The Anthropocene: Acknowledging the Extent of Global Resource Overshoot , and What We Must Do About It

Total Page:16

File Type:pdf, Size:1020Kb

The Anthropocene: Acknowledging the Extent of Global Resource Overshoot , and What We Must Do About It Research, education, and policy guidance for a better global future. The Anthropocene: Acknowledging the extent of global resource overshoot , and what we must do about it. Research, education, and policy guidance for a better global future. Understanding the balance between human needs and environmental resources Research, education, and policy guidance for a better global future. The Anthropocene Story 3 minute video Reflections on the Anthropocene Story “ … we must find a safe operating space for humanity” “... we must understand resource limits and size ourselves to operate within planetary boundaries” Reflections on the Anthropocene Story “…our creativity, energy, and industry offer hope” Empty words Cognitive and behavioral paradigm shifts would offer ‘guarded’ optimism for the future. A preview of this afternoon’s discussion: 1. Realistic meta-level picture of humanity’s relationship with the planet 2. Talk about that relationship and the conceptual meaning of sustainability 3. Discuss the need for ‘transformative’ change and one approach to achieving future sustainability The Problem Climate change is not the problem. Water shortages, overgrazing, erosion, desertification and the rapid extinction of species are not the problem. Deforestation, Deforestation, reduced cropland productivity, Deforestation, reduced cropland productivity, and the collapse of fisheries are not the problem. Each of these crises, though alarming, is a symptom of a single, over-riding issue. Humanity is simply demanding more than the earth can provide. Climate change Witnessing dysfunctional human behavior Deforestation Desertification Collapse of fisheries Rapid extinction of species Supply = 1 Earth Today’s reality: Global Resource Overshoot How do we know we are - living beyond our resource means? - exceeding global capacity? - experiencing resource overshoot? • Millennium Ecosystem Assessment Released in 2005, the Millennium Ecosystem Assessment was a four-year global effort involving more than 1,300 experts that assessed the condition of and trends in the world’s ecosystems. The Assessment found that in the last half of the 20th century, humans changed ecosystems more rapidly and extensively than in any comparable period of history, primarily to meet growing needs for food, freshwater, timber, fiber, and fuel. What do we know about the status of the world’s ecosystem services? Degraded Mixed Enhanced Provisioning Capture fisheries Timber Crops Wild foods Fiber Livestock Biomass fuel Aquaculture Genetic resources Biochemicals Fresh water Regulating Air quality regulation Water regulation Carbon sequestration Climate regulation Disease regulation Erosion regulation Water purification Pest regulation Pollination Natural hazard regulation Cultural Spiritual values Recreation & ecotourism Aesthetic values Financial Indicators • GDP = Gross Domestic Product • ISEW = Index of Sustainable Economic Welfare • ISEW = GDP w/adjustments Degree of consumption inequality + Value of housework - Wasted expenditures (e.g. wars) - Pollution and environmental damage costs - Depletion of non-renewable resources GDP $ ISEW 1950 1975 2000 2025 GDP $ ISEW 1950 1975 2000 2025 Quantifying Human Demand: Our ‘Ecological Footprint’ A population’s eco-footprint (demand) is the area of land and water ecosystems (bio-capacity) required to produce the resources that the population consumes, and to assimilate the wastes that the population produces, wherever on Earth the relevant land/water may be located. Human Demand: Our Global ecological Footprint Nature’s Supply: Global Biocapacity Overshoot – Demand now outstrips supply. It takes more than 1.5 years for the earth to regenerate the renewable resources humans consume in a year. global biocapacity: 12.0 billion hectares ffads The Big Picture current human eco-footprint: 19.0 billion hectares Ecological Footprint gha One Earth 1.0 (Capacity = 100%) # Earths 1960 1970 1980 1990 2000 2010 Time Unsustainable Ecological Footprint gha One Earth 1.0 Possibly Sustainable (Capacity = 100%) # Earths 1960 1970 1980 1990 2000 2010 Time Ecological Footprint gha One Earth 1.0 Capacity allocation