Bio-Formats Documentation Release 5.2.2

Total Page:16

File Type:pdf, Size:1020Kb

Bio-Formats Documentation Release 5.2.2 Bio-Formats Documentation Release 5.2.2 The Open Microscopy Environment September 12, 2016 CONTENTS I About Bio-Formats 2 1 Help 4 2 Bio-Formats versions 5 3 Why Java? 6 4 Bio-Formats metadata processing 7 4.1 Reporting a bug ................................................... 7 4.2 Version history .................................................... 8 II User Information 38 5 Using Bio-Formats with ImageJ and Fiji 39 5.1 ImageJ overview ................................................... 39 5.2 Fiji overview ..................................................... 41 5.3 Bio-Formats features in ImageJ and Fiji ....................................... 42 5.4 Installing Bio-Formats in ImageJ .......................................... 42 5.5 Using Bio-Formats to load images into ImageJ ................................... 44 5.6 Managing memory in ImageJ/Fiji using Bio-Formats ................................ 48 6 Command line tools 51 6.1 Command line tools introduction .......................................... 51 6.2 Displaying images and metadata ........................................... 52 6.3 Converting a file to different format ......................................... 54 6.4 Validating XML in an OME-TIFF .......................................... 56 6.5 Editing XML in an OME-TIFF ........................................... 57 6.6 List formats by domain ................................................ 58 6.7 List supported file formats .............................................. 58 6.8 Display file in ImageJ ................................................ 59 6.9 Format XML data .................................................. 59 6.10 Create a high-content screen for testing ....................................... 59 7 OMERO 61 8 Image server applications 62 8.1 BISQUE ....................................................... 62 8.2 OME Server ..................................................... 62 9 Libraries and scripting applications 65 9.1 FARSIGHT ...................................................... 65 9.2 i3dcore ........................................................ 65 9.3 ImgLib ........................................................ 65 9.4 ITK .......................................................... 66 9.5 Qu for MATLAB ................................................... 66 10 Numerical data processing applications 67 10.1 GNU Octave ..................................................... 67 i 10.2 IDL .......................................................... 68 10.3 KNIME ........................................................ 68 10.4 MATLAB ...................................................... 68 10.5 VisAD ........................................................ 69 11 Visualization and analysis applications 70 11.1 Bitplane Imaris .................................................... 70 11.2 CellProfiler ...................................................... 70 11.3 Comstat2 ....................................................... 71 11.4 Endrov ........................................................ 71 11.5 FocalPoint ...................................................... 71 11.6 Graphic Converter .................................................. 71 11.7 Icy .......................................................... 72 11.8 imago ......................................................... 72 11.9 Iqm .......................................................... 72 11.10 Macnification ..................................................... 72 11.11 Micro-Manager .................................................... 72 11.12 MIPAV ........................................................ 73 11.13 Vaa3D ........................................................ 74 11.14 VisBio ........................................................ 74 11.15 XuvTools ....................................................... 75 III Developer Documentation 76 12 Introduction to Bio-Formats 78 12.1 Overview for developers ............................................... 78 12.2 Obtaining and building Bio-Formats ......................................... 79 12.3 Component overview ................................................. 81 12.4 Reading files ..................................................... 84 12.5 Writing files ..................................................... 86 13 Using Bio-Formats as a Java library 87 13.1 Using Bio-Formats as a Java library ......................................... 87 13.2 Units of measurement ................................................ 91 13.3 Exporting files using Bio-Formats .......................................... 92 13.4 Further details on exporting raw pixel data to OME-TIFF files ........................... 