1 Compiling Java Programs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SJC – Small Java Compiler
SJC – Small Java Compiler User Manual Stefan Frenz Translation: Jonathan Brase original version: 2011/06/08 latest document update: 2011/08/24 Compiler Version: 182 Java is a registered trademark of Oracle/Sun Table of Contents 1 Quick introduction.............................................................................................................................4 1.1 Windows...........................................................................................................................................4 1.2 Linux.................................................................................................................................................5 1.3 JVM Environment.............................................................................................................................5 1.4 QEmu................................................................................................................................................5 2 Hello World.......................................................................................................................................6 2.1 Source Code......................................................................................................................................6 2.2 Compilation and Emulation...............................................................................................................8 2.3 Details...............................................................................................................................................9 -
Introduction to Java
Introduction to Java James Brucker What is Java? Java is a language for writing computer programs. it runs on almost any "computer". desktop mobile phones game box web server & web apps smart devices What Uses Java? OpenOffice & LibreOffice (like Microsoft Office) Firefox Google App Engine Android MindCraft & Greenfoot IDE: Eclipse, IntelliJ, NetBeans How Java Works: Compiling 1. You (programmer) write source code in Java. 2. A compiler (javac) checks the code and translates it into "byte code" for a "virtual machine". Java Java source Hello.java javac Hello.class byte code code compiler public class Hello { public Hello(); aload_0 public static void main( String [ ] args ) { invokespecial #1; //Method java/ System.out.println( "I LOVE programming" ); lang/Object."<init>":()V return } main(java.lang.String[]); } getstatic #2; //Field ... How Java Works: Run the Bytecode 3. Run the byte code in a Java Virtual Machine (JVM). 4. The JVM (java command) interprets the byte code and loads other code from libraries as needed. Java I LOVE programming byte Hello.class java code java virtual public Hello(); aload_0 machine invokespecial #1; //Method java/lang/Object."<init>":()V return main(java.lang.String[]); Other java classes, getstatic #2; //Field ... saved in libraries. Summary: How Java Works 1. You (programmer) write program source code in Java. 2. Java compiler checks the code and translates it into "byte code". 3. A Java virtual machine (JVM) runs the byte code. Libraries Hello, javac Hello.class java Hello.java World! Java compiler byte code JVM: Program source - load byte code execution program - verify the code - runs byte code - enforce security model How to Write Source Code? You can use any editor to write the Java source code. -
Java (Programming Langua a (Programming Language)
Java (programming language) From Wikipedia, the free encyclopedialopedia "Java language" redirects here. For the natural language from the Indonesian island of Java, see Javanese language. Not to be confused with JavaScript. Java multi-paradigm: object-oriented, structured, imperative, Paradigm(s) functional, generic, reflective, concurrent James Gosling and Designed by Sun Microsystems Developer Oracle Corporation Appeared in 1995[1] Java Standard Edition 8 Update Stable release 5 (1.8.0_5) / April 15, 2014; 2 months ago Static, strong, safe, nominative, Typing discipline manifest Major OpenJDK, many others implementations Dialects Generic Java, Pizza Ada 83, C++, C#,[2] Eiffel,[3] Generic Java, Mesa,[4] Modula- Influenced by 3,[5] Oberon,[6] Objective-C,[7] UCSD Pascal,[8][9] Smalltalk Ada 2005, BeanShell, C#, Clojure, D, ECMAScript, Influenced Groovy, J#, JavaScript, Kotlin, PHP, Python, Scala, Seed7, Vala Implementation C and C++ language OS Cross-platform (multi-platform) GNU General Public License, License Java CommuniCommunity Process Filename .java , .class, .jar extension(s) Website For Java Developers Java Programming at Wikibooks Java is a computer programming language that is concurrent, class-based, object-oriented, and specifically designed to have as few impimplementation dependencies as possible.ble. It is intended to let application developers "write once, run ananywhere" (WORA), meaning that code that runs on one platform does not need to be recompiled to rurun on another. Java applications ns are typically compiled to bytecode (class file) that can run on anany Java virtual machine (JVM)) regardless of computer architecture. Java is, as of 2014, one of tthe most popular programming ng languages in use, particularly for client-server web applications, witwith a reported 9 million developers.[10][11] Java was originallyy developed by James Gosling at Sun Microsystems (which has since merged into Oracle Corporation) and released in 1995 as a core component of Sun Microsystems'Micros Java platform. -
