1 a Model of ̅ Annihilation in Experimental Searches For

Total Page:16

File Type:pdf, Size:1020Kb

1 a Model of ̅ Annihilation in Experimental Searches For 1 A model of 풏̅ annihilation in experimental searches for 풏 → 풏̅ transformations E. S. Golubeva1, J. L. Barrow2, C. G. Ladd2 1Institute for Nuclear Research, Russian Academy of Sciences, Prospekt 60-letiya Oktyabrya 7a, Moscow, 117312, Russia 2University of Tennessee, Department of Physics, 401 Nielsen Physics Building, 1408 Circle Drive, Knoxville, TN 37996, USA Searches for baryon number violation, including searches for proton decay and neutron-antineutron transformation (푛 → 푛̅), are expected to play an important role in the evolution of our understanding of beyond Standard Model physics. The 푛 → 푛̅ is a key prediction of certain popular theories of baryogenesis, and the experiments such as the Deep Underground Neutrino Experiment and the European Spallation Source plan to search for this process with bound- and free-neutron systems. Accurate simulation of this process in Monte Carlo will be important for the proper reconstruction and separation of these rare events from background. This article presents developments towards accurate simulation of the annihilation 12 process for use in a cold, free neutron beam for 푛 → 푛̅ searches from 푛̅퐶 annihilation, as 6퐶 is the target of choice for the European Spallation Source’s NNBar Collaboration. Initial efforts are also made in this 40 paper to perform analogous studies for intra-nuclear transformation searches in 18퐴푟 nuclei. 12 I. INTRODUCTION being allowed to hit a target of carbon ( 6퐶) foil A. Background (with a thickness of ~130 휇푚). This foil would have absorbed antineutrons, resulting in matter- As early as 1967, A. D. Sakharov pointed out [1] antimatter annihilation which was expected to that for the explanation of the Baryon Asymmetry yield a signal with a star-like topology made of of the Universe (BAU) there should exist several pions. Particle detectors and calorimeters interactions in which baryonic charge is violated surrounded the target to record such annihilation besides mere departures from thermal events, and was capable of reconstructing the equilibrium and 퐶푃 symmetry. Thus, vertex of the pion-star within the central plane of experimental searches for baryon number (퐵) the 12퐶 foil along with the visible energy. In total, violating processes, and in particular the baryon 6 the target received ~3 × 1018 neutrons, with no minus lepton (퐵 − 퐿) number violating process of recorded annihilation events, i.e. with zero neutron—antineutron oscillation (푛 → 푛̅), are of background. This was due to an analysis scheme great importance due to their possible requiring two or more tracks (푛̅-annihilation or connections to the explanations of the observed background-produced mesons, or their decay matter-antimatter asymmetry of the universe—as products) to be reconstructed in the detector as first laid out by V. A. Kuzmin [2] and followed in emanating from the 12퐶 foil. As a result, the developments by many authors, see e.g. recent 6 oscillation limit for free neutrons was established reviews [3-5]. to be Thus, the search for 푛 → 푛̅, along with nucleon 8 ( ) decay, remains one of the most important areas of 휏푛→푛̅ ≥ 0.86 × 10 푠. 1 modern physics, hopefully leading to an In the last two decades since obtaining this result, understanding of phenomena related to the BAU. there have been significant technological developments within the field which have The best lower limit on a measurement of the permitted the planning of another transformation oscillation period with free neutrons, 휏 , was 푛→푛̅ experiment, recently proposed at the currently attained at a reactor at the Institut Laue-Langevin under construction European Spallation Source (ILL) [6] in Grenoble, France, with a cold neutron (ESS) [5,7,8]. According to preliminary beam. These neutrons flew through an evacuated, estimates, such an experiment could explore this magnetically shielded pipe of 76 푚 in length process with 2 − 3 orders of magnitude higher (corresponding to a flight time of ~0.1 푠), until sensitivity than in [6], leading next generation 2 free neutron experiments to be sensitive to improvement in the separation of signal to 9 10 oscillation time range 휏푛→푛̅~10 − 10 푠. background in new experiments, it will be possible to improve the appearance limit, but Another way to detect 푛 → 푛̅ is through intra- impossible to claim any real discovery. This nuclear searches, and discovery is tantalizing contrasts the tantalizing figure that future possible. Searches for 휏푛→푛̅ can be performed in experiments in large underground detectors could experiments with large underground detectors improve the restrictions on processes where looking for any hints of the instability of matter. Δ퐵 = ±2 up to ~1033 − 1035 푦푟푠 [5] in the Within the nucleus, spontaneous 푛̅ production absence of background. An experiment possibly would lead to annihilation with another capable of such a search for 푛 → 푛̅ within the neighboring nucleon, resulting in the release of 40퐴푟 nucleus is currently under construction, ~2 퐺푒푉 of total energy. However, such intra- 18 using large liquid argon (40퐴푟) time projection nuclear transformations are significantly 18 chamber: the Deep Underground Neutrino suppressed compared to 푛 → 푛̅ in vacuum [5,9- Experiment (DUNE) [20]. 