94 13.5 Logging ........................................................ 96 13.6 Converting files from FV1000 OIB/OIF to OME-TIFF ............................... 96 13.7 Using Bio-Formats in MATLAB ........................................... 97 13.8 Using Bio-Formats in Python ............................................ 103 13.9 Interfacing with Bio-Formats from non-Java code .................................. 103 14 Using Bio-Formats as a native C++ library 104 15 Contributing to Bio-Formats 105 15.1 Code formatting ................................................... 105 15.2 Testing code changes ................................................. 105 15.3 Generating test images ................................................ 108 15.4 Writing a new file format reader ........................................... 111 15.5 Adding format/reader documentation pages ..................................... 115 15.6 Bio-Formats service and dependency infrastructure ................................. 116 15.7 Code generation with xsd-fu ............................................. 118 15.8 Scripts for performing development tasks ...................................... 121 IV Formats 122 16 Dataset Structure Table 124 16.1 Flex Support ..................................................... 127 ii 17 Supported Formats 129 17.1 3i SlideBook ..................................................... 134 17.2 Andor Bio-Imaging Division (ABD) TIFF ..................................... 135 17.3 AIM ......................................................... 136 17.4 Alicona 3D ...................................................... 136 17.5 Amersham Biosciences Gel ............................................. 137 17.6 Amira Mesh ..................................................... 138 17.7 Amnis FlowSight ................................................... 138 17.8 Analyze 7.5 ...................................................... 139 17.9 Animated PNG .................................................... 139 17.10 Aperio AFI ...................................................... 140 17.11 Aperio SVS TIFF ................................................... 141 17.12 Applied Precision CellWorX ............................................. 141 17.13 AVI (Audio Video Interleave) ............................................ 142 17.14 Axon Raw Format .................................................. 143 17.15 BD Pathway ..................................................... 144 17.16 Becker & Hickl SPC FIFO .............................................. 144 17.17 Becker & Hickl SPCImage .............................................. 145 17.18 Bio-Rad Gel ..................................................... 146 17.19 Bio-Rad PIC ..................................................... 146 17.20 Bio-Rad SCN ..................................................... 147 17.21 Bitplane Imaris .................................................... 148 17.22 Bruker MRI ..................................................... 149 17.23 Burleigh ....................................................... 149 17.24 Canon DNG ..................................................... 150 17.25 CellH5 ........................................................ 150 17.26 Cellomics ....................................................... 151 17.27 cellSens VSI ..................................................... 152 17.28 CellVoyager ..................................................... 152 17.29 DeltaVision ...................................................... 153 17.30 DICOM ........................................................ 154 17.31 ECAT7 ........................................................ 155 17.32 EPS (Encapsulated PostScript) ............................................ 155 17.33 Evotec/PerkinElmer Opera Flex ........................................... 156 17.34 FEI .......................................................... 157 17.35 FEI TIFF ....................................................... 157 17.36 FITS (Flexible Image Transport System) ...................................... 158 17.37 Gatan Digital Micrograph .............................................. 158 17.38 Gatan Digital Micrograph 2 ............................................. 159 17.39 GIF (Graphics Interchange Format) ......................................... 160 17.40 Hamamatsu Aquacosmos NAF ............................................ 160 17.41 Hamamatsu HIS ................................................... 161 17.42 Hamamatsu ndpi ................................................... 162 17.43 Hamamatsu VMS .................................................. 162 17.44 Hitachi S-4800 .................................................... 163 17.45 I2I .......................................................... 164 17.46 ICS (Image Cytometry Standard) .........................................