Configuring & Using Apache Tomcat 4 a Tutorial on Installing and Using
Configuring & Using Apache Tomcat 4 A Tutorial on Installing and Using Tomcat for Servlet and JSP Development Taken from Using-Tomcat-4 found on http://courses.coreservlets.com Following is a summary of installing and configuring Apache Tomcat 4 for use as a standalone Web server that supports servlets 2.3 and JSP 1.2. Integrating Tomcat as a plugin within the regular Apache server or a commercial Web server is more complicated (for details, see http://jakarta.apache.org/tomcat/tomcat-4.0-doc/). Integrating Tomcat with a regular Web server is valuable for a deployment scenario, but my goal here is to show how to use Tomcat as a development server on your desktop. Regardless of what deployment server you use, you'll want a standalone server on your desktop to use for development. (Note: Tomcat is sometimes referred to as Jakarta Tomcat since the Apache Java effort is known as "The Jakarta Project"). The examples here assume you are using Windows, but they can be easily adapted for Solaris, Linux, and other versions of Unix. I've gotten reports of successful use on MacOS X, but don't know the setup details. Except when I refer to specific Windows paths (e.g., C:\blah\blah), I use URL-style forward slashes for path separators (e.g., install_dir/webapps/ROOT). Adapt as necessary. The information here is adapted from More Servlets and JavaServer Pages from Sun Microsystems Press. For the book table of contents, index, source code, etc., please see http://www.moreservlets.com/. For information on servlet and JSP training courses (either at public venues or on-site at your company), please see http://courses.coreservlets.com. -
The Java® Language Specification Java SE 8 Edition
The Java® Language Specification Java SE 8 Edition James Gosling Bill Joy Guy Steele Gilad Bracha Alex Buckley 2015-02-13 Specification: JSR-337 Java® SE 8 Release Contents ("Specification") Version: 8 Status: Maintenance Release Release: March 2015 Copyright © 1997, 2015, Oracle America, Inc. and/or its affiliates. 500 Oracle Parkway, Redwood City, California 94065, U.S.A. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. The Specification provided herein is provided to you only under the Limited License Grant included herein as Appendix A. Please see Appendix A, Limited License Grant. To Maurizio, with deepest thanks. Table of Contents Preface to the Java SE 8 Edition xix 1 Introduction 1 1.1 Organization of the Specification 2 1.2 Example Programs 6 1.3 Notation 6 1.4 Relationship to Predefined Classes and Interfaces 7 1.5 Feedback 7 1.6 References 7 2 Grammars 9 2.1 Context-Free Grammars 9 2.2 The Lexical Grammar 9 2.3 The Syntactic Grammar 10 2.4 Grammar Notation 10 3 Lexical Structure 15 3.1 Unicode 15 3.2 Lexical Translations 16 3.3 Unicode Escapes 17 3.4 Line Terminators 19 3.5 Input Elements and Tokens 19 3.6 White Space 20 3.7 Comments 21 3.8 Identifiers 22 3.9 Keywords 24 3.10 Literals 24 3.10.1 Integer Literals 25 3.10.2 Floating-Point Literals 31 3.10.3 Boolean Literals 34 3.10.4 Character Literals 34 3.10.5 String Literals 35 3.10.6 Escape Sequences for Character and String Literals 37 3.10.7 The Null Literal 38 3.11 Separators -
Solutions to Exercises
533 Appendix Solutions to Exercises Chapters 1 through 10 close with an “Exercises” section that tests your understanding of the chapter’s material through various exercises. Solutions to these exercises are presented in this appendix. Chapter 1: Getting Started with Java 1. Java is a language and a platform. The language is partly patterned after the C and C++ languages to shorten the learning curve for C/C++ developers. The platform consists of a virtual machine and associated execution environment. 2. A virtual machine is a software-based processor that presents its own instruction set. 3. The purpose of the Java compiler is to translate source code into instructions (and associated data) that are executed by the virtual machine. 4. The answer is true: a classfile’s instructions are commonly referred to as bytecode. 5. When the virtual machine’s interpreter learns that a sequence of bytecode instructions is being executed repeatedly, it informs the virtual machine’s Just In Time (JIT) compiler to compile these instructions into native code. 6. The Java platform promotes portability by providing an abstraction over the underlying platform. As a result, the same bytecode runs unchanged on Windows-based, Linux-based, Mac OS X–based, and other platforms. 7. The Java platform promotes security by providing a secure environment in which code executes. It accomplishes this task in part by using a bytecode verifier to make sure that the classfile’s bytecode is valid. 8. The answer is false: Java SE is the platform for developing applications and applets. 533 534 APPENDIX: Solutions to Exercises 9. -