13]. The limit on the 푛 → 푛̅ intra-nuclear transformation time (in matter) 휏푚 is associated Whether or not 푛 → 푛̅ is definitively observed with the square of the free transformation time [5] above background in intra-nuclear experiments through a dimensional suppression factor, 푅: depends critically upon the separability of signal from background and the energy scale at which 2 ( ) 휏푚 = 푅 ⋅ 휏푛→푛̅ 2 the new BSM mechanism will appear. In the case In the nucleus, this suppression is due to of an observation in intra-nuclear experiments the differences between the neutron and antineutron results will be of great importance for the nuclear potentials; however, in high mass understanding of fundamental properties of detectors, this suppression can be compensated matter, along with building a precise theoretical by the large number of neutrons available for model describing these properties. Although in investigation within the large detector volume. A the free neutron search [6] no background was number of nucleon decay search collaborations detected, the question of background separation have been involved in the search for 푛 → 푛̅ in might become essential with the planned increase nuclei, such as Frejus [14] and Soudan-2 [15] in in sensitivity in searches using both free neutrons 56 produced by spallation and bound neutrons in 26퐹푒, and IMB [16], Kamiokande [17], and 16 underground experiments, meriting further study Super-Kamiokande (SK) [18] in 8푂; there has also been a deuteron search performed at SNO beyond this work. [19]. In the Soudan-2 experiment, there is a limit Thus, one requires detailed information about the on the transformation time in iron nuclei of 휏퐹푒 ≥ processes during the annihilation of slow 7.2 × 1031 푦푟푠 [15], which is in line with the antineutrons on nuclei. The purpose of this work limit for the free transformation time of 휏푛→푛̅ ≥ is to create a model describing the annihilation of 8 12 1.3 × 10 푠. In SK, which extracted 24 푛 → 푛̅ a slow antineutron incident upon a 6퐶 nucleus candidate events while expecting a background for the upcoming transformation experiment count of 24.1 atmospheric neutrino events, these using a free neutron beam at ESS. Also, the first 32 limits were 휏푂 ≥ 1.9 × 10 푦푟푠 [18] and steps have also been taken towards a full, realistic 8 휏푛→푛̅ ≥ 2.7 × 10 푠, respectively. simulation of the annihilation resulting from 푛 → 푛̅ within 40퐴푟 nuclei for DUNE. The prevalence of background within SK and 18 other large underground detectors, possibly B. Past simulation for free and bound shrouding a true event, prioritizes the rigorous 풏 → 풏̅ searches modeling of both signal and background within an intra-nuclear context. Without any significant 3 In general, the experiment requires maximum C. This work and its goals efficiency for detection and reconstruction of Our goal is to create an adequately accurate incredibly rare antineutrons to be separated from generator, one which can serve as a platform to background. The development of Monte Carlo be used within all free and intra-nuclear 푛 → 푛̅ (MC) generators for 푛 → 푛̅ searches is not new, experiments. In this article, we present the main and has been an integral part of all past framework and approaches underlying the model, experiments. Sadly, the descriptions of these wherein the annihilation of an antineutron on the MCs, as known, are not always complete or target nucleus is considered to consist of several seemingly consistent, and are not easily sequential and independent stages. We use the accessible. Information about the generator approach originally undertaken in [24,25]. developed for the ILL experiment [6] is few and far between, unavailable [21], and lacking [22] in In the first stage of this approach, one defines the detailed explanation. absorption point of an antineutron by the nucleus in the framework of the optical model. Our Intra-nuclear searches have been completed far modeling was performed for more times than free neutron experiments, and so 10 푚푒푉 12 their accompanying generators are similarly antineutrons incident upon a 6퐶 nucleus [24,25]. 40 abundant. Never-the-less, many of their For 18퐴푟, 푛 → 푛̅ is assumed to occur within the descriptions are scattered throughout a multitude nucleus, where the nucleons have some Fermi of dissertations and are poorly defended within motion, and the present paper shows some first published works. Similarly, open access to these steps in this direction; the process of 푛 → 푛̅ 40 simulations is lacking. For instance, SK [18] cites within 18퐴푟 will be the focus of our future work. only three works in reference to their generator, After the point of these quite different initial one of which is a previous work of this paper’s conditions, all of the following stages of the 12 40 lead author, and two of which contain rather process for both 6퐶 and 18퐴푟 do not differ and ancient antiproton annihilation data; how exactly are considered within a unified approach.
