ language OS Cross-platform (multi-platform) GNU General Public License, License Java CommuniCommunity Process Filename .java , .class, .jar extension(s) Website For Java Developers Java Programming at Wikibooks Java is a computer programming language that is concurrent, class-based, object-oriented, and specifically designed to have as few impimplementation dependencies as possible.ble. It is intended to let application developers "write once, run ananywhere" (WORA), meaning that code that runs on one platform does not need to be recompiled to rurun on another. Java applications ns are typically compiled to bytecode (class file) that can run on anany Java virtual machine (JVM)) regardless of computer architecture. Java is, as of 2014, one of tthe most popular programming ng languages in use, particularly for client-server web applications, witwith a reported 9 million developers.[10][11] Java was originallyy developed by James Gosling at Sun Microsystems (which has since merged into Oracle Corporation) and released in 1995 as a core component of Sun Microsystems'Micros Java platform. -
The Java® Language Specification Java SE 8 Edition
The Java® Language Specification Java SE 8 Edition James Gosling Bill Joy Guy Steele Gilad Bracha Alex Buckley 2015-02-13 Specification: JSR-337 Java® SE 8 Release Contents ("Specification") Version: 8 Status: Maintenance Release Release: March 2015 Copyright © 1997, 2015, Oracle America, Inc. and/or its affiliates. 500 Oracle Parkway, Redwood City, California 94065, U.S.A. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. The Specification provided herein is provided to you only under the Limited License Grant included herein as Appendix A. Please see Appendix A, Limited License Grant. To Maurizio, with deepest thanks. Table of Contents Preface to the Java SE 8 Edition xix 1 Introduction 1 1.1 Organization of the Specification 2 1.2 Example Programs 6 1.3 Notation 6 1.4 Relationship to Predefined Classes and Interfaces 7 1.5 Feedback 7 1.6 References 7 2 Grammars 9 2.1 Context-Free Grammars 9 2.2 The Lexical Grammar 9 2.3 The Syntactic Grammar 10 2.4 Grammar Notation 10 3 Lexical Structure 15 3.1 Unicode 15 3.2 Lexical Translations 16 3.3 Unicode Escapes 17 3.4 Line Terminators 19 3.5 Input Elements and Tokens 19 3.6 White Space 20 3.7 Comments 21 3.8 Identifiers 22 3.9 Keywords 24 3.10 Literals 24 3.10.1 Integer Literals 25 3.10.2 Floating-Point Literals 31 3.10.3 Boolean Literals 34 3.10.4 Character Literals 34 3.10.5 String Literals 35 3.10.6 Escape Sequences for Character and String Literals 37 3.10.7 The Null Literal 38 3.11 Separators -
Building Useful Program Analysis Tools Using an Extensible Java Compiler
Building Useful Program Analysis Tools Using an Extensible Java Compiler Edward Aftandilian, Raluca Sauciuc Siddharth Priya, Sundaresan Krishnan Google, Inc. Google, Inc. Mountain View, CA, USA Hyderabad, India feaftan, [email protected] fsiddharth, [email protected] Abstract—Large software companies need customized tools a specific task, but they fail for several reasons. First, ad- to manage their source code. These tools are often built in hoc program analysis tools are often brittle and break on an ad-hoc fashion, using brittle technologies such as regular uncommon-but-valid code patterns. Second, simple ad-hoc expressions and home-grown parsers. Changes in the language cause the tools to break. More importantly, these ad-hoc tools tools don’t provide sufficient information to perform many often do not support uncommon-but-valid code code patterns. non-trivial analyses, including refactorings. Type and symbol We report our experiences building source-code analysis information is especially useful, but amounts to writing a tools at Google on top of a third-party, open-source, extensible type-checker. Finally, more sophisticated program analysis compiler. We describe three tools in use on our Java codebase. tools are expensive to create and maintain, especially as the The first, Strict Java Dependencies, enforces our dependency target language evolves. policy in order to reduce JAR file sizes and testing load. The second, error-prone, adds new error checks to the compilation In this paper, we present our experience building special- process and automates repair of those errors at a whole- purpose tools on top of the the piece of software in our codebase scale. -
SUBJECT-COMPUTER CLASS-12 CHAPTER 9 – Compiling and Running Java Programs