Recommended publications
  • Management of Large Sets of Image Data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak
    Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak Download free books at Karol Kozak Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Download free eBooks at bookboon.com 2 Management of large sets of image data: Capture, Databases, Image Processing, Storage, Visualization 1st edition © 2014 Karol Kozak & bookboon.com ISBN 978-87-403-0726-9 Download free eBooks at bookboon.com 3 Management of large sets of image data Contents Contents 1 Digital image 6 2 History of digital imaging 10 3 Amount of produced images – is it danger? 18 4 Digital image and privacy 20 5 Digital cameras 27 5.1 Methods of image capture 31 6 Image formats 33 7 Image Metadata – data about data 39 8 Interactive visualization (IV) 44 9 Basic of image processing 49 Download free eBooks at bookboon.com 4 Click on the ad to read more Management of large sets of image data Contents 10 Image Processing software 62 11 Image management and image databases 79 12 Operating system (os) and images 97 13 Graphics processing unit (GPU) 100 14 Storage and archive 101 15 Images in different disciplines 109 15.1 Microscopy 109 360° 15.2 Medical imaging 114 15.3 Astronomical images 117 15.4 Industrial imaging 360° 118 thinking. 16 Selection of best digital images 120 References: thinking. 124 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
    [Show full text]
  • Bio-Formats Documentation Release 4.4.9
    Bio-Formats Documentation Release 4.4.9 The Open Microscopy Environment October 15, 2013 CONTENTS I About Bio-Formats 2 1 Why Java? 4 2 Bio-Formats metadata processing 5 3 Help 6 3.1 Reporting a bug ................................................... 6 3.2 Troubleshooting ................................................... 7 4 Bio-Formats versions 9 4.1 Version history .................................................... 9 II User Information 23 5 Using Bio-Formats with ImageJ and Fiji 24 5.1 ImageJ ........................................................ 24 5.2 Fiji .......................................................... 25 5.3 Bio-Formats features in ImageJ and Fiji ....................................... 26 5.4 Installing Bio-Formats in ImageJ .......................................... 26 5.5 Using Bio-Formats to load images into ImageJ ................................... 28 5.6 Managing memory in ImageJ/Fiji using Bio-Formats ................................ 32 5.7 Upgrading the Bio-Formats importer for ImageJ to the latest trunk build ...................... 34 6 OMERO 39 7 Image server applications 40 7.1 BISQUE ....................................................... 40 7.2 OME Server ..................................................... 40 8 Libraries and scripting applications 43 8.1 Command line tools ................................................. 43 8.2 FARSIGHT ...................................................... 44 8.3 i3dcore ........................................................ 44 8.4 ImgLib .......................................................
    [Show full text]
  • Resume Emmanuel Puybaret / Java Developer
    Emmanuel PUYBARET 52, married, two children 35, rue de Chambéry French native, fluent in English 75015 PARIS FRANCE Tel +33 1 58 45 28 27 Email [email protected] EDUCATION 1992-1993 Master's degree in INDUSTRIAL DESIGN/PRODUCT DESIGN, U.T.C. (University of Technology of Compiègne). 1985-1991 AERONAUTICS ENGINEER, E.S.T.A.C.A. (Graduate School of Aeronautics Engineering and Cars Construction). 1988-1990 BS in COMPUTER SCIENCE, University of Paris 6 (specialization in 2D/3D graphics, Artificial Intelligence, signal processing). COMPUTER SKILLS Systems Windows XP/7/8/10, Mac OS X, Linux. Languages Java, JavaScript, HTML, XML, SQL, C, C++, C#, Objective C, UML. Java API J2SE / Java SE: AWT, Swing, Java 2D, JavaSound, JDBC, SAX, DOM, JNI, multi-threading. J2EE / Java EE: Servlet, JSP, JSF, JPA, JavaMail, JMS, EJB. Other API: Struts, Hibernate, Ant, JUnit/TestNG, Abbot, FEST, SWT/JFace, Java 3D, WebGL. WORK EXPERIENCE Since 1999 JAVA ENGINEER AND TRAINER, freelancer, eTeks. References: 1999-2019 • eTeks: Author of the web site http://www.eteks.com (more than 10,000 visits per month): 5 months o Writing in French of the tutorial From C/C++ to Java and programming tips. 8 years o Development of Java products available under GNU GPL Open Source license: Sweet Home 3D interior design application, Jeks Swing spreadsheet, PJA Toolkit graphical library. 1 month o Development of the navigation applet TeksMenu sold to ten web sites. 1999-2018 23 months • AFTI, BSPP, CAI, EFREI, ENSEA, ESIC, ESIGETEL, GRETA, ib, Infotel, Intrabases, ITIN, LTM, SmartFutur, SofTeam, Sun Educational: Trainings in Java, JDBC, JSP, Swing, Java 2D, Java 3D, C++.