Recommended publications
  • 1.1. Introduction the Phenomenon of Positron Annihilation Spectroscopy
    PRINCIPLES OF POSITRON ANNIHILATION Chapter-1 __________________________________________________________________________________________ 1.1. Introduction The phenomenon of positron annihilation spectroscopy (PAS) has been utilized as nuclear method to probe a variety of material properties as well as to research problems in solid state physics. The field of solid state investigation with positrons started in the early fifties, when it was recognized that information could be obtained about the properties of solids by studying the annihilation of a positron and an electron as given by Dumond et al. [1] and Bendetti and Roichings [2]. In particular, the discovery of the interaction of positrons with defects in crystal solids by Mckenize et al. [3] has given a strong impetus to a further elaboration of the PAS. Currently, PAS is amongst the best nuclear methods, and its most recent developments are documented in the proceedings of the latest positron annihilation conferences [4-8]. PAS is successfully applied for the investigation of electron characteristics and defect structures present in materials, magnetic structures of solids, plastic deformation at low and high temperature, and phase transformations in alloys, semiconductors, polymers, porous material, etc. Its applications extend from advanced problems of solid state physics and materials science to industrial use. It is also widely used in chemistry, biology, and medicine (e.g. locating tumors). As the process of measurement does not mostly influence the properties of the investigated sample, PAS is a non-destructive testing approach that allows the subsequent study of a sample by other methods. As experimental equipment for many applications, PAS is commercially produced and is relatively cheap, thus, increasingly more research laboratories are using PAS for basic research, diagnostics of machine parts working in hard conditions, and for characterization of high-tech materials.
    [Show full text]
  • Electron - Positron Annihilation
    Electron - Positron Annihilation γ µ K Z − − − + + + − − − + + + − − − − + + + − − − + + + + W ν h π D. Schroeder, 29 October 2002 OUTLINE • Electron-positron storage rings • Detectors • Reaction examples e+e− −→ e+e− [Inventory of known particles] e+e− −→ µ+µ− e+e− −→ q q¯ e+e− −→ W +W − • The future:Linear colliders Electron-Positron Colliders Hamburg Novosibirsk 11 GeV 12 GeV 47 GeV Geneva 200 GeV Ithaca Tokyo Stanford 12 GeV 64 GeV 8 GeV 12 GeV 30 GeV 100 GeV Beijing 12 GeV 4 GeV Size (R) and Cost ($) of an e+e− Storage Ring βE4 $=αR + ( E = beam energy) R d $ βE4 Find minimum $: 0= = α − dR R2 β =⇒ R = E2, $=2 αβ E2 α SPEAR: E = 8 GeV, R = 40 m, $ = 5 million LEP: E = 200 GeV, R = 4.3 km, $ = 1 billion + − + − Example 1: e e −→ e e e− total momentum = 0 θ − total energy = 2E e e+ Probability(E,θ)=? e+ E-dependence follows from dimensional analysis: density = ρ− A density = ρ+ − + × 2 Probability = (ρ− ρ+ − + A) (something with units of length ) ¯h ¯hc When E m , the only relevant length is = e p E 1 =⇒ Probability ∝ E2 at SPEAR Augustin, et al., PRL 34, 233 (1975) 6000 5000 4000 Ecm = 4.8 GeV 3000 2000 Number of Counts 1000 Theory 0 −0.8 −0.40 0.40.8 cos θ Prediction for e+e− −→ e+e− event rate (H. J. Bhabha, 1935): event dσ e4 1 + cos4 θ 2 cos4 θ 1 + cos2 θ ∝ = 2 − 2 + rate dΩ 32π2E2 4 θ 2 θ 2 cm sin 2 sin 2 Interpretation of Bhabha’sformula (R.
