QCD at Colliders

Total Page:16

File Type:pdf, Size:1020Kb

QCD at Colliders Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 10: QCD at Colliders !Renormalisation in QCD !Asymptotic Freedom and Confinement in QCD !Lepton and Hadron Colliders !R = (e+e!!hadrons)/(e+e!"µ+µ!) !Measuring Jets !Fragmentation 1 From Last Lecture: QCD Summary • QCD: Quantum Chromodymanics is the quantum description of the strong force. • Gluons are the propagators of the QCD and carry colour and anti-colour, described by 8 Gell-Mann matrices, !. • For M calculate the appropriate colour factor from the ! matrices. 2 2 • The coupling constant #S is large at small q (confinement) and large at high q (asymptotic freedom). • Mesons and baryons are held together by QCD. • In high energy collisions, jets are the signatures of quark and gluon production. 2 Gluon self-Interactions and Confinement , Gluon self-interactions are believed to give e+ q rise to colour confinement , Qualitative picture: •Compare QED with QCD •In QCD “gluon self-interactions squeeze lines of force into Gluona flux tube self-Interactions” ande- Confinementq , + , What happens whenGluon try self-interactions to separate two are believedcoloured to giveobjects e.g. qqe q rise to colour confinement , Qualitativeq picture: q •Compare QED with QCD •In QCD “gluon self-interactions squeeze lines of force into a flux tube” e- q •Form a flux tube, What of happensinteracting when gluons try to separate of approximately two coloured constant objects e.g. qq energy density q q •Require infinite energy to separate coloured objects to infinity •Form a flux tube of interacting gluons of approximately constant •Coloured quarks and gluons are always confined within colourless states energy density •In this way QCD provides a plausible explanation of confinement – but not yet proven (although there has been recent progress with Lattice QCD) Prof. M.A. Thomson •Require infinite Michaelmasenergy to 2011separate coloured objects to infinity 257 •Coloured quarks and gluons are always confined within colourless states •In this way QCD provides a plausible explanation of confinement – but not yet proven (although there has been recent progress with Lattice QCD) Prof. M.A. Thomson Michaelmas 2011 257 From HadronisationLast Lecture: and Jets Jets , •Consider a Considerquark and a quark anti-quark and anti-quark produced produced in electron in electron positron positron annihilation annihilation i) Initially Quarks separate at Hadronisationq q and Jets high velocity (i) Initially Quarks separate,Consider at a quark and anti-quarkq producedq in electron positron annihilation ii) Colour flux tube formsi) Initially Quarks separate at q q high velocitybetween quarks high velocity q q q q q q (ii) Colouriii) fluxEnergy tube stored forms inii) theColour flux tube forms flux tube sufficient betweento quarks q q betweenproduce quarksqq pairsiii) Energy stored in the q q flux tube sufficient to (iii) Energyiv) storedProcess continues in the produceflux tubeqq pairs until quarks pair sufficient to produceiv) Process qq ! pairs continues, up into jets of until quarks pair Might worry that coupling becomes colourless hadronsup into jets of infinite at (iv) Process continues untilcolourless quarks hadrons , This process is called hadronisation. It is not (yet) calculable. pair up into jets of, colourlessThis process is called hadronisation. It is not (yet) calculable. , The main consequence, is that at collider experiments quarks and gluons hadrons The main consequencei.e. isat that at collider experiments quarks and gluons observed as jets observedof particles as jets of particles e+ e+ q • Butq quantum gravity effects would come ! ! in way below this energy and it is “ ” OPAL Collaboration, Eur. Phys. J. C33 (2004) highly unlikely that QED as is would – be valid in this regime – e q q e Prof. M.A. Thomson Michaelmas 2011 258 Prof. M.A. Thomson , In MichaelmasQED, running 2011 coupling increases 258 This process is called hadronisationvery slowly. It is not (yet) calculable. • •Atomic physics: •The main consequence is that at collider experiments quarks and gluons observed as jets of particles•High energy physics: 3 Prof. M.A. Thomson Michaelmas 2011 277 Running Coupling Running of ! • Renormalisation effects QCD. The observeds (renormalised) value of the QCD Similar to QED but also have gluon loops coupling constant #S depends on diagrams such as: + + + +… Fermion Loop Boson Loops , Remembering adding amplitudesSimilar, so can to get QED negative interferenceNo equivalent and the insum QED, as no can be smaller than the original diagram alone photon-photon interactions • Bosonic, loopsBosonic interfere loops “interfere negatively negatively ”with the fermion loops. • #S can be written terms of the value at a reference scale µ: 2 2 αS(µ ) α (q )= = no. of colours S with 2 2 1+ αS (µ ) (11n 2n ) ln =q no. of quark flavours 12π C − f µ2 nC=3 is the number of colours • ! 