Bio-Formats Documentation Release 4.4.12

Total Page:16

File Type:pdf, Size:1020Kb

Bio-Formats Documentation Release 4.4.12 Bio-Formats Documentation Release 4.4.12 The Open Microscopy Environment September 23, 2014 CONTENTS I About Bio-Formats 2 1 Why Java? 4 2 Bio-Formats metadata processing 5 3 Help 6 3.1 Reporting a bug ................................................... 6 3.2 Troubleshooting ................................................... 7 4 Bio-Formats versions 9 4.1 Version history .................................................... 9 II User Information 24 5 Using Bio-Formats with ImageJ and Fiji 25 5.1 ImageJ ........................................................ 25 5.2 Fiji .......................................................... 26 5.3 Bio-Formats features in ImageJ and Fiji ....................................... 26 5.4 Installing Bio-Formats in ImageJ .......................................... 27 5.5 Using Bio-Formats to load images into ImageJ ................................... 29 5.6 Managing memory in ImageJ/Fiji using Bio-Formats ................................ 32 5.7 Upgrading the Bio-Formats importer for ImageJ to the latest trunk build ...................... 35 6 OMERO 40 7 Image server applications 41 7.1 BISQUE ....................................................... 41 7.2 OME Server ..................................................... 41 8 Libraries and scripting applications 44 8.1 Command line tools ................................................. 44 8.2 FARSIGHT ...................................................... 45 8.3 i3dcore ........................................................ 45 8.4 ImgLib ........................................................ 46 8.5 ITK .......................................................... 46 8.6 Qu for MATLAB ................................................... 47 8.7 Subimager ...................................................... 47 9 Numerical data processing applications 48 9.1 IDL .......................................................... 48 9.2 KNIME ........................................................ 48 9.3 MATLAB ...................................................... 48 9.4 VisAD ........................................................ 49 10 Visualization and analysis applications 50 10.1 Bitplane Imaris .................................................... 50 10.2 CellProfiler ...................................................... 50 10.3 Comstat2 ....................................................... 50 i 10.4 Endrov ........................................................ 51 10.5 FocalPoint ...................................................... 51 10.6 Graphic Converter .................................................. 51 10.7 Icy .......................................................... 52 10.8 imago ......................................................... 52 10.9 Iqm .......................................................... 52 10.10 Macnification ..................................................... 52 10.11 MIPAV ........................................................ 52 10.12 Vaa3D ........................................................ 53 10.13 VisBio ........................................................ 53 10.14 XuvTools ....................................................... 54 III Developer Documentation 55 11 Using Bio-Formats 56 11.1 An in-depth guide to using Bio-Formats ....................................... 56 11.2 Generating test images ................................................ 58 12 Bio-Formats as a Java library 60 12.1 API documentation .................................................. 60 12.2 Examples ....................................................... 61 13 Interfacing from non-Java code 71 13.1 Interfacing with Bio-Formats from non-Java code .................................. 71 13.2 Bio-Formats C++ bindings .............................................. 71 13.3 Build instructions for C++ bindings ......................................... 71 13.4 Building C++ bindings in Windows ......................................... 73 13.5 Building C++ bindings in Mac OS X ........................................ 74 13.6 Building C++ bindings in Linux ........................................... 75 14 SCIFIO 76 14.1 SCientific Imaging Formats Input and Output .................................... 76 15 Writing new Bio-Formats file format readers 77 15.1 Bio-Formats file format reader guide ........................................ 77 16 Contributing to Bio-Formats 81 16.1 Developing Bio-Formats ............................................... 81 16.2 Testing individual commits (internal developers) .................................. 82 16.3 Public test data .................................................... 83 16.4 Bio-Formats service and dependency infrastructure ................................. 86 IV Formats 89 17 Dataset Structure Table 91 17.1 Flex Support ..................................................... 94 18 Supported Formats 95 18.1 3i SlideBook ..................................................... 100 18.2 Andor Bio-Imaging Division (ABD) TIFF ..................................... 101 18.3 AIM ......................................................... 101 18.4 Alicona 3D ...................................................... 102 18.5 Amersham Biosciences Gel ............................................. 103 18.6 Amira Mesh ..................................................... 103 18.7 Analyze 7.5 ...................................................... 104 18.8 Animated PNG .................................................... 105 18.9 Aperio SVS TIFF ................................................... 105 18.10 Applied Precision CellWorX ............................................. 106 18.11 AVI (Audio Video Interleave) ............................................ 107 18.12 Axon Raw Format .................................................. 108 ii 18.13 BD Pathway ..................................................... 108 18.14 Becker & Hickl SPCImage .............................................. 109 18.15 Bio-Rad Gel ..................................................... 110 18.16 Bio-Rad PIC ..................................................... 110 18.17 Bitplane Imaris .................................................... 111 18.18 Bruker MRI ..................................................... 