    [Show full text]
  • QCD at Colliders
    Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 10: QCD at Colliders !Renormalisation in QCD !Asymptotic Freedom and Confinement in QCD !Lepton and Hadron Colliders !R = (e+e!!hadrons)/(e+e!"µ+µ!) !Measuring Jets !Fragmentation 1 From Last Lecture: QCD Summary • QCD: Quantum Chromodymanics is the quantum description of the strong force. • Gluons are the propagators of the QCD and carry colour and anti-colour, described by 8 Gell-Mann matrices, !. • For M calculate the appropriate colour factor from the ! matrices. 2 2 • The coupling constant #S is large at small q (confinement) and large at high q (asymptotic freedom). • Mesons and baryons are held together by QCD. • In high energy collisions, jets are the signatures of quark and gluon production. 2 Gluon self-Interactions and Confinement , Gluon self-interactions are believed to give e+ q rise to colour confinement , Qualitative picture: •Compare QED with QCD •In QCD “gluon self-interactions squeeze lines of force into Gluona flux tube self-Interactions” ande- Confinementq , + , What happens whenGluon try self-interactions to separate two are believedcoloured to giveobjects e.g. qqe q rise to colour confinement , Qualitativeq picture: q •Compare QED with QCD •In QCD “gluon self-interactions squeeze lines of force into a flux tube” e- q •Form a flux tube, What of happensinteracting when gluons try to separate of approximately two coloured constant objects e.g. qq energy density q q •Require infinite energy to separate coloured objects to infinity •Form a flux tube of interacting gluons of approximately constant •Coloured quarks and gluons are always confined within colourless states energy density •In this way QCD provides a plausible explanation of confinement – but not yet proven (although there has been recent progress with Lattice QCD) Prof.
    [Show full text]
  • A Historical Review of the Discovery of the Quark and Gluon Jets
    EPJ manuscript No. (will be inserted by the editor) JETS AND QCD: A Historical Review of the Discovery of the Quark and Gluon Jets and its Impact on QCD⋆ A.Ali1 and G.Kramer2 1 DESY, D-22603 Hamburg (Germany) 2 Universit¨at Hamburg, D-22761 Hamburg (Germany) Abstract. The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review, which is primarily a description of the discovery of the quark and gluon jets and the impact of their obser- vation on Quantum Chromodynamics, we elaborate, in particular, the role of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e+e− collisions will be in the foreground of the discussion and we will concentrate on the theory that was contempo- rary with the relevant experiments at the electron-positron colliders. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/pp¯ collisions - quark and gluon densi- ties in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W ±, Z bosons on the electroweak sector.