2 Nobel! Prize" for Physics, 2004 S decreases with Q (Gross, Politzer, Wilczek) • nf=6Prof. is M.A. the Thomson number of quark flavoursMichaelmas 2011 278 • Conventional to choose a reference of !, defined by: ! ~ 220 MeV 12π ln Λ2 = ln µ2 − (11n 2n )α (µ2) C − f S 4 Running of #S 12π α (q2)= S 2 (11n 2n ) ln q C − f Λ2 This calculation won the Nobel! " Prize for Physics 2004 for Gross, Politzer and Wilczek •#S is found to decrease with increasing q2 "The more energetic the interaction 2 (high q ), the weaker #S. #S (q=mZ) ~ 0.12 Predicted shape of the running versus measurements "The less energetic the interaction 2 (low q ), the stronger #S. 2 2 #S (q =1 GeV ) ~ 1 5 Asymptotic Freedom and Confinement 2 2 • At high energy, q >> ! , #S is small, e.g. #S (q=mZ) ~ 0.12. "Quarks and gluons behave like free objects at high energy or short distances. "This is known as asymptotic freedom. "e.g. in electron-proton scattering with high q2 we found that we could consider the scattering from the individual quarks. "Use pertubation theory to calculate processes. However due to moderately large #S need to calculate the more than just the simplest diagrams. 2 4 "Leading order (#S ), Next-to-leading order (#S ), Next-to-next-to- 6 leading order (#S ) 2 2 • At low energy, q ~ ! , #S is large, e.g. #S (q=1 GeV) ~ 1. "Quarks and gluons are locked (confined) inside mesons and baryons. "Cannot use perturbation theory to obtain sensible results. "Many approaches to calculating QCD non-perturbatively, e.g. lattice QCD, MC techniques. 6 Gluon self-Interactions and Confinement , Gluon self-interactions are believed to give e+ q rise to colour confinement , Qualitative picture: •Compare QED with QCD •In QCD “gluon self-interactions squeeze lines of force into a flux tube”Colliders e- q , What happens when try to separate two coloured objects e.g. qq •Collider experimentsq collide beams of particlesq e.g. e+e!, pp,! e!p, pp Key •parametersForm a flux tube (see of interacting also lecture gluons of 4)approximately constant • energy density 2 •centre•Require of infinite mass energy energy: to separate √s = coloured(p aobjects+ pb to) infinity •Coloured quarks and gluons are always confined within colourless states •In this way QCD provides a plausible explanation! of confinement – but •Integratednot yet proven luminosity (although there"! dt has = !been # timerecent to progress run experiment with Lattice QCD) Prof. M.A. Thomson Michaelmas 2011 257 Hadronisation and Jets ,Consider a quark and anti-quark produced in electron positron annihilation i) Initially Quarks separate at q q high velocity q q ii) Colour flux tube forms between quarks iii) Energy stored in the q q q q flux tube sufficient to produce qq pairs 7 iv) Process continues until quarks pair 22 up into jets of Evidence for Gluons colourless hadrons , This process is called hadronisation+ ! . It isIn notQED (yet), electr calculable.ons can radiate photons. In QCD , The main consequence ise thate at collider!quarks hadronsexperimentscan radiate quarksgluons.and gluons observed as jets of particles + e q e+ q ! ! √α γ S g √α Qq√α e– q 1 - 2 Prof. M.A. Thomson Michaelmas 2011e q q 258 • Electromagnetic production of qq ! pair, strong1 interactions cause q and q ! to fragment into two jets giving an extra factor of in the matrix element, i.e. an extra factor of in cross • In CMP frameartic jetsle arePh producedysics back-to-back.section. Angular distribution (1+cos2"), sameIn asQED e+wee!"canµdetect+µ! the photons. In QCD we • never see free gluons due to confinement. Dr M.A. Thomson Experimentally detect gluons as an additional jet: 3-Jet Events. e+ q g √α γ S g √α q Qq√α 1 q e- q2 q ! Angular distribution of gluon jet depends on • Emission of a hard gluon in final stategluon givesspin three jets (rate measures #s) • Observation of three jet events is DrdirectM.A. Thomson evidence for gluons Lent 2004 8 Part II, Lent Term 2004 HANDOUT III Dr M.A. Thomson Lent 2004 Lepton Colliders PETRA: Positron-Elektron- LEP: Large Electron Positron Collider Tandem-Ring-Anlage • At CERN • The world’s highest energy e+e! collider, 27 km circumference. • LHC was built in LEP tunnel • Ran from 1989 to 2000 • Centre of mass energy, #s=89 to 206 GeV • Four experimental collision points: Aleph, Delphi, L3, Opal • Highlight: beautiful confirmation of the electroweak model • At DESY, Hamburg • ran 1978 to 1986 • e+e! collider, 2.3 km • #s = 14 to 46 GeV. • Two experimental collision points: TASSO and JADE. • Highlight: discovery of the gluon! 9 Jet Events at Lepton Colliders Two jet event from LEP Three jet event from LEP Three jet event from Petra 10 Gluon self-Interactions and Confinement , Gluon self-interactions are believed to give e+ q rise to colour confinement , Qualitative picture: •Compare QED with QCD •In QCD “gluon self-interactions squeeze lines of force into a flux tube” e- q , What happens when try to separate two coloured objects e.g.
Recommended publications
  • The Particle World
    The Particle World ² What is our Universe made of? This talk: ² Where does it come from? ² particles as we understand them now ² Why does it behave the way it does? (the Standard Model) Particle physics tries to answer these ² prepare you for the exercise questions. Later: future of particle physics. JMF Southampton Masterclass 22–23 Mar 2004 1/26 Beginning of the 20th century: atoms have a nucleus and a surrounding cloud of electrons. The electrons are responsible for almost all behaviour of matter: ² emission of light ² electricity and magnetism ² electronics ² chemistry ² mechanical properties . technology. JMF Southampton Masterclass 22–23 Mar 2004 2/26 Nucleus at the centre of the atom: tiny Subsequently, particle physicists have yet contains almost all the mass of the discovered four more types of quark, two atom. Yet, it’s composite, made up of more pairs of heavier copies of the up protons and neutrons (or nucleons). and down: Open up a nucleon . it contains ² c or charm quark, charge +2=3 quarks. ² s or strange quark, charge ¡1=3 Normal matter can be understood with ² t or top quark, charge +2=3 just two types of quark. ² b or bottom quark, charge ¡1=3 ² + u or up quark, charge 2=3 Existed only in the early stages of the ² ¡ d or down quark, charge 1=3 universe and nowadays created in high energy physics experiments. JMF Southampton Masterclass 22–23 Mar 2004 3/26 But this is not all. The electron has a friend the electron-neutrino, ºe. Needed to ensure energy and momentum are conserved in ¯-decay: ¡ n ! p + e + º¯e Neutrino: no electric charge, (almost) no mass, hardly interacts at all.
    [Show full text]
  • B2.IV Nuclear and Particle Physics
    B2.IV Nuclear and Particle Physics A.J. Barr February 13, 2014 ii Contents 1 Introduction 1 2 Nuclear 3 2.1 Structure of matter and energy scales . 3 2.2 Binding Energy . 4 2.2.1 Semi-empirical mass formula . 4 2.3 Decays and reactions . 8 2.3.1 Alpha Decays . 10 2.3.2 Beta decays . 13 2.4 Nuclear Scattering . 18 2.4.1 Cross sections . 18 2.4.2 Resonances and the Breit-Wigner formula . 19 2.4.3 Nuclear scattering and form factors . 22 2.5 Key points . 24 Appendices 25 2.A Natural units . 25 2.B Tools . 26 2.B.1 Decays and the Fermi Golden Rule . 26 2.B.2 Density of states . 26 2.B.3 Fermi G.R. example . 27 2.B.4 Lifetimes and decays . 27 2.B.5 The flux factor . 28 2.B.6 Luminosity . 28 2.C Shell Model § ............................. 29 2.D Gamma decays § ............................ 29 3 Hadrons 33 3.1 Introduction . 33 3.1.1 Pions . 33 3.1.2 Baryon number conservation . 34 3.1.3 Delta baryons . 35 3.2 Linear Accelerators . 36 iii CONTENTS CONTENTS 3.3 Symmetries . 36 3.3.1 Baryons . 37 3.3.2 Mesons . 37 3.3.3 Quark flow diagrams . 38 3.3.4 Strangeness . 39 3.3.5 Pseudoscalar octet . 40 3.3.6 Baryon octet . 40 3.4 Colour . 41 3.5 Heavier quarks . 43 3.6 Charmonium . 45 3.7 Hadron decays . 47 Appendices 48 3.A Isospin § ................................ 49 3.B Discovery of the Omega § ......................