SUBJECT-COMPUTER CLASS-12 CHAPTER 9 – Compiling and Running Java Programs Introduction to Java programming JAVA was developed by Sun Microsystems Inc in 1991, later acquired by Oracle Corporation. It was developed by James Gosling and Patrick Naughton. It is a simple programming language. Writing, compiling and debugging a program is easy in java. It helps to create modular programs and reusable code. Bytecode javac compiler of JDK compiles the java source code into bytecode so that it can be executed by JVM. The bytecode is saved in a .class file by compiler. Java Virtual Machine (JVM) This is generally referred as JVM. Before, we discuss about JVM lets see the phases of program execution. Phases are as follows: we write the program, then we compile the program and at last we run the program. 1) Writing of the program is of course done by java programmer. 2) Compilation of program is done by javac compiler, javac is the primary java compiler included in java development kit (JDK). It takes java program as input and generates java bytecode as output. 3) In third phase, JVM executes the bytecode generated by compiler. This is called program run phase. So, now that we understood that the primary function of JVM is to execute the bytecode produced by compiler. Characteristics of Java Simple Java is very easy to learn, and its syntax is simple, clean and easy to understand. Multi-threaded Multithreading capabilities come built right into the Java language. This means it is possible to build highly interactive and responsive apps with a number of concurrent threads of activity. -
Coqjvm: an Executable Specification of the Java Virtual Machine Using
CoqJVM: An Executable Specification of the Java Virtual Machine using Dependent Types Robert Atkey LFCS, School of Informatics, University of Edinburgh Mayfield Rd, Edinburgh EH9 3JZ, UK [email protected] Abstract. We describe an executable specification of the Java Virtual Machine (JVM) within the Coq proof assistant. The principal features of the development are that it is executable, meaning that it can be tested against a real JVM to gain confidence in the correctness of the specification; and that it has been written with heavy use of dependent types, this is both to structure the model in a useful way, and to constrain the model to prevent spurious partiality. We describe the structure of the formalisation and the way in which we have used dependent types. 1 Introduction Large scale formalisations of programming languages and systems in mechanised theorem provers have recently become popular [4–6, 9]. In this paper, we describe a formalisation of the Java virtual machine (JVM) [8] in the Coq proof assistant [11]. The principal features of this formalisation are that it is executable, meaning that a purely functional JVM can be extracted from the Coq development and – with some O’Caml glue code – executed on real Java bytecode output from the Java compiler; and that it is structured using dependent types. The motivation for this development is to act as a basis for certified consumer- side Proof-Carrying Code (PCC) [12]. We aim to prove the soundness of program logics and correctness of proof checkers against the model, and extract the proof checkers to produce certified stand-alone tools. -
Chapter 9: Java
,ch09.6595 Page 159 Friday, March 25, 2005 2:47 PM Chapter 9 CHAPTER 9 Java Many Java developers like Integrated Development Environments (IDEs) such as Eclipse. Given such well-known alternatives as Java IDEs and Ant, readers could well ask why they should even think of using make on Java projects. This chapter explores the value of make in these situations; in particular, it presents a generalized makefile that can be dropped into just about any Java project with minimal modification and carry out all the standard rebuilding tasks. Using make with Java raises several issues and introduces some opportunities. This is primarily due to three factors: the Java compiler, javac, is extremely fast; the stan- dard Java compiler supports the @filename syntax for reading “command-line param- eters” from a file; and if a Java package is specified, the Java language specifies a path to the .class file. Standard Java compilers are very fast. This is primarily due to the way the import directive works. Similar to a #include in C, this directive is used to allow access to externally defined symbols. However, rather than rereading source code, which then needs to be reparsed and analyzed, Java reads the class files directly. Because the symbols in a class file cannot change during the compilation process, the class files are cached by the compiler. In even medium-sized projects, this means the Java com- piler can avoid rereading, parsing, and analyzing literally millions of lines of code compared with C. A more modest performance improvement is due to the bare mini- mum of optimization performed by most Java compilers. -