for bio-diversity (Capacity = 100%) # Earths 1960 1970 1980 1990 2000 2010 Time The World has Fundamentally Changed Historical “Empty World” “Overshoot” World Ecological Footprint gha One Earth 1.0 (Capacity = 100%) # Earths 1960 1970 1980 1990 2000 2010 Time The World has Fundamentally Changed Historical “Empty World” “Overshoot” World # Earths 1.0 (Capacity = 100%) 1960 1970 1980 1990 2000 2010 Time The World has Fundamentally Changed Historical “Empty World” “Overshoot” World Limitations Man-made Capital Natural Capital Labor Policy Implications Maximize production Invest in capital goods Invest in natural capital “Economic stimulus” plans To end poverty (In a production constrained world): Stabilize and reduce population! 1960 1970 1980 1990 2000 2010 Time Our Global Ecological Deficit human population (2013): 7.1 billion average eco- footprint/person: 2.7 gha biocapacity per person: 1.7 gha overshoot (EF – biocapacity) 1.0 gha 58% overshoot global biocapacity: 12.0 billion hectares ffads The Big Picture current human eco-footprint: 19.0 billion hectares Missing: Four Phantom Planets If everyone on Earth lived the consumer lifestyles of North Americans, we’d need three or four additional Earth-like planets. Problem: “Good planets are hard to find.” • Humanity is already consuming resources at an unsustainable rate. • We are already exceeding planetary boundaries. • We are putting earth systems and human civilization at risk. “…the continued functioning of the Earth system as it has supported the well-being of human civilization in recent centuries is at risk. Without urgent action, we could face threats to water, food, biodiversity, and other critical resources: these threats risk intensifying economic, ecological, and social crisis, creating the potential for a humanitarian emergency on a global scale.” “[We are] burning through [global] resources in the name of prosperity, as if there is no tomorrow” Ban Ki-Moon (4/20/12) What is sustainability? Sustainability conceptually describes an economy and full set of societal endeavors, the demands of which are in equilibrium with basic ecological and resource support systems Resource Sufficiency Evaluation (RSE) What is sustainability? Despite the confusion, ‘sustainability’ is not a difficult concept Sustainability simply means that the human family must live more equitably within the productive means of nature. Humans cannot consume essential renewable resources faster than Nature replenishes them nor generate material wastes faster than nature can assimilate and recycle them. No society is sustainable if it maintains itself or grows by depleting its income-producing wealth or ‘capital’. It follows that: The world community must learn to live on the annual income generated by both its manufactured capital and natural capital. Economic Implications A sustainable economy thrives on the annual income of its capital assets: finance capital, manufactured capital natural capital. At ‘carrying capacity’ a sustainable economy is a non- growing or steady-state economy. A steady-state economy is characterized by a constant or modestly fluctuating through-put of energy and material resources (‘natural income’) that leaves its capital intact. A steady-state economy is not a stagnant economy. It does not grow but can develop dynamically. Society steadily improves as technologies evolve, new industries replace old, and human well-being increases. What’s to fear? What’s not to like?? Resource overshoot Possible Solutions “Our collective challenge: Scaling down the human endeavor” e = < e RI D P AC T = R Cap Resource demands must be less than or equal to capacity Possible Solutions < e P C T = R Cap Can we stabilize and reduce human population numbers? Global Population (Billions) 30.00 25.00 20.00 15.00 Constant Fertility 10.00 5.00 0.00 1940 1960 1980 2000 2020 2040 2060 2080 2100 2120 Global Population – What will it really look like later this century ? Median 9.3 B by 2050 Number of People (millions) of People Number Global Population (Billions) 30.00 25.00 20.00 Constant fertility 15.00 Median Variant 10.00 Assumptions 5.00 0.00 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2110 Global Population – What will it really look like later this century ? Constant Fertility +0.5 TFR Median -0.5 TFR Number of People (millions) of People Number Population growth is not destiny Empowering women