    [Show full text]
  • Probing 23% of the Universe at the Large Hadron Collider
    Probing 23% of the Universe at the Large Hadron Collider Will Flanagan1 Advisor: Dr Teruki Kamon2 In close collaboration with Bhaskar Dutta2, Alfredo Gurrola2, Nikolay Kolev3, Tom Crockett2, Michael VanDyke2, and Abram Krislock2 1University of Colorado at Boulder, Cyclotron REU Program 2Texas A&M University 3University of Regina Introduction What is cosmologically significant about ‘focus Analysis With recent astronomical measurements, point’? We first decide which events we want to look for. χ~0 ~0 we know that 23% of the Universe is The 1is allowed to annihilate with itself since it is Since χ 1 is undetectable (otherwise it wouldn’t be ‘dark composed of dark matter, whose origin is its own antimatter particle. The χ~ 0 -χ~0 annihilation matter’!), we look for events with a 1 1 Red – Jet distribution unknown. Supersymmetry (SUSY), a leading cross section is typically too small (predicting a relic after MET cut large amount of missing transverse theory in particle physics, provides us with a cold dark χ~0 Z channel dark matter density that is too energy. Also, due to the nature of 1 u- matter candidate, the lightest supersymmetric particle Z0 large). The small µ of focus these decays (shown below) we also χ~0 (LSP). SUSY particles, including the LSP, can be 1 u point x require two energetic jets. 2 f 1 Ω ~0 ~h dx created at the Large Hadron Collider (LHC) at CERN. allows for a larger annihilation χ1 ∫ 0 σ v { ann g~ 2 energetic jets + 2 leptons We perform a systematic study to characterize the cross section for our dark 0.23 698 u- + MET 2 g~ SUSY signals in the "focus point" region, one of a few matter candidate by opening πα ~ u - σ annv = 2 u l cosmologically-allowed parameter regions in our SUSY up the ‘Z channel’ (pictured 321 8M χ~0 l+ 0.9 pb 2 ~+ model.
    [Show full text]
  • E+ E~ ANNIHILATION Hinrich Meyer, Fachbereich Physik, Universitдt
    - 155 - e+e~ ANNIHILATION Hinrich Meyer, Fachbereich Physik, Universität Wuppertal, Fed. Rep. Germany CONTENT INTRODUCTION 1. e+e~ STORAGE RINGS .1 Energy and Size .2 Luminosity .3 Energy range of one Ring .4 Energie resolution .5 Polarization 2. EXPERIMENTAL PROCEDURES .1 Storage Ring Detectors .2 Background .3 Luminosity Measurement .4 Radiative Corrections 3. QED-REACTIONS + . 1 e+e~ T T~ .2 e+e"+y+y~ . 3 e+e~ -»• e+e~ . 4 e+e_ •+y y 4. HADRON PRODUCTION IN e+e~ANNTHILATION .1 Total Cross Section .2 Average Event Properties .3 Two Jet Structure .4 Three Jet Structure .5 Gluon Properties - 156 - 5. SEARCH FOR NEW PARTICLES .1 Experimental Methods .2 Search for the sixth Flavor (t) .3 Properties of Q Q Resonances .4 New Leptons 6. YY ~ REACTIONS .1 General Properties .2 Resonance Production .3 £ for e,Y Scattering .4 Hard Scattering Processes .5 Photon Structure Function INTRODUCTION e+e storage rings have been proven to be an extremely fruitful techno• logical invention for particle physics. They were originally designed to provide stringent experimental tests of the theory of leptons and photons QED (Quantum-Electro-Dynamics). QED has passed these tests beautifully up to the highest energies (PETRA) so far achieved. The great successes of the e+e storage rings however are in the field of strong interaction physics. The list below gives a very brief overview of the historical development by quoting the highlights of physics results from e+e storage rings with the completion of storage rings of higher and higher energy (see Fig.1). YEAR
    [Show full text]
  • Model of N¯ Annihilation in Experimental Searches for N¯ Transformations
    PHYSICAL REVIEW D 99, 035002 (2019) Model of n¯ annihilation in experimental searches for n¯ transformations E. S. Golubeva,1 J. L. Barrow,2 and C. G. Ladd2 1Institute for Nuclear Research, Russian Academy of Sciences, Prospekt 60-letiya Oktyabrya 7a, Moscow, 117312, Russia 2University of Tennessee, Department of Physics, 401 Nielsen Physics Building, 1408 Circle Drive, Knoxville, Tennessee 37996, USA (Received 24 July 2018; published 5 February 2019) Searches for baryon number violation, including searches for proton decay and neutron-antineutron transformation (n → n¯), are expected to play an important role in the evolution of our understanding of beyond standard model physics. The n → n¯ is a key prediction of certain popular theories of baryogenesis, and experiments such as the Deep Underground Neutrino Experiment and the European Spallation Source plan to search for this process with bound- and free-neutron systems. Accurate simulation of this process in Monte Carlo will be important for the proper reconstruction and separation of these rare events from background. This article presents developments towards accurate simulation of the annihilation process for 12 use in a cold, free neutron beam for n → n¯ searches from nC¯ annihilation, as 6 C is the target of choice for the European Spallation Source’s NNBar Collaboration. Initial efforts are also made in this paper to 40 perform analogous studies for intranuclear transformation searches in 18Ar nuclei. DOI: 10.1103/PhysRevD.99.035002 I. INTRODUCTION evacuated, magnetically shielded pipe of 76 m in length (corresponding to a flight time of ∼0.1 s), until being A. Background 12 allowed to hit a target of carbon (6 C) foil (with a thickness As early as 1967, A.