    [Show full text]
  • Mateias, C. & Nicolescu, A. F.: Data Reporting on Internet from Sensors
    Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium, Volume 23, No.1, ISSN 2304-1382 ISBN 978-3-901509-91-9, CDROM version, Ed. B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2012 Make Harmony between Technology and Nature, and Your Mind will Fly Free as a Bird Annals & Proceedings of DAAAM International 2012 DATA REPORTING ON INTERNET FROM SENSORS THAT MEASURE ENVIRONMENTAL PARAMETERS MATEIAS, C[atalin] & NICOLESCU, A[drian] F[lorin] Abstract: This paper describes a development stage of a 3D from remote locations) [2][3]. Also, it is preferable to use application developed using WebGL for reporting temperature, open source code for developing the 3D interface. humidity, pressure and dew point from a sensor installed in a location where constant monitoring is required. The data from the sensor is stored in an Oracle database. The sensor 3. PROBLEM SOLUTION measures the environmental parameters once per minute every day. The web pages that make the data available to Internet The first attempt was made using Java 3D. This users are developed using Oracle APEX. The 3D model of the requires installing Java and Java 3D plugin on the monitored location and the sensor were designed using computer Internet browser[4]. The java applet is packed Blender. The 3D models are loaded into the Oracle database in a *.jar file and uploaded into the Oracle database in a and rendered, using WebGL, inside web pages. BLOB type column and can be viewed from web pages Keywords: WebGL, Java, Internet server, 3D web application, designed with Oracle APEX.
    [Show full text]
  • 3D Graphics Technologies for Web Applications an Evaluation from the Perspective of a Real World Application
    Institutionen för systemteknik Department of Electrical Engineering Examensarbete 3D Graphics Technologies for Web Applications An Evaluation from the Perspective of a Real World Application Master thesis performed in information coding by Klara Waern´er LiTH-ISY-EX--12/4562--SE Link¨oping 2012-06-19 Department of Electrical Engineering Linköpings tekniska högskola Linköpings universitet Linköpings universitet SE-581 83 Linköping, Sweden 581 83 Linköping 3D Graphics Technologies for Web Applications An Evaluation from the Perspective of a Real World Application Master thesis in information coding at Link¨oping Institute of Technology by Klara Waern´er LiTH-ISY-EX--12/4562--SE Supervisors: Fredrik Bennet SICK IVP AB Jens Ogniewski ISY, Link¨opingUniversity Examiner: Ingemar Ragnemalm ISY, Link¨opingUniversity Link¨oping2012-06-19 Presentation Date Department and Division 2012-05-31 Department of Electrical Engineering Publishing Date (Electronic version) 2012-06-19 Language Type of Publication ISBN (Licentiate thesis) X English Licentiate thesis ISRN: LiTH-ISY-EX--12/4562--SE Other (specify below) X Degree thesis Thesis C-level Title of series (Licentiate thesis) Thesis D-level Report Number of Pages Other (specify below) Series number/ISSN (Licentiate thesis) 90 URL, Electronic Version http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-78726 Publication Title 3D Graphics Technologies for Web Applications: An Evaluation from the Perspective of a Real World Application Publication Title (Swedish) Tekniker för 3D-grafik i webbapplikationer: En utvärdering sedd utifrån en riktig applikations perspektiv Author(s) Klara Waernér Abstract Web applications are becoming increasingly sophisticated and functionality that was once exclusive to regular desktop applications can now be found in web applications as well.