and expanding access to family planning information and services must be part of the global sustainable development discourse and solution. Possible Solutions < e P C T = R Cap Can we lower our consumption of material goods and services? Reducing consumption Who will be giving up their “goodies?” In fact the world is going in the other direction (e.g. cars in China)! Possible Solutions e = < e R D P C T = R Cap Can we ‘decouple’ our economy from the demands we place on natural capital? Will ‘greening’ our global economy lead to a sustainable world? Technology Mr. T Technology advancement is not the answer to the sustainability challenge. It is necessary, but not sufficient! Greening the economy is not the answer to the sustainability challenge. It is necessary, but not sufficient! Resource efficiency improvement is not the answer to the sustainability challenge. It is necessary, but not sufficient! Resource Sufficiency Evaluation (RSE) Greening the economy is necessary, but not sufficient. In economics
Recommended publications
  • Reading 23 Limits to Growth1 Overshoot
    Reading 23 Limits to Growth1 Overshoot To overshoot means to go too far, to go be- cal, political, psychological, or other features of a yond limits accidentally—without intention. Peo- system. ple experience overshoots every day. When you The delays, too, arise in many ways. They may rise too quickly from a chair, you may momen- result from inattention, faulty data, delayed in- tarily lose your balance. If you turn on the hot formation, slow reflexes, a cumbersome or quar- water faucet too far in the shower, you may be relling bureaucracy, a false theory about how the scalded. On an icy road your car might slide past system responds, or from momentum that pre- a stop sign. At a party you may drink much more vents the system from being stopped quickly de- alcohol than your body can safely metabolize; in spite the best efforts to halt it. For example, de- the morning you will have a ferocious headache. lays may result when a driver does not realize how Construction companies periodically build more much his car’s braking traction has been reduced condominiums than are demanded, forcing them by ice on the road; the contractor uses current to sell units below cost and confront the possi- prices to make decisions about construction activ- bility of bankruptcy. Too many fishing boats are ity that will affect the market two or three years in often constructed. Then fishing fleets grow so the future; the fishing fleet owners base their deci- large that they catch far more than the sustainable sions on data about recent catch, not information harvest.
    [Show full text]
  • “Anthropocene” Epoch: Scientific Decision Or Political Statement?
    The “Anthropocene” epoch: Scientific decision or political statement? Stanley C. Finney*, Dept. of Geological Sciences, California Official recognition of the concept would invite State University at Long Beach, Long Beach, California 90277, cross-disciplinary science. And it would encourage a mindset USA; and Lucy E. Edwards**, U.S. Geological Survey, Reston, that will be important not only to fully understand the Virginia 20192, USA transformation now occurring but to take action to control it. … Humans may yet ensure that these early years of the ABSTRACT Anthropocene are a geological glitch and not just a prelude The proposal for the “Anthropocene” epoch as a formal unit of to a far more severe disruption. But the first step is to recognize, the geologic time scale has received extensive attention in scien- as the term Anthropocene invites us to do, that we are tific and public media. However, most articles on the in the driver’s seat. (Nature, 2011, p. 254) Anthropocene misrepresent the nature of the units of the International Chronostratigraphic Chart, which is produced by That editorial, as with most articles on the Anthropocene, did the International Commission on Stratigraphy (ICS) and serves as not consider the mission of the International Commission on the basis for the geologic time scale. The stratigraphic record of Stratigraphy (ICS), nor did it present an understanding of the the Anthropocene is minimal, especially with its recently nature of the units of the International Chronostratigraphic Chart proposed beginning in 1945; it is that of a human lifespan, and on which the units of the geologic time scale are based.