112 18.19 Burleigh ....................................................... 113 18.20 Canon DNG ..................................................... 114 18.21 Cellomics ....................................................... 114 18.22 cellSens VSI ..................................................... 115 18.23 DeltaVision ...................................................... 116 18.24 DICOM ........................................................ 117 18.25 ECAT7 ........................................................ 118 18.26 EPS (Encapsulated PostScript) ............................................ 118 18.27 Evotec/PerkinElmer Opera Flex ........................................... 119 18.28 FEI .......................................................... 120 18.29 FEI TIFF ....................................................... 120 18.30 FITS (Flexible Image Transport System) ...................................... 121 18.31 Gatan Digital Micrograph .............................................. 122 18.32 Gatan Digital Micrograph 2 ............................................. 122 18.33 GIF (Graphics Interchange Format) ......................................... 123 18.34 Hamamatsu Aquacosmos NAF ............................................ 124 18.35 Hamamatsu HIS ................................................... 125 18.36 Hamamatsu ndpi ................................................... 125 18.37 Hamamatsu VMS .................................................. 126 18.38 Hitachi S-4800 .................................................... 127 18.39 ICS (Image Cytometry Standard) .......................................... 127 18.40 Imacon ........................................................ 128 18.41 ImagePro Sequence ................................................. 129 18.42 ImagePro Workspace ................................................. 130 18.43 IMAGIC ....................................................... 130 18.44 IMOD ........................................................ 131 18.45 Improvision Openlab LIFF .............................................. 132 18.46 Improvision Openlab Raw .............................................. 133 18.47 Improvision TIFF .................................................. 133 18.48 InCell 1000 ...................................................... 134 18.49 InCell 3000 ...................................................... 135 18.50 INR .......................................................... 136 18.51 IPLab ......................................................... 136 18.52 IPLab-Mac ...................................................... 137 18.53 JEOL ......................................................... 138 18.54 JPEG ......................................................... 138 18.55 JPEG 2000 ...................................................... 139 18.56 JPK .......................................................... 140 18.57 JPX .......................................................... 141 18.58 Khoros VIFF (Visualization Image File Format) Bitmap .............................. 141 18.59 Kodak BIP ...................................................... 142 18.60 Lambert Instruments FLIM ............................................. 143 18.61 Leica LCS LEI
Recommended publications
  • Management of Large Sets of Image Data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak
    Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak Download free books at Karol Kozak Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Download free eBooks at bookboon.com 2 Management of large sets of image data: Capture, Databases, Image Processing, Storage, Visualization 1st edition © 2014 Karol Kozak & bookboon.com ISBN 978-87-403-0726-9 Download free eBooks at bookboon.com 3 Management of large sets of image data Contents Contents 1 Digital image 6 2 History of digital imaging 10 3 Amount of produced images – is it danger? 18 4 Digital image and privacy 20 5 Digital cameras 27 5.1 Methods of image capture 31 6 Image formats 33 7 Image Metadata – data about data 39 8 Interactive visualization (IV) 44 9 Basic of image processing 49 Download free eBooks at bookboon.com 4 Click on the ad to read more Management of large sets of image data Contents 10 Image Processing software 62 11 Image management and image databases 79 12 Operating system (os) and images 97 13 Graphics processing unit (GPU) 100 14 Storage and archive 101 15 Images in different disciplines 109 15.1 Microscopy 109 360° 15.2 Medical imaging 114 15.3 Astronomical images 117 15.4 Industrial imaging 360° 118 thinking. 16 Selection of best digital images 120 References: thinking. 124 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
    [Show full text]
  • Bio-Formats Documentation Release 4.4.9
    Bio-Formats Documentation Release 4.4.9 The Open Microscopy Environment October 15, 2013 CONTENTS I About Bio-Formats 2 1 Why Java? 4 2 Bio-Formats metadata processing 5 3 Help 6 3.1 Reporting a bug ................................................... 6 3.2 Troubleshooting ................................................... 7 4 Bio-Formats versions 9 4.1 Version history .................................................... 9 II User Information 23 5 Using Bio-Formats with ImageJ and Fiji 24 5.1 ImageJ ........................................................ 24 5.2 Fiji .......................................................... 25 5.3 Bio-Formats features in ImageJ and Fiji ....................................... 26 5.4 Installing Bio-Formats in ImageJ .......................................... 26 5.5 Using Bio-Formats to load images into ImageJ ................................... 28 5.6 Managing memory in ImageJ/Fiji using Bio-Formats ................................ 32 5.7 Upgrading the Bio-Formats importer for ImageJ to the latest trunk build ...................... 34 6 OMERO 39 7 Image server applications 40 7.1 BISQUE ....................................................... 40 7.2 OME Server ..................................................... 40 8 Libraries and scripting applications 43 8.1 Command line tools ................................................. 43 8.2 FARSIGHT ...................................................... 44 8.3 i3dcore ........................................................ 44 8.4 ImgLib .......................................................