    [Show full text]
  • 3D Visualization Architecture for Building Applications Leveraging an Existing Validated Toolkit David A
    Marquette University e-Publications@Marquette Master's Theses (2009 -) Dissertations, Theses, and Professional Projects 3D Visualization Architecture for Building Applications Leveraging an Existing Validated Toolkit David A. Polyak Marquette University Recommended Citation Polyak, David A., "3D Visualization Architecture for Building Applications Leveraging an Existing Validated Toolkit" (2014). Master's Theses (2009 -). Paper 255. http://epublications.marquette.edu/theses_open/255 3D VISUALIZATION ARCHITECTURE FOR BUILDING UBIQUITOUS APPLICATIONS LEVERAGING AN EXISTING VALIDATED TOOLKIT by David A. Polyak A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the requirements for the Degree of Master of Computing Milwaukee, Wisconsin May 2014 ABSTRACT 3D VISUALIZATION ARCHITECTURE FOR BUILDING UBIQUITOUS APPLICATIONS LEVERAGING AN EXISTING VALIDATED TOOLKIT David A. Polyak Marquette University, 2014 The diagnostic radiology space and healthcare in general is a slow adopter of new software technologies and patterns. Despite the widespread embrace of mobile technology in recent years, altering the manner in which societies in developed countries live and communicate, diagnostic radiology has not unanimously adopted mobile technology for remote diagnostic review. Desktop applications in the diagnostic radiology space commonly leverage a validated toolkit. Such toolkits not only simplify desktop application development but minimize the scope of application validation. For these reasons, such a toolkit is an important piece of a company’s software portfolio. This thesis investigated an approach for leveraging a Java validated toolkit for the purpose of creating numerous ubiquitous applications for 3D diagnostic radiology. Just as in the desktop application space, leveraging such a toolkit minimizes the scope of ubiquitous application validation. Today, the most standard execution environment in an electronic device is an Internet browser; therefore, a ubiquitous application is web application.
    [Show full text]
  • Java FX and Java SE 6 Update N
    Java FX and Java SE 6 Update N Raghavan “Rags” N. Srinivas CTO, Technology Evangelism Sun Microsystems Inc. 1 Agenda • State of Java • Java FX • Java SE 6 update N • Future 2 How Much Java Technology Is Out There? • >91% of all PCs run Java platform* • ~77% of all Java technology-enabled PCs run Sun’s Java Platform, Standard Edition (Java SE platform)** • Distribution through PC OEMs > Nine of the top ten PC OEMs ship the Sun JRE software > Representing >60% of all shipped PCs > 58 white box vendors have signed JRE software redistribution agreements • Download/installs > ~44m installations / month for the last six months on Windows > >50M in Jan, Feb, April, 2007 * Omniture, April 2007 **Mapsolute/Map24.com, April 2007 3 Completed Java SE Platform Downloads Windows numbers only 55,000,000 50,000,000 45,000,000 40,000,000 35,000,000 30,000,000 25,000,000 20,000,000 15,000,000 10,000,000 5,000,000 0 1/2003 1/2004 1/2005 1/2006 1/2007 4 Agenda • State of Java • Java FX • Java SE 6 update N • Future 5 Update N and JavaFX Java Comes Home to the Consumer 6 JavaFX 7 JavaFX Features • Java FX Script • Scene graph • Media • HTML • Multiple Device 8 J a v a F X S c r i p t 9 JavaFX Script • Language > Simple data binding > Fast prototyping > Declarative GUIs and graphics > Easily programmed animations • Compiler > Interpreter (now): okay for demos > Compiler (soon): necessary for real applications 10 The Java GUI Quagmire • Java Swing and 2D APIs are very powerful and yet > Why does it take a long time to write GUI programs? > How can we avoid the