    [Show full text]
  • 1.1. Introduction the Phenomenon of Positron Annihilation Spectroscopy
    PRINCIPLES OF POSITRON ANNIHILATION Chapter-1 __________________________________________________________________________________________ 1.1. Introduction The phenomenon of positron annihilation spectroscopy (PAS) has been utilized as nuclear method to probe a variety of material properties as well as to research problems in solid state physics. The field of solid state investigation with positrons started in the early fifties, when it was recognized that information could be obtained about the properties of solids by studying the annihilation of a positron and an electron as given by Dumond et al. [1] and Bendetti and Roichings [2]. In particular, the discovery of the interaction of positrons with defects in crystal solids by Mckenize et al. [3] has given a strong impetus to a further elaboration of the PAS. Currently, PAS is amongst the best nuclear methods, and its most recent developments are documented in the proceedings of the latest positron annihilation conferences [4-8]. PAS is successfully applied for the investigation of electron characteristics and defect structures present in materials, magnetic structures of solids, plastic deformation at low and high temperature, and phase transformations in alloys, semiconductors, polymers, porous material, etc. Its applications extend from advanced problems of solid state physics and materials science to industrial use. It is also widely used in chemistry, biology, and medicine (e.g. locating tumors). As the process of measurement does not mostly influence the properties of the investigated sample, PAS is a non-destructive testing approach that allows the subsequent study of a sample by other methods. As experimental equipment for many applications, PAS is commercially produced and is relatively cheap, thus, increasingly more research laboratories are using PAS for basic research, diagnostics of machine parts working in hard conditions, and for characterization of high-tech materials.
    [Show full text]
  • Electron - Positron Annihilation
    Electron - Positron Annihilation γ µ K Z − − − + + + − − − + + + − − − − + + + − − − + + + + W ν h π D. Schroeder, 29 October 2002 OUTLINE • Electron-positron storage rings • Detectors • Reaction examples e+e− −→ e+e− [Inventory of known particles] e+e− −→ µ+µ− e+e− −→ q q¯ e+e− −→ W +W − • The future:Linear colliders Electron-Positron Colliders Hamburg Novosibirsk 11 GeV 12 GeV 47 GeV Geneva 200 GeV Ithaca Tokyo Stanford 12 GeV 64 GeV 8 GeV 12 GeV 30 GeV 100 GeV Beijing 12 GeV 4 GeV Size (R) and Cost ($) of an e+e− Storage Ring βE4 $=αR + ( E = beam energy) R d $ βE4 Find minimum $: 0= = α − dR R2 β =⇒ R = E2, $=2 αβ E2 α SPEAR: E = 8 GeV, R = 40 m, $ = 5 million LEP: E = 200 GeV, R = 4.3 km, $ = 1 billion + − + − Example 1: e e −→ e e e− total momentum = 0 θ − total energy = 2E e e+ Probability(E,θ)=? e+ E-dependence follows from dimensional analysis: density = ρ− A density = ρ+ − + × 2 Probability = (ρ− ρ+ − + A) (something with units of length ) ¯h ¯hc When E m , the only relevant length is = e p E 1 =⇒ Probability ∝ E2 at SPEAR Augustin, et al., PRL 34, 233 (1975) 6000 5000 4000 Ecm = 4.8 GeV 3000 2000 Number of Counts 1000 Theory 0 −0.8 −0.40 0.40.8 cos θ Prediction for e+e− −→ e+e− event rate (H. J. Bhabha, 1935): event dσ e4 1 + cos4 θ 2 cos4 θ 1 + cos2 θ ∝ = 2 − 2 + rate dΩ 32π2E2 4 θ 2 θ 2 cm sin 2 sin 2 Interpretation of Bhabha’sformula (R.