    [Show full text]
  • Bio-Formats Documentation Release 5.2.2
    Bio-Formats Documentation Release 5.2.2 The Open Microscopy Environment September 12, 2016 CONTENTS I About Bio-Formats 2 1 Help 4 2 Bio-Formats versions 5 3 Why Java? 6 4 Bio-Formats metadata processing 7 4.1 Reporting a bug ................................................... 7 4.2 Version history .................................................... 8 II User Information 38 5 Using Bio-Formats with ImageJ and Fiji 39 5.1 ImageJ overview ................................................... 39 5.2 Fiji overview ..................................................... 41 5.3 Bio-Formats features in ImageJ and Fiji ....................................... 42 5.4 Installing Bio-Formats in ImageJ .......................................... 42 5.5 Using Bio-Formats to load images into ImageJ ................................... 44 5.6 Managing memory in ImageJ/Fiji using Bio-Formats ................................ 48 6 Command line tools 51 6.1 Command line tools introduction .......................................... 51 6.2 Displaying images and metadata ........................................... 52 6.3 Converting a file to different format ......................................... 54 6.4 Validating XML in an OME-TIFF .......................................... 56 6.5 Editing XML in an OME-TIFF ........................................... 57 6.6 List formats by domain ................................................ 58 6.7 List supported file formats .............................................. 58 6.8 Display file in ImageJ ...............................................
    [Show full text]
  • Imagej User Guide Contents Release Notes for Imagej 1.46R Vii IJ 1.46R Noteworthy Viii
    RevisedIJ 1.46r edition ImageJ UserUser Guide Guide ImageJImageJ/Fiji 1.46 ImageJ User Guide Contents Release Notes for ImageJ 1.46r vii IJ 1.46r Noteworthy viii Tiago Ferreira • Wayne Rasband IJ User Guide | Booklet 1 Macro Listings ix Conventions x I Getting Started 1 Introduction 1 2 Installing and Maintaining ImageJ2 2.1 ImageJDistributions.................................. 2 2.2 Related Software ................................... 3 2.3 ImageJ2 ........................................ 5 3 Getting Help5 3.1 Help on Image Analysis................................ 5 3.2 Help on ImageJ.................................... 6 II Working with ImageJ 4 Using Keyboard Shortcuts8 5 Finding Commands8 6 Undo and Redo9 7 Image Types and Formats 10 Tuesday 2nd October, 2012 8 Stacks, Virtual Stacks and Hyperstacks 12 9 Color Images 14 10 Selections 17 Foreword 10.1 Manipulating ROIs .................................. 18 10.2 Composite Selections................................. 19 The ImageJ User Guide provides a detailed overview of ImageJ (and inherently Fiji), 10.3 Selections With Sub-pixel Coordinates ....................... 19 the standard in scientific image analysis (see XXVI Focus on Bioimage Informatics). It was thought as a comprehensive, fully-searchable, self-contained, annotatable 11 Overlays 19 manual (see Conventions Used in this Guide). A HTML version is also available as 12 3D Volumes 21 well as printer-friendly booklets (see Guide Formats). Its latest version can always be obtained from http://imagej.nih.gov/ij/docs/guide. The source files are available 13 Settings and Preferences 22 through a Git version control repository at http://fiji.sc/guide.git. Given ImageJ’s heavy development this guide will always remain incomplete. All Im- ageJ users and developers are encouraged to contribute to the ImageJ documentation III Extending ImageJ resources (see Getting Involved).