    [Show full text]
  • Golden Spikes, Transitions, Boundary Objects, and Anthropogenic Seascapes
    sustainability Article A Meaningful Anthropocene?: Golden Spikes, Transitions, Boundary Objects, and Anthropogenic Seascapes Todd J. Braje * and Matthew Lauer Department of Anthropology, San Diego State University, San Diego, CA 92182, USA; [email protected] * Correspondence: [email protected] Received: 27 June 2020; Accepted: 7 August 2020; Published: 11 August 2020 Abstract: As the number of academic manuscripts explicitly referencing the Anthropocene increases, a theme that seems to tie them all together is the general lack of continuity on how we should define the Anthropocene. In an attempt to formalize the concept, the Anthropocene Working Group (AWG) is working to identify, in the stratigraphic record, a Global Stratigraphic Section and Point (GSSP) or golden spike for a mid-twentieth century Anthropocene starting point. Rather than clarifying our understanding of the Anthropocene, we argue that the AWG’s effort to provide an authoritative definition undermines the original intent of the concept, as a call-to-arms for future sustainable management of local, regional, and global environments, and weakens the concept’s capacity to fundamentally reconfigure the established boundaries between the social and natural sciences. To sustain the creative and productive power of the Anthropocene concept, we argue that it is best understood as a “boundary object,” where it can be adaptable enough to incorporate multiple viewpoints, but robust enough to be meaningful within different disciplines. Here, we provide two examples from our work on the deep history of anthropogenic seascapes, which demonstrate the power of the Anthropocene to stimulate new thinking about the entanglement of humans and non-humans, and for building interdisciplinary solutions to modern environmental issues.
    [Show full text]
  • Jeremy Baskin, “Paradigm Dressed As Epoch: the Ideology of The
    Paradigm Dressed as Epoch: The Ideology of the Anthropocene JEREMY BASKIN School of Social and Political Sciences University of Melbourne Victoria 3010, Australia Email: [email protected] ABSTRACT The Anthropocene is a radical reconceptualisation of the relationship between humanity and nature. It posits that we have entered a new geological epoch in which the human species is now the dominant Earth-shaping force, and it is rapidly gaining traction in both the natural and social sciences. This article critically explores the scientific representation of the concept and argues that the Anthropocene is less a scientific concept than the ideational underpinning for a particular worldview. It is paradigm dressed as epoch. In particular, it normalises a certain portion of humanity as the ‘human’ of the Anthropocene, reinserting ‘man’ into nature only to re-elevate ‘him’ above it. This move pro- motes instrumental reason. It implies that humanity and its planet are in an exceptional state, explicitly invoking the idea of planetary management and legitimising major interventions into the workings of the earth, such as geoen- gineering. I conclude that the scientific origins of the term have diminished its radical potential, and ask whether the concept’s radical core can be retrieved. KEYWORDS Anthropocene, ideology, geoengineering, environmental politics, earth management INTRODUCTION ‘The Anthropocene’ is an emergent idea, which posits that the human spe- cies is now the dominant Earth-shaping force. Initially promoted by scholars from the physical and earth sciences, it argues that we have exited the current geological epoch, the 12,000-year-old Holocene, and entered a new epoch, Environmental Values 24 (2015): 9–29.