    [Show full text]
  • Detection of a Strange Particle
    10 extraordinary papers Within days, Watson and Crick had built a identify the full set of codons was completed in forensics, and research into more-futuristic new model of DNA from metal parts. Wilkins by 1966, with Har Gobind Khorana contributing applications, such as DNA-based computing, immediately accepted that it was correct. It the sequences of bases in several codons from is well advanced. was agreed between the two groups that they his experiments with synthetic polynucleotides Paradoxically, Watson and Crick’s iconic would publish three papers simultaneously in (see go.nature.com/2hebk3k). structure has also made it possible to recog- Nature, with the King’s researchers comment- With Fred Sanger and colleagues’ publica- nize the shortcomings of the central dogma, ing on the fit of Watson and Crick’s structure tion16 of an efficient method for sequencing with the discovery of small RNAs that can reg- to the experimental data, and Franklin and DNA in 1977, the way was open for the com- ulate gene expression, and of environmental Gosling publishing Photograph 51 for the plete reading of the genetic information in factors that induce heritable epigenetic first time7,8. any species. The task was completed for the change. No doubt, the concept of the double The Cambridge pair acknowledged in their human genome by 2003, another milestone helix will continue to underpin discoveries in paper that they knew of “the general nature in the history of DNA. biology for decades to come. of the unpublished experimental results and Watson devoted most of the rest of his ideas” of the King’s workers, but it wasn’t until career to education and scientific administra- Georgina Ferry is a science writer based in The Double Helix, Watson’s explosive account tion as head of the Cold Spring Harbor Labo- Oxford, UK.
    [Show full text]
  • Associated Higgs-Bottom Quark Production: Reconciling the 4FS and the 5FS Approach
    Associated Higgs-bottom quark production: reconciling the 4FS and the 5FS approach R. Harlander, M. Kr¨amer, M. Schumacher 6. April 2011 — v0.52 1 Two approaches The cross section for associated Higgs-bottom quark production, pp → b¯bH + X, can be calculated in two different schemes. As the mass of the bottom quark is large compared to the QCD scale, mb ≫ ΛQCD, bottom quark production is a perturbative process and can be calculated order by order. Thus, in a four-flavour scheme (4FS), where one does not consider b quarks as partons in the proton, the lowest-order QCD production pro- cesses are gluon-gluon fusion and quark-antiquark annihilation, gg → b¯bH and qq¯ → b¯bH, respectively. However, the inclusive cross section for gg → b¯bH develops logarithms of the form ln(µF/mb), which arise from the splitting of gluons into nearly collinear b¯b pairs. The large scale µF ≈ MH /4 corresponds to the upper limit of the collinear region up to which factorization is valid [1, 2, 3]. For MH ≫ 4mb the logarithms become large and spoil the convergence of the perturbative series. The ln(µF/mb) terms can be summed to all orders in perturbation theory by introducing bottom parton densities. This defines the so-called five-flavour scheme (5FS). The use of bottom distribution functions is based on the approximation that the outgoing b quarks are at small transverse momentum. In this scheme, the LO process for the inclusive b¯bH cross section is bottom fusion, b¯b → H. If all orders in perturbation theory were taken into account, the four- and five-flavour schemes would be identical, but the way of ordering the perturbative expansion is different.
    [Show full text]
  • Identification of Boosted Higgs Bosons Decaying Into B-Quark
    Eur. Phys. J. C (2019) 79:836 https://doi.org/10.1140/epjc/s10052-019-7335-x Regular Article - Experimental Physics Identification of boosted Higgs bosons decaying into b-quark pairs with the ATLAS detector at 13 TeV ATLAS Collaboration CERN, 1211 Geneva 23, Switzerland Received: 27 June 2019 / Accepted: 23 September 2019 © CERN for the benefit of the ATLAS collaboration 2019 Abstract This paper describes a study of techniques for and angular distribution of the jet constituents consistent with identifying Higgs bosons at high transverse momenta decay- a two-body decay and containing two b-hadrons. The tech- ing into bottom-quark pairs, H → bb¯, for proton–proton niques described in this paper to identify Higgs bosons decay- collision data collected by the ATLAS detector√ at the Large ing into bottom-quark pairs have been used successfully in Hadron Collider at a centre-of-mass energy s = 13 TeV. several analyses [8–10] of 13 TeV proton–proton collision These decays are reconstructed from calorimeter jets found data recorded by ATLAS. with the anti-kt R = 1.0 jet algorithm. To tag Higgs bosons, In order to identify, or tag, boosted Higgs bosons it is a combination of requirements is used: b-tagging of R = 0.2 paramount to understand the details of b-hadron identifica- track-jets matched to the large-R calorimeter jet, and require- tion and the internal structure of jets, or jet substructure, in ments on the jet mass and other jet substructure variables. The such an environment [11]. The approach to tagging√ presented Higgs boson tagging efficiency and corresponding multijet in this paper is built on studies from LHC runs at s = 7 and and hadronic top-quark background rejections are evaluated 8 TeV, including extensive studies of jet reconstruction and using Monte Carlo simulation.