    [Show full text]
  • Java Digital Image Processing
    Java Digital Image Processing Java Digital Image Processing About the Tutorial This tutorial gives a simple and practical approach of implementing algorithms used in digital image processing. After completing this tutorial, you will find yourself at a moderate level of expertise, from where you can take yourself to next levels. Audience This reference has been prepared for the beginners to help them understand and implement the basic to advance algorithms of digital image processing in java. Prerequisites Before proceeding with this tutorial, you need to have a basic knowledge of digital image processing and Java programming language. Disclaimer & Copyright Copyright 2018 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected]. i Java Digital Image Processing Contents About the Tutorial ...................................................................................................................................
    [Show full text]
  • Enhancement of Tegra Tablet's Computational Performance by Geforce Desktop and Wifi
    ENHANCEMENT OF TEGRA TABLET'S COMPUTATIONAL PERFORMANCE BY GEFORCE DESKTOP AND WIFI Di Zhao The Ohio State University GPU Technology Conference 2014, March 24-27 2014, San Jose California 1 TEGRA-WIFI-GEFORCE Tegra tablet and Geforce desktop are one of the most popular home based computing platforms; Wifi is the most popular home networking platform; Wildly applied to entertainment, healthcare, gaming, etc; 1.1 DEVELOPMENT OF TEGRA AND GEFORCE Core GFLOPS (single) Tegra 4 CPU 4+1/GPU ~ 80 72 Tegra K1 CPU 4+1/192 ~ 180 CUDA core TITAN 2688 CUDA ~ 4500 core TITAN Z 5760 CUDA ~ 8000 core 1.2 DEVELOPMENT OF WIFI Protocol Theoretical Frequency (G) Release Date Speed (M) 802.11 1 − 2 2.4 1997-06 802.11a 6 − 54 5 1999-09 802.11b 1 − 11 2.4 1999-09 802.11g 6 − 54 2.4 2003-06 802.11n 15 − 150 2.4/5 2009-10 802.11ac < 866.7 5 2014-01 802.11ad < 6912 60 2012-12 IEEE 802.11 Network Standards THE PROBLEM Tegra has limited GFLOPS, when the applications exceed Tegra’s computational ability GFLOPS, what should we do? Mobile applications such as computer graphics or healthcare often result in heavy computation; Mobile applications have time constraints because user do not want to wait for seconds; Geforce has large GFLOPS, and Tegra can be supported by Geforce and Wifi? In this talk, experiences of Tegra-Wifi-Geforce are introduced, and an example of medical image is discussed; 2 SETUP DEVELOPMENT ENVIRONMENT FOR TEGRA-WIFI- GEFORCE Setup of Development Environment for Tegra Tablet; TestingWifi Device; Setup of Development for Geforce Desktop;
    [Show full text]
  • Directions & Goals
    ImageJ2 Directions & Goals Strengths of ImageJ ● Cross-platform and public domain ● Macro language makes batch processing easy ● Wealth of existing image processing plugins ● Large science-oriented community of experts ● WSR: strong leader/maintainer/authority Weaknesses of ImageJ ● Grew organically over the past decade – Many technical issues (details later) – Code is “micro-optimized” ● Difficult for community to contribute to core – No source control – Everything goes through WSR ● As a result, fractured community efforts – Always difficult to overcome barriers to entry Specific Problems Problems: VisBio ● Limited support for large datasets – Image planes larger than 2GB – Datasets larger than available RAM – VirtualStacks cache only one plane at a time ● No support for 3D visualization – Volume rendering – Arbitrary slicing – Realtime animation ● Also needs better support for ROIs Problems: Slim Plotter ● No support for new dimensions – Emission spectra – Lifetime – Polarization ● No support for processing inherent to viz – Exponential curve fitting – Spectral unmixing Problems: Fiji ● Distributing plugins is external to ImageJ ● Keeping everything up to date is complex ● No standard for documenting plugins ● Not easy enough to prototype algorithms – Plugins require too much boilerplate code – No modular command framework for using Macro Recorder with scripts – Case logic for multiple pixel types is messy ● AWT dependencies preclude headless use Problems: TrakEM2 ● No support for displaying registered images – No display mechanism for multiple image tiles – No mechanism for transformation from data to display (e.g., affine) ● Regions of interest are limited – No vector-based ROIs (i.e., ROIs are bitmasks) – Multiple ROIs are tacked on (ROI Manager) – Confusing interplay between ROIs, masks & thresholds with measurement tools Problems: ROIs (Michael Doube) ● Recently I've been frustrated by ROI's being limited to 2D.