    [Show full text]
  • Desktop Java™ Technology
    Desktop Java™ Technology Thorsten Laux Chet Haase Sun Microsystems, Inc. TS-3160 2007 JavaOneSM Conference | Session TS-3160 | Goal Where We Are Where We’re Going 2007 JavaOneSM Conference | Session TS-3160 | 2 Agenda State of the Desktop World Where We Are Going Consumer JRE Release Future Platform Features 2007 JavaOneSM Conference | Session TS-3160 | 3 Agenda State of the Desktop World Where We Are Going Consumer JRE Release Future Platform Features 2007 JavaOneSM Conference | Session TS-3160 | 4 How Much Java Technology Is Out There? ● > 91% of all PCs run Java platform* ● ~ 77% of all Java technology-enabled PCs run Sun’s Java Platform, Standard Edition (Java SE platform)** ● Distribution through PC OEMs ● Nine of the top ten PC OEMs ship the JRE software ● Representing > 60% of all shipped PCs ● 58 white box vendors have signed JRE software redistribution agreements ● Download/installs ● ~ 44m installations/month for the last six months on Windows ● > 50M in January, February, April, 2007 * Omniture, April 2007 **Mapsolute/Map24.com, April 2007 2007 JavaOneSM Conference | Session TS-3160 | 5 Completed Java SE Platform Downloads Windows numbers only 55,000,000 50,000,000 45,000,000 40,000,000 35,000,000 30,000,000 25,000,000 20,000,000 15,000,000 10,000,000 5,000,000 0 1/2003 1/2004 1/2005 1/2006 1/2007 2007 JavaOneSM Conference | Session TS-3160 | 6 Where Does the Time Go? Evans Data Survey: Fall 2006 45 40 35 30 Desktop 25 Server Mobile 20 Others 15 10 5 0 Percentage of Java Development Time Spent Spring 05 Fall 05 Spring 06 Fall
    [Show full text]
  • Imagej User Guide Contents Release Notes for Imagej 1.46R Vii IJ 1.46R Noteworthy Viii
    RevisedIJ 1.46r edition ImageJ UserUser Guide Guide ImageJImageJ/Fiji 1.46 ImageJ User Guide Contents Release Notes for ImageJ 1.46r vii IJ 1.46r Noteworthy viii Tiago Ferreira • Wayne Rasband IJ User Guide | Booklet 1 Macro Listings ix Conventions x I Getting Started 1 Introduction 1 2 Installing and Maintaining ImageJ2 2.1 ImageJDistributions.................................. 2 2.2 Related Software ................................... 3 2.3 ImageJ2 ........................................ 5 3 Getting Help5 3.1 Help on Image Analysis................................ 5 3.2 Help on ImageJ.................................... 6 II Working with ImageJ 4 Using Keyboard Shortcuts8 5 Finding Commands8 6 Undo and Redo9 7 Image Types and Formats 10 Tuesday 2nd October, 2012 8 Stacks, Virtual Stacks and Hyperstacks 12 9 Color Images 14 10 Selections 17 Foreword 10.1 Manipulating ROIs .................................. 18 10.2 Composite Selections................................. 19 The ImageJ User Guide provides a detailed overview of ImageJ (and inherently Fiji), 10.3 Selections With Sub-pixel Coordinates ....................... 19 the standard in scientific image analysis (see XXVI Focus on Bioimage Informatics). It was thought as a comprehensive, fully-searchable, self-contained, annotatable 11 Overlays 19 manual (see Conventions Used in this Guide). A HTML version is also available as 12 3D Volumes 21 well as printer-friendly booklets (see Guide Formats). Its latest version can always be obtained from http://imagej.nih.gov/ij/docs/guide. The source files are available 13 Settings and Preferences 22 through a Git version control repository at http://fiji.sc/guide.git. Given ImageJ’s heavy development this guide will always remain incomplete. All Im- ageJ users and developers are encouraged to contribute to the ImageJ documentation III Extending ImageJ resources (see Getting Involved).