    [Show full text]
  • Decay Rates and Cross Section
    Decay rates and Cross section Ashfaq Ahmad National Centre for Physics Outlines Introduction Basics variables used in Exp. HEP Analysis Decay rates and Cross section calculations Summary 11/17/2014 Ashfaq Ahmad 2 Standard Model With these particles we can explain the entire matter, from atoms to galaxies In fact all visible stable matter is made of the first family, So Simple! Many Nobel prizes have been awarded (both theory/Exp. side) 11/17/2014 Ashfaq Ahmad 3 Standard Model Why Higgs Particle, the only missing piece until July 2012? In Standard Model particles are massless =>To explain the non-zero mass of W and Z bosons and fermions masses are generated by the so called Higgs mechanism: Quarks and leptons acquire masses by interacting with the scalar Higgs field (amount coupling strength) 11/17/2014 Ashfaq Ahmad 4 Fundamental Fermions 1st generation 2nd generation 3rd generation Dynamics of fermions described by Dirac Equation 11/17/2014 Ashfaq Ahmad 5 Experiment and Theory It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t agree with experiment, it’s wrong. Richard P. Feynman A theory is something nobody believes except the person who made it, An experiment is something everybody believes except the person who made it. Albert Einstein 11/17/2014 Ashfaq Ahmad 6 Some Basics Mandelstam Variables In a two body scattering process of the form 1 + 2→ 3 + 4, there are 4 four-vectors involved, namely pi (i =1,2,3,4) = (Ei, pi) Three Lorentz Invariant variables namely s, t and u are defined.
    [Show full text]
  • A Historical Review of the Discovery of the Quark and Gluon Jets
    EPJ manuscript No. (will be inserted by the editor) JETS AND QCD: A Historical Review of the Discovery of the Quark and Gluon Jets and its Impact on QCD⋆ A.Ali1 and G.Kramer2 1 DESY, D-22603 Hamburg (Germany) 2 Universit¨at Hamburg, D-22761 Hamburg (Germany) Abstract. The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review, which is primarily a description of the discovery of the quark and gluon jets and the impact of their obser- vation on Quantum Chromodynamics, we elaborate, in particular, the role of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e+e− collisions will be in the foreground of the discussion and we will concentrate on the theory that was contempo- rary with the relevant experiments at the electron-positron colliders. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/pp¯ collisions - quark and gluon densi- ties in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W ±, Z bosons on the electroweak sector.
    [Show full text]
  • Probing 23% of the Universe at the Large Hadron Collider
    Probing 23% of the Universe at the Large Hadron Collider Will Flanagan1 Advisor: Dr Teruki Kamon2 In close collaboration with Bhaskar Dutta2, Alfredo Gurrola2, Nikolay Kolev3, Tom Crockett2, Michael VanDyke2, and Abram Krislock2 1University of Colorado at Boulder, Cyclotron REU Program 2Texas A&M University 3University of Regina Introduction What is cosmologically significant about ‘focus Analysis With recent astronomical measurements, point’? We first decide which events we want to look for. χ~0 ~0 we know that 23% of the Universe is The 1is allowed to annihilate with itself since it is Since χ 1 is undetectable (otherwise it wouldn’t be ‘dark composed of dark matter, whose origin is its own antimatter particle. The χ~ 0 -χ~0 annihilation matter’!), we look for events with a 1 1 Red – Jet distribution unknown. Supersymmetry (SUSY), a leading cross section is typically too small (predicting a relic after MET cut large amount of missing transverse theory in particle physics, provides us with a cold dark χ~0 Z channel dark matter density that is too energy. Also, due to the nature of 1 u- matter candidate, the lightest supersymmetric particle Z0 large). The small µ of focus these decays (shown below) we also χ~0 (LSP). SUSY particles, including the LSP, can be 1 u point x require two energetic jets. 2 f 1 Ω ~0 ~h dx created at the Large Hadron Collider (LHC) at CERN. allows for a larger annihilation χ1 ∫ 0 σ v { ann g~ 2 energetic jets + 2 leptons We perform a systematic study to characterize the cross section for our dark 0.23 698 u- + MET 2 g~ SUSY signals in the "focus point" region, one of a few matter candidate by opening πα ~ u - σ annv = 2 u l cosmologically-allowed parameter regions in our SUSY up the ‘Z channel’ (pictured 321 8M χ~0 l+ 0.9 pb 2 ~+ model.