    [Show full text]
  • Bioimage Informatics in the Context of Drosophila Research
    Methods xxx (2014) xxx–xxx Contents lists available at ScienceDirect Methods journal homepage: www.elsevier.com/locate/ymeth Bioimage Informatics in the context of Drosophila research ⇑ Florian Jug a,1, Tobias Pietzsch a,1, Stephan Preibisch b,c, Pavel Tomancak a, a Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany b Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA c Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA article info abstract Article history: Modern biological research relies heavily on microscopic imaging. The advanced genetic toolkit of Received 25 February 2014 Drosophila makes it possible to label molecular and cellular components with unprecedented level of Revised 2 April 2014 specificity necessitating the application of the most sophisticated imaging technologies. Imaging in Dro- Accepted 4 April 2014 sophila spans all scales from single molecules to the entire populations of adult organisms, from electron Available online xxxx microscopy to live imaging of developmental processes. As the imaging approaches become more com- plex and ambitious, there is an increasing need for quantitative, computer-mediated image processing Keywords: and analysis to make sense of the imagery. Bioimage Informatics is an emerging research field that covers Image analysis all aspects of biological image analysis from data handling, through processing, to quantitative measure- Registration Processing ments, analysis and data presentation. Some of the most advanced, large scale projects, combining Segmentation cutting edge imaging with complex bioimage informatics pipelines, are realized in the Drosophila Tracking research community. In this review, we discuss the current research in biological image analysis specif- Drosophila ically relevant to the type of systems level image datasets that are uniquely available for the Drosophila model system.
    [Show full text]
  • Free and Open Source Software
    Free and open source software Copyleft ·Events and Awards ·Free software ·Free Software Definition ·Gratis versus General Libre ·List of free and open source software packages ·Open-source software Operating system AROS ·BSD ·Darwin ·FreeDOS ·GNU ·Haiku ·Inferno ·Linux ·Mach ·MINIX ·OpenSolaris ·Sym families bian ·Plan 9 ·ReactOS Eclipse ·Free Development Pascal ·GCC ·Java ·LLVM ·Lua ·NetBeans ·Open64 ·Perl ·PHP ·Python ·ROSE ·Ruby ·Tcl History GNU ·Haiku ·Linux ·Mozilla (Application Suite ·Firefox ·Thunderbird ) Apache Software Foundation ·Blender Foundation ·Eclipse Foundation ·freedesktop.org ·Free Software Foundation (Europe ·India ·Latin America ) ·FSMI ·GNOME Foundation ·GNU Project ·Google Code ·KDE e.V. ·Linux Organizations Foundation ·Mozilla Foundation ·Open Source Geospatial Foundation ·Open Source Initiative ·SourceForge ·Symbian Foundation ·Xiph.Org Foundation ·XMPP Standards Foundation ·X.Org Foundation Apache ·Artistic ·BSD ·GNU GPL ·GNU LGPL ·ISC ·MIT ·MPL ·Ms-PL/RL ·zlib ·FSF approved Licences licenses License standards Open Source Definition ·The Free Software Definition ·Debian Free Software Guidelines Binary blob ·Digital rights management ·Graphics hardware compatibility ·License proliferation ·Mozilla software rebranding ·Proprietary software ·SCO-Linux Challenges controversies ·Security ·Software patents ·Hardware restrictions ·Trusted Computing ·Viral license Alternative terms ·Community ·Linux distribution ·Forking ·Movement ·Microsoft Open Other topics Specification Promise ·Revolution OS ·Comparison with closed
    [Show full text]
  • Signature Redacted Author
    Algorithm Deployment Platform by Tylor Hess B.S. Mechanical Engineering, Massachusetts Institute of Technology (2010) Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of MASSACHUSETTS INSTITUTE OF TECHNOLOGY Master of Science in Mechanical Engineering JUN 0 2 2016 at the LIBRARIES MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARCHWES June 2016 C Massachusetts Institute of Technology 2016. All rights reserved. / j1 il/ Signature redacted Author .... V,! Tylor J. Hess Department of Mechanical Engineering May 20, 2012 Signature redacted . Certified by ......... Brian W. Anthony PrinciatResearch Scientist, Department of Mechanical Engineering Thesis Supervisor Signature redacted A ccepted by ....................................................... .... .............. Rohan Abeyaratne Professor, Department of Mechanical Engineering Graduate Officer 1 Algorithm Deployment Platform by Tylor Hess Submitted to the Department of Mechanical Engineering on May 20, 2016, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Abstract Algorithm users, such as researchers, clinicians, engineers, and scientists, want to run advanced, custom, new research algorithms. For example, doctors want to run algorithms developed by researchers for clinical applications. These algorithm users see an algorithm as a black box. They want to input data and get results without having to understand the intricacies of algorithm implementation and without having to download, install, configure, and debug complex software. We refer to these algorithm users as black-box users. Researchers and developers create the algorithms; therefore they understand the algorithms' inner workings. We refer to these algorithm developers as glass-box users. There is a need for a platform or technology that allows algorithm developers to efficiently deploy algorithms.