    [Show full text]
  • Insect Declines in the Anthropocene
    EN65CH23_Wagner ARjats.cls December 19, 2019 12:24 Annual Review of Entomology Insect Declines in the Anthropocene David L. Wagner Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA; email: [email protected] Annu. Rev. Entomol. 2020. 65:457–80 Keywords First published as a Review in Advance on insect decline, agricultural intensi!cation, climate change, drought, October 14, 2019 precipitation extremes, bees, pollinator decline, vertebrate insectivores The Annual Review of Entomology is online at ento.annualreviews.org Abstract https://doi.org/10.1146/annurev-ento-011019- Insect declines are being reported worldwide for "ying, ground, and aquatic 025151 lineages. Most reports come from western and northern Europe, where the Copyright © 2020 by Annual Reviews. insect fauna is well-studied and there are considerable demographic data for All rights reserved many taxonomically disparate lineages. Additional cases of faunal losses have been noted from Asia, North America, the Arctic, the Neotropics, and else- where. While this review addresses both species loss and population declines, its emphasis is on the latter. Declines of abundant species can be especially worrisome, given that they anchor trophic interactions and shoulder many Access provided by 73.198.242.105 on 01/29/20. For personal use only. of the essential ecosystem services of their respective communities. A review of the factors believed to be responsible for observed collapses and those Annu. Rev. Entomol. 2020.65:457-480. Downloaded from www.annualreviews.org perceived to be especially threatening to insects form the core of this treat- ment. In addition to widely recognized threats to insect biodiversity, e.g., habitat destruction, agricultural intensi!cation (including pesticide use), cli- mate change, and invasive species, this assessment highlights a few less com- monly considered factors such as atmospheric nitri!cation from the burning of fossil fuels and the effects of droughts and changing precipitation patterns.
    [Show full text]
  • China Air Pollution Levels
    China’s air pollution overshoots pre-crisis levels for the first time Levels of health-harming air pollutants in China have exceeded concentrations at the same time last year in the past 30 days, for the first time since the start of the COVID-19 crisis. This includes PM2.5, NO2, SO2 and ozone. Air pollutant levels plummeted during the national lockdown in February, bottomed out in early March and have now overshot their pre-crisis levels. The rebound appears to be driven by industrial emissions, as the pollution levels in the largest cities, Beijing and Shanghai, are still trailing below last year. More broadly, pollution levels tended to increase more in areas where coal-burning is a larger source of pollution. Ozone levels are close to the record level of 2018. Rebounding air pollutant levels are a demonstration of the importance of prioritizing green economy and clean energy in the recovery from the COVID-19 crisis. All eyes are on China, as the first major economy to return to work after a lockdown. China’s previous economic recoveries, including the aftermath of the Global Financial Crisis in 2008 and the SARS epidemic of 2003, have been associated with surges in air pollution and CO2 emissions. CREA’s new Air Pollution Rebound Tracker can be used to track this development in real ​ ​ time. Controlling for meteorological conditions, national average PM2.5, SO2 and ozone concentrations in the past 30 days were above their pre-crisis levels, while NO2 concentrations were at the same levels as before the crisis, showing that the rebound cannot be accounted for by weather factors.
    [Show full text]
  • Anthropocene Futures: Linking Colonialism and Environmentalism
    Special issue article EPD: Society and Space 2020, Vol. 38(1) 111–128 Anthropocene futures: ! The Author(s) 2018 Article reuse guidelines: Linking colonialism and sagepub.com/journals-permissions DOI: 10.1177/0263775818806514 environmentalism in journals.sagepub.com/home/epd an age of crisis Bruce Erickson University of Manitoba, Canada Abstract The universal discourse of the Anthropocene presents a global choice that establishes environ- mental collapse as the problem of the future. Yet in its desire for a green future, the threat of collapse forecloses the future as a site for creatively reimagining the social relations that led to the Anthropocene. Instead of examining structures like colonialism, environmental discourses tend to focus instead on the technological innovation of a green society that “will have been.” Through this vision, the Anthropocene functions as a geophysical justification of structures of colonialism in the services of a greener future. The case of the Canadian Boreal Forest Agreement illustrates how this crisis of the future is sutured into mainstream environmentalism. Thus, both in the practices of “the environment in crisis” that are enabled by the Anthropocene and in the discourse of geological influence of the “human race,” colonial structures privilege whiteness in our environmental future. In this case, as in others, ecological protection has come to shape the political life of colonialism. Understanding this relationship between environmen- talism and the settler state in the Anthropocene reminds us that
    [Show full text]
  • The Prospect of Global Environmental Relativities After an Anthropocene Tipping Point
    This is a repository copy of The Prospect of Global Environmental Relativities After an Anthropocene Tipping Point. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/112256/ Version: Accepted Version Article: Grainger, A (2017) The Prospect of Global Environmental Relativities After an Anthropocene Tipping Point. Forest Policy and Economics, 79. pp. 36-49. ISSN 1389-9341 https://doi.org/10.1016/j.forpol.2017.01.008 © 2017 Published by Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The Prospect of Global Environmental Relativities After an Anthropocene Tipping Point Alan Grainger School of Geography, University of Leeds, Leeds LS2 9JT, UK.