Resume Emmanuel Puybaret / Java Developer
Emmanuel PUYBARET 52, married, two children 35, rue de Chambéry French native, fluent in English 75015 PARIS FRANCE Tel +33 1 58 45 28 27 Email [email protected] EDUCATION 1992-1993 Master's degree in INDUSTRIAL DESIGN/PRODUCT DESIGN, U.T.C. (University of Technology of Compiègne). 1985-1991 AERONAUTICS ENGINEER, E.S.T.A.C.A. (Graduate School of Aeronautics Engineering and Cars Construction). 1988-1990 BS in COMPUTER SCIENCE, University of Paris 6 (specialization in 2D/3D graphics, Artificial Intelligence, signal processing). COMPUTER SKILLS Systems Windows XP/7/8/10, Mac OS X, Linux. Languages Java, JavaScript, HTML, XML, SQL, C, C++, C#, Objective C, UML. Java API J2SE / Java SE: AWT, Swing, Java 2D, JavaSound, JDBC, SAX, DOM, JNI, multi-threading. J2EE / Java EE: Servlet, JSP, JSF, JPA, JavaMail, JMS, EJB. Other API: Struts, Hibernate, Ant, JUnit/TestNG, Abbot, FEST, SWT/JFace, Java 3D, WebGL. WORK EXPERIENCE Since 1999 JAVA ENGINEER AND TRAINER, freelancer, eTeks. References: 1999-2019 • eTeks: Author of the web site http://www.eteks.com (more than 10,000 visits per month): 5 months o Writing in French of the tutorial From C/C++ to Java and programming tips. 8 years o Development of Java products available under GNU GPL Open Source license: Sweet Home 3D interior design application, Jeks Swing spreadsheet, PJA Toolkit graphical library. 1 month o Development of the navigation applet TeksMenu sold to ten web sites. 1999-2018 23 months • AFTI, BSPP, CAI, EFREI, ENSEA, ESIC, ESIGETEL, GRETA, ib, Infotel, Intrabases, ITIN, LTM, SmartFutur, SofTeam, Sun Educational: Trainings in Java, JDBC, JSP, Swing, Java 2D, Java 3D, C++. -
Mateias, C. & Nicolescu, A. F.: Data Reporting on Internet from Sensors
Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium, Volume 23, No.1, ISSN 2304-1382 ISBN 978-3-901509-91-9, CDROM version, Ed. B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2012 Make Harmony between Technology and Nature, and Your Mind will Fly Free as a Bird Annals & Proceedings of DAAAM International 2012 DATA REPORTING ON INTERNET FROM SENSORS THAT MEASURE ENVIRONMENTAL PARAMETERS MATEIAS, C[atalin] & NICOLESCU, A[drian] F[lorin] Abstract: This paper describes a development stage of a 3D from remote locations) [2][3]. Also, it is preferable to use application developed using WebGL for reporting temperature, open source code for developing the 3D interface. humidity, pressure and dew point from a sensor installed in a location where constant monitoring is required. The data from the sensor is stored in an Oracle database. The sensor 3. PROBLEM SOLUTION measures the environmental parameters once per minute every day. The web pages that make the data available to Internet The first attempt was made using Java 3D. This users are developed using Oracle APEX. The 3D model of the requires installing Java and Java 3D plugin on the monitored location and the sensor were designed using computer Internet browser[4]. The java applet is packed Blender. The 3D models are loaded into the Oracle database in a *.jar file and uploaded into the Oracle database in a and rendered, using WebGL, inside web pages. BLOB type column and can be viewed from web pages Keywords: WebGL, Java, Internet server, 3D web application, designed with Oracle APEX. -
Lecture 1: Introduction to Java®
Lecture 1: Introduction to Java MIT-AITI Kenya 2005 1 Lecture Outline • What a computer program is • How to write a computer program • The disadvantages and advantages of using Java • How a program that you write in Java is changed into a form that your computer can understand • Sample Java code and comments MIT-Africa Internet Technology Initiative ©2005 2 Computer Program vs. Food Recipe Food Recipe Computer Program A chef writes a set of A programmer writes a set of instructions called a recipe instructions called a program The recipe requires specific The program requires specific ingredients inputs The cook follows the The computer follows the instructions step-by-step instructions step-by-step The food will vary depending on The output will vary depending