    [Show full text]
  • E+ E~ ANNIHILATION Hinrich Meyer, Fachbereich Physik, Universitдt
    - 155 - e+e~ ANNIHILATION Hinrich Meyer, Fachbereich Physik, Universität Wuppertal, Fed. Rep. Germany CONTENT INTRODUCTION 1. e+e~ STORAGE RINGS .1 Energy and Size .2 Luminosity .3 Energy range of one Ring .4 Energie resolution .5 Polarization 2. EXPERIMENTAL PROCEDURES .1 Storage Ring Detectors .2 Background .3 Luminosity Measurement .4 Radiative Corrections 3. QED-REACTIONS + . 1 e+e~ T T~ .2 e+e"+y+y~ . 3 e+e~ -»• e+e~ . 4 e+e_ •+y y 4. HADRON PRODUCTION IN e+e~ANNTHILATION .1 Total Cross Section .2 Average Event Properties .3 Two Jet Structure .4 Three Jet Structure .5 Gluon Properties - 156 - 5. SEARCH FOR NEW PARTICLES .1 Experimental Methods .2 Search for the sixth Flavor (t) .3 Properties of Q Q Resonances .4 New Leptons 6. YY ~ REACTIONS .1 General Properties .2 Resonance Production .3 £ for e,Y Scattering .4 Hard Scattering Processes .5 Photon Structure Function INTRODUCTION e+e storage rings have been proven to be an extremely fruitful techno• logical invention for particle physics. They were originally designed to provide stringent experimental tests of the theory of leptons and photons QED (Quantum-Electro-Dynamics). QED has passed these tests beautifully up to the highest energies (PETRA) so far achieved. The great successes of the e+e storage rings however are in the field of strong interaction physics. The list below gives a very brief overview of the historical development by quoting the highlights of physics results from e+e storage rings with the completion of storage rings of higher and higher energy (see Fig.1). YEAR
    [Show full text]
  • Model of N¯ Annihilation in Experimental Searches for N¯ Transformations
    PHYSICAL REVIEW D 99, 035002 (2019) Model of n¯ annihilation in experimental searches for n¯ transformations E. S. Golubeva,1 J. L. Barrow,2 and C. G. Ladd2 1Institute for Nuclear Research, Russian Academy of Sciences, Prospekt 60-letiya Oktyabrya 7a, Moscow, 117312, Russia 2University of Tennessee, Department of Physics, 401 Nielsen Physics Building, 1408 Circle Drive, Knoxville, Tennessee 37996, USA (Received 24 July 2018; published 5 February 2019) Searches for baryon number violation, including searches for proton decay and neutron-antineutron transformation (n → n¯), are expected to play an important role in the evolution of our understanding of beyond standard model physics. The n → n¯ is a key prediction of certain popular theories of baryogenesis, and experiments such as the Deep Underground Neutrino Experiment and the European Spallation Source plan to search for this process with bound- and free-neutron systems. Accurate simulation of this process in Monte Carlo will be important for the proper reconstruction and separation of these rare events from background. This article presents developments towards accurate simulation of the annihilation process for 12 use in a cold, free neutron beam for n → n¯ searches from nC¯ annihilation, as 6 C is the target of choice for the European Spallation Source’s NNBar Collaboration. Initial efforts are also made in this paper to 40 perform analogous studies for intranuclear transformation searches in 18Ar nuclei. DOI: 10.1103/PhysRevD.99.035002 I. INTRODUCTION evacuated, magnetically shielded pipe of 76 m in length (corresponding to a flight time of ∼0.1 s), until being A. Background 12 allowed to hit a target of carbon (6 C) foil (with a thickness As early as 1967, A.
    [Show full text]