    [Show full text]
  • An Extensible and Portable Open Source Application for Image and Signal Analysis in Java
    Research Collection Journal Article IQM: An Extensible and Portable Open Source Application for Image and Signal Analysis in Java Author(s): Kainz, Philipp; Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut Publication Date: 2015-01-22 Permanent Link: https://doi.org/10.3929/ethz-b-000112394 Originally published in: PLoS ONE 10(1), http://doi.org/10.1371/journal.pone.0116329 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library RESEARCH ARTICLE IQM: An Extensible and Portable Open Source Application for Image and Signal Analysis in Java Philipp Kainz, Michael Mayrhofer-Reinhartshuber, Helmut Ahammer* Institute of Biophysics, Center for Physiological Medicine, Medical University of Graz, Graz, Austria * [email protected] Abstract Image and signal analysis applications are substantial in scientific research. Both open source and commercial packages provide a wide range of functions for image and signal analysis, which are sometimes supported very well by the communities in the correspond- ing fields. Commercial software packages have the major drawback of being expensive and having undisclosed source code, which hampers extending the functionality if there is no plugin interface or similar option available. However, both variants cannot cover all possible OPEN ACCESS use cases and sometimes custom developments are unavoidable, requiring open source Citation: Kainz P, Mayrhofer-Reinhartshuber M, applications. In this paper we describe IQM, a completely free, portable and open source Ahammer H (2015) IQM: An Extensible and Portable Open Source Application for Image and Signal (GNU GPLv3) image and signal analysis application written in pure Java.
    [Show full text]
  • 3D Visualization and Analysis J
    3D Visualization and Analysis J. L. Clendenon Aeon Imaging LLC Data flow through the 3D imaging pipeline People involved in image-based research must perform several tasks: image acquisition, processing, rendering, segmentation, and measurement. Image Image Volume Acquisition Processing Rendering Segmentation Quantitative Analysis Visual Analysis Measurements (numerical) (qualitative) 3D imaging software includes modules to perform one or more of these tasks Image Acquisition The starting point for 3D image processing and analysis is usually some form of cross-sectional image acquisition system. Image Image Volume Acquisition Processing Rendering Segmentation Measurements In cross-sectional imaging, parallel planar (2D) images from various levels within a 3D specimen are collected… Cross‐Sectional Image Acquisition Several imaging technologies have been developed over the years that can produce cross-sectional images, such as CT and MR in radiological imaging, and confocal and two-photon techniques in optical microscopy. Computed Tomography Magnetic Resonance Blockface e.g. Visible Human Project [1994], cross sections of human head. http://www.nlm.nih.gov/research/visible/visible_human.html Optical Microscopes have limited Depth‐of‐Field This makes it difficult to study thick specimens Structures closer to the focal plane are more in focus than structures farther away from the focal plane Extended Depth‐of‐Field But you can create a projection image with extended depth‐of‐field Use software to create a composite image (e.g. weighted average) of just the in‐focus portions of ALL of the images in the z stack (e.g. used plugin for ImageJ from http://bigwww.epfl.ch/demo/edf) Confocal microscopes have smaller depth‐of‐field e.g.
    [Show full text]