    [Show full text]
  • Quark Annihilation and Lepton Formation Versus Pair Production and Neutrino Oscillation: the Fourth Generation of Leptons
    Volume 2 PROGRESS IN PHYSICS April, 2011 Quark Annihilation and Lepton Formation versus Pair Production and Neutrino Oscillation: The Fourth Generation of Leptons T. X. Zhang Department of Physics, Alabama A & M University, Normal, Alabama E-mail: [email protected] The emergence or formation of leptons from particles composed of quarks is still re- mained very poorly understood. In this paper, we propose that leptons are formed by quark-antiquark annihilations. There are two types of quark-antiquark annihilations. Type-I quark-antiquark annihilation annihilates only color charges, which is an incom- plete annihilation and forms structureless and colorless but electrically charged leptons such as electron, muon, and tau particles. Type-II quark-antiquark annihilation an- nihilates both electric and color charges, which is a complete annihilation and forms structureless, colorless, and electrically neutral leptons such as electron, muon, and tau neutrinos. Analyzing these two types of annihilations between up and down quarks and antiquarks with an excited quantum state for each of them, we predict the fourth gener- ation of leptons named lambda particle and neutrino. On the contrary quark-antiquark annihilation, a lepton particle or neutrino, when it collides, can be disintegrated into a quark-antiquark pair. The disintegrated quark-antiquark pair, if it is excited and/or changed in flavor during the collision, will annihilate into another type of lepton par- ticle or neutrino. This quark-antiquark annihilation and pair production scenario pro- vides unique understanding for the formation of leptons, predicts the fourth generation of leptons, and explains the oscillation of neutrinos without hurting the standard model of particle physics.
    [Show full text]
  • GLAST Science Glossary (PDF)
    GLAST SCIENCE GLOSSARY Source: http://glast.sonoma.edu/science/gru/glossary.html Accretion — The process whereby a compact object such as a black hole or neutron star captures matter from a normal star or diffuse cloud. Active galactic nuclei (AGN) — The central region of some galaxies that appears as an extremely luminous point-like source of radiation. They are powered by supermassive black holes accreting nearby matter. Annihilation — The process whereby a particle and its antimatter counterpart interact, converting their mass into energy according to Einstein’s famous formula E = mc2. For example, the annihilation of an electron and positron results in the emission of two gamma-ray photons, each with an energy of 511 keV. Anticoincidence Detector — A system on a gamma-ray observatory that triggers when it detects an incoming charged particle (cosmic ray) so that the telescope will not mistake it for a gamma ray. Antimatter — A form of matter identical to atomic matter, but with the opposite electric charge. Arcminute — One-sixtieth of a degree on the sky. Like latitude and longitude on Earth's surface, we measure positions on the sky in angles. A semicircle that extends up across the sky from the eastern horizon to the western horizon is 180 degrees. One degree, therefore, is not a very big angle. An arcminute is an even smaller angle, 1/60 as large as a degree. The Moon and Sun are each about half a degree across, or about 30 arcminutes. If you take a sharp pencil and hold it at arm's length, then the point of that pencil as seen from your eye is about 3 arcminutes across.