    [Show full text]
  • Who Speaks for the Future of Earth? How Critical Social Science Can Extend the Conversation on the Anthropocene
    http://www.diva-portal.org This is the published version of a paper published in Global Environmental Change. Citation for the original published paper (version of record): Lövbrand, E., Beck, S., Chilvers, J., Forsyth, T., Hedrén, J. et al. (2015) Who speaks for the future of Earth?: how critical social science can extend the conversation on the Anthropocene. Global Environmental Change, 32: 211-218 http://dx.doi.org/10.1016/j.gloenvcha.2015.03.012 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-43841 Global Environmental Change 32 (2015) 211–218 Contents lists available at ScienceDirect Global Environmental Change jo urnal homepage: www.elsevier.com/locate/gloenvcha Who speaks for the future of Earth? How critical social science can extend the conversation on the Anthropocene a, b c d a e Eva Lo¨vbrand *, Silke Beck , Jason Chilvers , Tim Forsyth , Johan Hedre´n , Mike Hulme , f g Rolf Lidskog , Eleftheria Vasileiadou a Department of Thematic Studies – Environmental Change, Linko¨ping University, 58183 Linko¨ping, Sweden b Department of Environmental Politics, Helmholtz Centre for Environmental Research – UFZ, Permoserstraße 15, 04318 Leipzig, Germany c School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK d Department of International Development, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK e Department of Geography, King’s College London, K4L.07, King’s Building, Strand Campus, London WC2R 2LS, UK f Environmental Sociology Section, O¨rebro University, 701 82 O¨rebro, Sweden g Department of Industrial Engineering & Innovation Sciences, Technische Universiteit Eindhoven, P.O.
    [Show full text]
  • On the Confounding of Overshoot and Collapse Predictions by Economic Dynamics
    On the Confounding of Overshoot and Collapse Predictions by Economic Dynamics Corey Lofdahl SAIC, 20 Mall Road, Suite 130 Burlington, Massachusetts USA 01803 [email protected] Abstract At the 19th International Conference of the System Dynamics Society held in Atlanta, Willard Fey and Ann Lam (2001) asked why system dynamicists by and large believe that the world population is limited and yet don’t act on this belief on a day to day basis. Because this is a deceptively difficult question, this study addresses it from several different perspectives. From the literature, it examines current critiques of The Limits to Growth, Malthus, and Simon’s bounded rationality. The study finds that theories, predictions, and criticisms concerning complex systems cannot be answered definitively. Instead both the initial theory and its criticisms must be considered together, a conclusion supported by 20th century philosophy. From this perspective, instead of offering definitive, closed-form solutions, three heuristics are developed. The first contrasts notions of possibility and prediction from an information theory perspective. The second examines the mechanics of standard overshoot and collapse systems and how collapse predictions can go awry. Third, an example of overshoot and collapse is examined with an eye towards timing the collapse and understanding how decision makers interpret information from within the system. Systematic errors from this smaller, economic system are then applied to Fey and Lam’s concern regarding world population, a system that may have overshot but has not yet collapsed. 1. Introduction At the 19th International Conference of the System Dynamics Society held in Atlanta, Willard Fey and Ann Lam (2001) discussed, explored, and furthered some of the key themes of The Limits to Growth (Meadows et al 1972).