Building Useful Program Analysis Tools Using an Extensible Java Compiler
Building Useful Program Analysis Tools Using an Extensible Java Compiler Edward Aftandilian, Raluca Sauciuc Siddharth Priya, Sundaresan Krishnan Google, Inc. Google, Inc. Mountain View, CA, USA Hyderabad, India feaftan, [email protected] fsiddharth, [email protected] Abstract—Large software companies need customized tools a specific task, but they fail for several reasons. First, ad- to manage their source code. These tools are often built in hoc program analysis tools are often brittle and break on an ad-hoc fashion, using brittle technologies such as regular uncommon-but-valid code patterns. Second, simple ad-hoc expressions and home-grown parsers. Changes in the language cause the tools to break. More importantly, these ad-hoc tools tools don’t provide sufficient information to perform many often do not support uncommon-but-valid code code patterns. non-trivial analyses, including refactorings. Type and symbol We report our experiences building source-code analysis information is especially useful, but amounts to writing a tools at Google on top of a third-party, open-source, extensible type-checker. Finally, more sophisticated program analysis compiler. We describe three tools in use on our Java codebase. tools are expensive to create and maintain, especially as the The first, Strict Java Dependencies, enforces our dependency target language evolves. policy in order to reduce JAR file sizes and testing load. The second, error-prone, adds new error checks to the compilation In this paper, we present our experience building special- process and automates repair of those errors at a whole- purpose tools on top of the the piece of software in our codebase scale. -
SUBJECT-COMPUTER CLASS-12 CHAPTER 9 – Compiling and Running Java Programs
SUBJECT-COMPUTER CLASS-12 CHAPTER 9 – Compiling and Running Java Programs Introduction to Java programming JAVA was developed by Sun Microsystems Inc in 1991, later acquired by Oracle Corporation. It was developed by James Gosling and Patrick Naughton. It is a simple programming language. Writing, compiling and debugging a program is easy in java. It helps to create modular programs and reusable code. Bytecode javac compiler of JDK compiles the java source code into bytecode so that it can be executed by JVM. The bytecode is saved in a .class file by compiler. Java Virtual Machine (JVM) This is generally referred as JVM. Before, we discuss about JVM lets see the phases of program execution. Phases are as follows: we write the program, then we compile the program and at last we run the program. 1) Writing of the program is of course done by java programmer. 2) Compilation of program is done by javac compiler, javac is the primary java compiler included in java development kit (JDK). It takes java program as input and generates java bytecode as output. 3) In third phase, JVM executes the bytecode generated by compiler. This is called program run phase. So, now that we understood that the primary function of JVM is to execute the bytecode produced by compiler. Characteristics of Java Simple Java is very easy to learn, and its syntax is simple, clean and easy to understand. Multi-threaded Multithreading capabilities come built right into the Java language. This means it is possible to build highly interactive and responsive apps with a number of concurrent threads of activity. -
Coqjvm: an Executable Specification of the Java Virtual Machine Using
CoqJVM: An Executable Specification of the Java Virtual Machine using Dependent Types Robert Atkey LFCS, School of Informatics, University of Edinburgh Mayfield Rd, Edinburgh EH9 3JZ, UK [email protected] Abstract. We describe an executable specification of the Java Virtual Machine (JVM) within the Coq proof assistant. The principal features of the development are that it is executable, meaning that it can be tested against a real JVM to gain confidence in the correctness of the specification; and that it has been written with heavy use of dependent types, this is both to structure the model in a useful way, and to constrain the model to prevent spurious partiality. We describe the structure of the formalisation and the way in which we have used dependent types. 1 Introduction Large scale formalisations of programming languages and systems in mechanised theorem provers have recently become popular [4–6, 9]. In this paper, we describe a formalisation of the Java virtual machine (JVM) [8] in the Coq proof assistant [11]. The principal features of this formalisation are that it is executable, meaning that a purely functional JVM can be extracted from the Coq development and – with some O’Caml glue code – executed on real Java bytecode output from the Java compiler; and that it is structured using dependent types. The motivation for this development is to act as a basis for certified consumer- side Proof-Carrying Code (PCC) [12]. We aim to prove the soundness of program logics and correctness of proof checkers against the model, and extract the proof checkers to produce certified stand-alone tools. -