    [Show full text]
  • Electrical Engineering Dictionary
    ratio of the power per unit solid angle scat- tered in a specific direction of the power unit area in a plane wave incident on the scatterer R from a specified direction. RADHAZ radiation hazards to personnel as defined in ANSI/C95.1-1991 IEEE Stan- RS commonly used symbol for source dard Safety Levels with Respect to Human impedance. Exposure to Radio Frequency Electromag- netic Fields, 3 kHz to 300 GHz. RT commonly used symbol for transfor- mation ratio. radial basis function network a fully R-ALOHA See reservation ALOHA. connected feedforward network with a sin- gle hidden layer of neurons each of which RL Typical symbol for load resistance. computes a nonlinear decreasing function of the distance between its received input and Rabi frequency the characteristic cou- a “center point.” This function is generally pling strength between a near-resonant elec- bell-shaped and has a different center point tromagnetic field and two states of a quan- for each neuron. The center points and the tum mechanical system. For example, the widths of the bell shapes are learned from Rabi frequency of an electric dipole allowed training data. The input weights usually have transition is equal to µE/hbar, where µ is the fixed values and may be prescribed on the electric dipole moment and E is the maxi- basis of prior knowledge. The outputs have mum electric field amplitude. In a strongly linear characteristics, and their weights are driven 2-level system, the Rabi frequency is computed during training. equal to the rate at which population oscil- lates between the ground and excited states.
    [Show full text]
  • Accelerator Physics of Colliders
    1 31. Accelerator Physics of Colliders 31. Accelerator Physics of Colliders Revised August 2019 by M.J. Syphers (Northern Illinois U.; FNAL) and F. Zimmermann (CERN). This article provides background for the High-Energy Collider Parameter Tables that follow and some additional information. 31.1 Luminosity The number of events, Nexp, is the product of the cross section of interest, σexp, and the time integral over the instantaneous luminosity, L: Z Nexp = σexp × L(t)dt. (31.1) Today’s colliders all employ bunched beams. If two bunches containing n1 and n2 particles collide head-on with average collision frequency fcoll, a basic expression for the luminosity is n1n2 L = fcoll ∗ ∗ F (31.2) 4πσxσy ∗ ∗ where σx and σy characterize the rms transverse beam sizes in the horizontal (bend) and vertical directions at the interaction point, and F is a factor of order 1, that takes into account geometric effects such as a crossing angle and finite bunch length, and dynamic effects, such as the mutual focusing of the two beam during the collision. For a circular collider, fcoll equals the number of bunches per beam times the revolution frequency. In 31.2, it is assumed that the bunches are identical in transverse profile, that the profiles are Gaussian and independent of position along the bunch, and the particle distributions are not altered during bunch crossing. Nonzero beam crossing angles θc in the horizontal plane and long bunches (rms bunch length σz) will reduce the luminosity, 2 1/2 ∗ e.g., by a factor F ≈ 1/(1 + φ ) , where the parameter φ ≡ θcσz/(2σx) is known as the Piwinski angle.
    [Show full text]
  • English for Physics Chap.1. Glassary
    English for Physics 1/5 Chap.1. Glassary (Part 1) General and Math 0 Category 単語 Words Definitions/descriptions 1 General 電磁気学 electricity and magnetism 2 General 量子力学 quantum mechanics 3 General 統計力学 statistical mechanics 4 General 卒業論文 senior thesis 5 General 大学院生 graduate student 6 General 学部生 undergraduate student 7 General 理学研究科 Graduate School of Science 8 General 理学部 Faculty of Science 9 General 前期/後期 first semester/ second semester 10 General 経験則 empirical rule A rule derived from experiments or observations rather than theory. The smallest unit into which any substance is divided into without 11 Matter 分子 molecule losing its chemical nature, usually consisting of a group of atoms. The smallest part of an element that can exist, consisting of a small 12 Matter 原子 atom dense nucleus of protons and neutrons surrounded by orbiting electrons. 13 Matter 原子核 nucleus (pl. nuclei) The most massive part of an atom, consisting of protons and neutrons. A collective term for a proton or neutron, i.e. for a constituent of an 14 Matter 核子 nucleon atomic nucleus. 15 Matter 陽子 proton A positively charged nucleon. An elementary particle with zero charge and with rest mass nearly 16 Matter 中性子 neutron equal to that of a proton. A charge-neutral nucleon. A stable elementary particle whose negative charge -e defines an 17 Matter 電子 electron elementary unit of charge. 18 Matter 光子 photon A quantized particle of electromagnetic radiation (light). 19 Matter 水素 hydrogen An element whose atom consists of one proton and one electron. A table of chemical elements arranged in order of their atomic 20 Matter 元素の周期表 periodic table of the elements numbers.
    [Show full text]