the amount of ingredients and on the values of the inputs and the cook the computer MIT-Africa Internet Technology Initiative ©2005 3 Recipe and Program Examples Student’s Student’s Ingredient # 1 Ingredient # 2 Name Grade Recipe Program Dinner “Bilha got an A on the exam!” MIT-Africa Internet Technology Initiative ©2005 4 What is a computer program? • For a computer to be able to perform specific tasks (i.e. print what grade a student got on an exam), it must be given instructions to do the task • The set of instructions that tells the computer to perform specific tasks is known as a computer program MIT-Africa Internet Technology Initiative ©2005 5 Writing Computer Programs • We write computer programs (i.e. a set of instructions) in programming languages such as C, Pascal, and -
3D Graphics Technologies for Web Applications an Evaluation from the Perspective of a Real World Application
Institutionen för systemteknik Department of Electrical Engineering Examensarbete 3D Graphics Technologies for Web Applications An Evaluation from the Perspective of a Real World Application Master thesis performed in information coding by Klara Waern´er LiTH-ISY-EX--12/4562--SE Link¨oping 2012-06-19 Department of Electrical Engineering Linköpings tekniska högskola Linköpings universitet Linköpings universitet SE-581 83 Linköping, Sweden 581 83 Linköping 3D Graphics Technologies for Web Applications An Evaluation from the Perspective of a Real World Application Master thesis in information coding at Link¨oping Institute of Technology by Klara Waern´er LiTH-ISY-EX--12/4562--SE Supervisors: Fredrik Bennet SICK IVP AB Jens Ogniewski ISY, Link¨opingUniversity Examiner: Ingemar Ragnemalm ISY, Link¨opingUniversity Link¨oping2012-06-19 Presentation Date Department and Division 2012-05-31 Department of Electrical Engineering Publishing Date (Electronic version) 2012-06-19 Language Type of Publication ISBN (Licentiate thesis) X English Licentiate thesis ISRN: LiTH-ISY-EX--12/4562--SE Other (specify below) X Degree thesis Thesis C-level Title of series (Licentiate thesis) Thesis D-level Report Number of Pages Other (specify below) Series number/ISSN (Licentiate thesis) 90 URL, Electronic Version http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-78726 Publication Title 3D Graphics Technologies for Web Applications: An Evaluation from the Perspective of a Real World Application Publication Title (Swedish) Tekniker för 3D-grafik i webbapplikationer: En utvärdering sedd utifrån en riktig applikations perspektiv Author(s) Klara Waernér Abstract Web applications are becoming increasingly sophisticated and functionality that was once exclusive to regular desktop applications can now be found in web applications as well. -
Metaprogramming: Interpretaaon Interpreters
How to implement a programming language Metaprogramming InterpretaAon An interpreter wriDen in the implementaAon language reads a program wriDen in the source language and evaluates it. These slides borrow heavily from Ben Wood’s Fall ‘15 slides. TranslaAon (a.k.a. compilaAon) An translator (a.k.a. compiler) wriDen in the implementaAon language reads a program wriDen in the source language and CS251 Programming Languages translates it to an equivalent program in the target language. Spring 2018, Lyn Turbak But now we need implementaAons of: Department of Computer Science Wellesley College implementaAon language target language Metaprogramming 2 Metaprogramming: InterpretaAon Interpreters Source Program Interpreter = Program in Interpreter Machine M virtual machine language L for language L Output on machine M Data Metaprogramming 3 Metaprogramming 4 Metaprogramming: TranslaAon Compiler C Source x86 Target Program C Compiler Program if (x == 0) { cmp (1000), $0 Program in Program in x = x + 1; bne L language A } add (1000), $1 A to B translator language B ... L: ... x86 Target Program x86 computer Output Interpreter Machine M Thanks to Ben Wood for these for language B Data and following pictures on machine M Metaprogramming 5 Metaprogramming 6 Interpreters vs Compilers Java Compiler Interpreters No work ahead of Lme Source Target Incremental Program Java Compiler Program maybe inefficient if (x == 0) { load 0 Compilers x = x + 1; ifne L } load 0 All work ahead of Lme ... inc See whole program (or more of program) store 0 Time and resources for analysis and opLmizaLon L: ... (compare compiled C to compiled Java) Metaprogramming 7 Metaprogramming 8 Compilers... whose output is interpreted Interpreters..