Artisynth Installation Guide for Macos
ArtiSynth Installation Guide for MacOS John Lloyd, Sebastian Kazenbroot-Guppy, and Antonio Sánchez Last updated: March, 2018 ArtiSynth Installation Guide for MacOS 2 Contents 1 Introduction 4 2 Prerequisites 4 3 Downloading a Prepacked Release 5 3.1 Downloadingandunpackingthezipfile . ................... 5 4 Cloning from Github 5 4.0.1 Cloningusingthecommandline . ............... 5 4.0.2 CloningusingEclipse . ............. 5 4.1 Downloadingthelibraries. .................. 5 5 Building ArtiSynth 6 5.1 BuildingwithEclipse. .... .... .... ... .... .... .... ................ 6 5.2 Buildingfromthecommandline . ................. 6 6 Running ArtiSynth 6 6.1 Runningfromthecommandline . ................ 6 6.2 Runningfromthefilebrowser . ................ 6 6.3 Commandlinearguments. ............... 7 6.4 RunningusingEclipse .... .... .... ... .... .... .... .. ............... 7 6.5 LoadingandRunningModels . ............... 7 7 Installing External Models and Packages 7 7.1 Downloading ..................................... ............ 8 7.2 Building........................................ ............ 8 7.2.1 BuildingwithEclipse. .............. 8 7.2.2 Buildingfromthecommandline. ............... 8 7.3 Running......................................... ........... 8 7.3.1 Adding external classes using the Eclipse Classpath . ........................ 8 7.3.2 AddingexternalclassesusingEXTCLASSPATH . .................. 8 7.3.3 AddingexternalclassesusingCLASSPATH . .................. 8 8 Updating ArtiSynth 9 8.1 Libraryupdates ................................. -
Chapter 9: Java
,ch09.6595 Page 159 Friday, March 25, 2005 2:47 PM Chapter 9 CHAPTER 9 Java Many Java developers like Integrated Development Environments (IDEs) such as Eclipse. Given such well-known alternatives as Java IDEs and Ant, readers could well ask why they should even think of using make on Java projects. This chapter explores the value of make in these situations; in particular, it presents a generalized makefile that can be dropped into just about any Java project with minimal modification and carry out all the standard rebuilding tasks. Using make with Java raises several issues and introduces some opportunities. This is primarily due to three factors: the Java compiler, javac, is extremely fast; the stan- dard Java compiler supports the @filename syntax for reading “command-line param- eters” from a file; and if a Java package is specified, the Java language specifies a path to the .class file. Standard Java compilers are very fast. This is primarily due to the way the import directive works. Similar to a #include in C, this directive is used to allow access to externally defined symbols. However, rather than rereading source code, which then needs to be reparsed and analyzed, Java reads the class files directly. Because the symbols in a class file cannot change during the compilation process, the class files are cached by the compiler. In even medium-sized projects, this means the Java com- piler can avoid rereading, parsing, and analyzing literally millions of lines of code compared with C. A more modest performance improvement is due to the bare mini- mum of optimization performed by most Java compilers. -
Migration-Guide.Pdf
Java Platform, Standard Edition Oracle JDK Migration Guide Release 15 F30923-01 September 2020 Getting Started The purpose of this guide is to help you identify potential issues and give you suggestions on how to proceed as you migrate your existing Java application to JDK 15. The guide also highlights the significant changes and enhancements done in JDK 15. This guide contains the following sections: • Significant Changes in the JDK • Preparing For Migration • Migrating From JDK 8 to Later JDK Releases • Next Steps Note: • Check the Oracle JDK Certified System Configurations for the latest supported platforms and operating system versions. • See Removed APIs, Tools, and Components before you start the migration process. Significant Changes in the JDK Before migrating your application to the latest JDK release, you must understand what the updates and changes are between it and the previous JDK release. If you are migrating from JDK 8, you should also be familiar with the differences between JDK 8 and later releases that are described in Migrating From JDK 8 to Later JDK Releases. See the following sections to learn about some of the significant changes in latest JDK releases. 1 Significant Changes in JDK 15 Release See JDK 15 Release Notes for the complete list of new features and enhancements in JDK 15. The following are some of the updates in Java SE 15 and JDK 15: • Text Blocks, first previewed in Java SE 13, is a permanent feature in this release and can be used without enabling preview features. Text blocks are multiline string literals that avoid the need for most escape sequences, automatically format the string in a predictable way, and give the developer control over the format when desired.