    [Show full text]
  • Environmental Policy in the Anthropocene
    ENVIRONMENTAL POLICY IN THE ANTHROPOCENE JAMES L. HUFFMAN Designing Institutions for the Anthropocene MARK PENNINGTON Implications for Urban Land Use Planning JONATHAN H. ADLER Dynamic Environmentalism and Adaptive Management R. DAVID SIMPSON Ecosystem Services: What are the Public Policy Implications? LINUS BLOMQVIST How Humans Spare Nature ABOUT PERC PERC—the Property and Environment Research Center—is a nonprofit research institute dedicated to improving environmental quality through markets and property rights. Located in Bozeman, Montana, PERC pioneered the approach known as free market environmentalism. PERC’s staff and associated scholars conduct original research that applies market principles to resolving environmental problems. Learn more by visiting www.perc.org. Copyright © 2016, PERC. All rights reserved. Distribution beyond personal use requires permission from PERC. Available online at www.perc.org. 2048 Analysis Drive, Suite A | Bozeman, Montana 59718 406-587-9591 | www.perc.org | [email protected] ABOUT THE AUTHORS Jonathan H. Adler is the inaugural Johan Verheij Memorial Professor of Law at the Case Western Reserve University School of Law and a senior fellow at the Property and Environment Research Center (PERC). Linus Blomqvist is the director of conservation at the Breakthrough Institute and a 2014 Lone Mountain Fellow at PERC. Robert K. Fleck is a professor of economics at Clemson University and a 2016 Lone Mountain Fellow at PERC. F. Andrew Hanssen is a professor of economics at Clemson University and a 2016 Lone Mountain Fellow at PERC. James L. Huffman is dean emeritus of the Lewis & Clark Law School. Mark Pennington is a professor of public policy and political economy at King’s College of London and a 2015 Lone Mountain Fellow at PERC.
    [Show full text]
  • Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development
    Mitigation Pathways Compatible with 1.5°C in the Context 2 of Sustainable Development Coordinating Lead Authors: Joeri Rogelj (Austria/Belgium), Drew Shindell (USA), Kejun Jiang (China) Lead Authors: Solomone Fifita (Fiji), Piers Forster (UK), Veronika Ginzburg (Russia), Collins Handa (Kenya), Haroon Kheshgi (USA), Shigeki Kobayashi (Japan), Elmar Kriegler (Germany), Luis Mundaca (Sweden/Chile), Roland Séférian (France), Maria Virginia Vilariño (Argentina) Contributing Authors: Katherine Calvin (USA), Joana Correia de Oliveira de Portugal Pereira (UK/Portugal), Oreane Edelenbosch (Netherlands/Italy), Johannes Emmerling (Italy/Germany), Sabine Fuss (Germany), Thomas Gasser (Austria/France), Nathan Gillett (Canada), Chenmin He (China), Edgar Hertwich (USA/Austria), Lena Höglund-Isaksson (Austria/Sweden), Daniel Huppmann (Austria), Gunnar Luderer (Germany), Anil Markandya (Spain/UK), David L. McCollum (USA/Austria), Malte Meinshausen (Australia/Germany), Richard Millar (UK), Alexander Popp (Germany), Pallav Purohit (Austria/India), Keywan Riahi (Austria), Aurélien Ribes (France), Harry Saunders (Canada/USA), Christina Schädel (USA/Switzerland), Chris Smith (UK), Pete Smith (UK), Evelina Trutnevyte (Switzerland/Lithuania), Yang Xiu (China), Wenji Zhou (Austria/China), Kirsten Zickfeld (Canada/Germany) Chapter Scientists: Daniel Huppmann (Austria), Chris Smith (UK) Review Editors: Greg Flato (Canada), Jan Fuglestvedt (Norway), Rachid Mrabet (Morocco), Roberto Schaeffer (Brazil) This chapter should be cited as: Rogelj, J., D. Shindell, K. Jiang,
    [Show full text]