    [Show full text]
  • Open Source Software Examples
    Open Source Software Examples metamereswagsUnilocular any Munroe whenbrewer Wynton gliffdisfiguring alphanumerically, classifies some downwards? reis and is Vincents enuring transcendenthis shabbiness and so unsatingdistractingly! enough? Peirce Is neverMarv Get a company sizes, on its frustration for sustaining innovators alike dive deep learning solutions that software open source examples of It does not follow that we ought to stop talking about these issues. Applications of open source software across all litter you further your TV is a modern Panasonic TV chances are it's fell open source Android at full heart. They will provide a commercial software examples of open source projects can be. However, drawings, then a JIRA ticket is automatically issued and assigned to the auditing staff. Join our social networks below and stay updated with latest contests, antivirus, mobile and web apps is our dream. How its never said, new, enterprise owners can save off on their payroll. Yes cash can build your own smartphone ZDNet. Indeed, almost a liability, cracking Apache does habitat give attackers the handicap to tenant or learn most files. Although this great source program can be installed on Windows, la plataforma puede ser de código abierto. Open source software is computer software that has a source code available to the general public for use as is or with modifications. Creative Commons recommends and uses free and open our software licenses for verge To position the cost Software Foundation's GNU General Public. It offers similar features like some reject the expensive tools on the market including various filters and effects, Linux was only run by eating handful of coders due to the deep of installation and the counsel of tweaking Linux systems required to run.
    [Show full text]
  • Java Digital Image Processing
    Java Digital Image Processing Java Digital Image Processing About the Tutorial This tutorial gives a simple and practical approach of implementing algorithms used in digital image processing. After completing this tutorial, you will find yourself at a moderate level of expertise, from where you can take yourself to next levels. Audience This reference has been prepared for the beginners to help them understand and implement the basic to advance algorithms of digital image processing in java. Prerequisites Before proceeding with this tutorial, you need to have a basic knowledge of digital image processing and Java programming language. Disclaimer & Copyright Copyright 2018 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected]. i Java Digital Image Processing Contents About the Tutorial ...................................................................................................................................
    [Show full text]
  • Enhancement of Tegra Tablet's Computational Performance by Geforce Desktop and Wifi
    ENHANCEMENT OF TEGRA TABLET'S COMPUTATIONAL PERFORMANCE BY GEFORCE DESKTOP AND WIFI Di Zhao The Ohio State University GPU Technology Conference 2014, March 24-27 2014, San Jose California 1 TEGRA-WIFI-GEFORCE Tegra tablet and Geforce desktop are one of the most popular home based computing platforms; Wifi is the most popular home networking platform; Wildly applied to entertainment, healthcare, gaming, etc; 1.1 DEVELOPMENT OF TEGRA AND GEFORCE Core GFLOPS (single) Tegra 4 CPU 4+1/GPU ~ 80 72 Tegra K1 CPU 4+1/192 ~ 180 CUDA core TITAN 2688 CUDA ~ 4500 core TITAN Z 5760 CUDA ~ 8000 core 1.2 DEVELOPMENT OF WIFI Protocol Theoretical Frequency (G) Release Date Speed (M) 802.11 1 − 2 2.4 1997-06 802.11a 6 − 54 5 1999-09 802.11b 1 − 11 2.4 1999-09 802.11g 6 − 54 2.4 2003-06 802.11n 15 − 150 2.4/5 2009-10 802.11ac < 866.7 5 2014-01 802.11ad < 6912 60 2012-12 IEEE 802.11 Network Standards THE PROBLEM Tegra has limited GFLOPS, when the applications exceed Tegra’s computational ability GFLOPS, what should we do? Mobile applications such as computer graphics or healthcare often result in heavy computation; Mobile applications have time constraints because user do not want to wait for seconds; Geforce has large GFLOPS, and Tegra can be supported by Geforce and Wifi? In this talk, experiences of Tegra-Wifi-Geforce are introduced, and an example of medical image is discussed; 2 SETUP DEVELOPMENT ENVIRONMENT FOR TEGRA-WIFI- GEFORCE Setup of Development Environment for Tegra Tablet; TestingWifi Device; Setup of Development for Geforce Desktop;
    [Show full text]