Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development

Total Page:16

File Type:pdf, Size:1020Kb

Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development Mitigation Pathways Compatible with 1.5°C in the Context 2 of Sustainable Development Coordinating Lead Authors: Joeri Rogelj (Austria/Belgium), Drew Shindell (USA), Kejun Jiang (China) Lead Authors: Solomone Fifita (Fiji), Piers Forster (UK), Veronika Ginzburg (Russia), Collins Handa (Kenya), Haroon Kheshgi (USA), Shigeki Kobayashi (Japan), Elmar Kriegler (Germany), Luis Mundaca (Sweden/Chile), Roland Séférian (France), Maria Virginia Vilariño (Argentina) Contributing Authors: Katherine Calvin (USA), Joana Correia de Oliveira de Portugal Pereira (UK/Portugal), Oreane Edelenbosch (Netherlands/Italy), Johannes Emmerling (Italy/Germany), Sabine Fuss (Germany), Thomas Gasser (Austria/France), Nathan Gillett (Canada), Chenmin He (China), Edgar Hertwich (USA/Austria), Lena Höglund-Isaksson (Austria/Sweden), Daniel Huppmann (Austria), Gunnar Luderer (Germany), Anil Markandya (Spain/UK), David L. McCollum (USA/Austria), Malte Meinshausen (Australia/Germany), Richard Millar (UK), Alexander Popp (Germany), Pallav Purohit (Austria/India), Keywan Riahi (Austria), Aurélien Ribes (France), Harry Saunders (Canada/USA), Christina Schädel (USA/Switzerland), Chris Smith (UK), Pete Smith (UK), Evelina Trutnevyte (Switzerland/Lithuania), Yang Xiu (China), Wenji Zhou (Austria/China), Kirsten Zickfeld (Canada/Germany) Chapter Scientists: Daniel Huppmann (Austria), Chris Smith (UK) Review Editors: Greg Flato (Canada), Jan Fuglestvedt (Norway), Rachid Mrabet (Morocco), Roberto Schaeffer (Brazil) This chapter should be cited as: Rogelj, J., D. Shindell, K. Jiang, S. Fifita, P. Forster, V. Ginzburg, C. Handa, H. Kheshgi, S. Kobayashi, E. Kriegler, L. Mundaca, R. Séférian, and M.V. Vilariño, 2018: Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press. 93 Chapter 2 Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development Table of Contents Executive Summary .....................................................................95 2.6 Knowledge Gaps ...........................................................157 2.6.1 Geophysical Understanding........................................157 2.1 Introduction to Mitigation Pathways and the Sustainable Development Context ....................98 2.6.2 Integrated Assessment Approaches ............................158 2.1.1 Mitigation Pathways Consistent with 1.5°C .................98 2.6.3 Carbon Dioxide Removal (CDR) ..................................158 2.1.2 The Use of Scenarios ...................................................98 2.1.3 New Scenario Information since AR5 ...........................99 2.1.4 Utility of Integrated Assessment Models (IAMs) Frequently Asked Questions in the Context of this Report ......................................100 FAQ 2.1: What Kind of Pathways Limit Warming to 1.5°C and are we on Track? ...........................................159 2 2.2 Geophysical Relationships and Constraints .........101 FAQ 2.2: What do Energy Supply and Demand 2.2.1 Geophysical Characteristics of Mitigation Pathways ..101 have to do with Limiting Warming to 1.5°C? .....................161 2.2.2 The Remaining 1.5°C Carbon Budget .........................104 2.3 Overview of 1.5°C Mitigation Pathways ...............108 References ...................................................................................163 2.3.1 Range of Assumptions Underlying 1.5°C Pathways ....109 2.3.2 Key Characteristics of 1.5°C Pathways .......................112 2.3.3 Emissions Evolution in 1.5°C Pathways ......................115 2.3.4 CDR in 1.5°C Pathways ..............................................118 Box 2.1: Bioenergy and BECCS Deployment in Integrated Assessment Modelling ....................................124 2.3.5 Implications of Near-Term Action in 1.5°C Pathways ..126 2.4 Disentangling the Whole-System Transformation ..............................................................129 2.4.1 Energy System Transformation ...................................129 2.4.2 Energy Supply .............................................................130 2.4.3 Energy End-Use Sectors ..............................................136 2.4.4 Land-Use Transitions and Changes in the Agricultural Sector ................................................144 2.5 Challenges, Opportunities and Co-Impacts of Transformative Mitigation Pathways ................148 2.5.1 Policy Frameworks and Enabling Conditions ..............148 Cross-Chapter Box 5 | Economics of 1.5°C Pathways and the Social Cost of Carbon ...............................................150 2.5.2 Economic and Investment Implications of 1.5°C Pathways ....................................................................152 2.5.3 Sustainable Development Features of 1.5°C Pathways ......................................................156 94 Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development Chapter 2 Executive Summary Limiting warming to 1.5°C depends on greenhouse gas (GHG) emissions over the next decades, where lower GHG emissions in 2030 lead to a higher chance of keeping peak warming to 1.5°C This chapter assesses mitigation pathways consistent with limiting (high confidence). Available pathways that aim for no or limited (less warming to 1.5°C above pre-industrial levels. In doing so, it explores than 0.1°C) overshoot of 1.5°C keep GHG emissions in 2030 to 25–30 −1 the following key questions: What role do CO2 and non-CO2 emissions GtCO2e yr in 2030 (interquartile range). This contrasts with median −1 play? {2.2, 2.3, 2.4, 2.6} To what extent do 1.5°C pathways involve estimates for current unconditional NDCs of 52–58 GtCO2e yr in overshooting and returning below 1.5°C during the 21st century? {2.2, 2030. Pathways that aim for limiting warming to 1.5°C by 2100 after 2.3} What are the implications for transitions in energy, land use and a temporary temperature overshoot rely on large-scale deployment sustainable development? {2.3, 2.4, 2.5} How do policy frameworks of carbon dioxide removal (CDR) measures, which are uncertain and affect the ability to limit warming to 1.5°C? {2.3, 2.5} What are the entail clear risks. In model pathways with no or limited overshoot of associated knowledge gaps? {2.6} 1.5°C, global net anthropogenic CO2 emissions decline by about 45% from 2010 levels by 2030 (40–60% interquartile range), reaching net The assessed pathways describe integrated, quantitative zero around 2050 (2045–2055 interquartile range). For limiting global evolutions of all emissions over the 21st century associated warming to below 2°C with at least 66% probability CO emissions 2 2 with global energy and land use and the world economy. The are projected to decline by about 25% by 2030 in most pathways (10– assessment is contingent upon available integrated assessment 30% interquartile range) and reach net zero around 2070 (2065–2080 literature and model assumptions, and is complemented by other interquartile range).1 {2.2, 2.3.3, 2.3.5, 2.5.3, Cross-Chapter Boxes 6 in studies with different scope, for example, those focusing on individual Chapter 3 and 9 in Chapter 4, 4.3.7} sectors. In recent years, integrated mitigation studies have improved the characterizations of mitigation pathways. However, limitations Limiting warming to 1.5°C implies reaching net zero CO2 remain, as climate damages, avoided impacts, or societal co-benefits emissions globally around 2050 and concurrent deep reductions of the modelled transformations remain largely unaccounted for, while in emissions of non-CO2 forcers, particularly methane (high concurrent rapid technological changes, behavioural aspects, and confidence). Such mitigation pathways are characterized by energy- uncertainties about input data present continuous challenges. (high demand reductions, decarbonization of electricity and other fuels, confidence) {2.1.3, 2.3, 2.5.1, 2.6, Technical Annex 2} electrification of energy end use, deep reductions in agricultural emissions, and some form of CDR with carbon storage on land or The Chances of Limiting Warming to 1.5°C sequestration in geological reservoirs. Low energy demand and low and the Requirements for Urgent Action demand for land- and GHG-intensive consumption goods facilitate limiting warming to as close as possible to 1.5°C. {2.2.2, 2.3.1, 2.3.5, Pathways consistent with 1.5°C of warming above pre-industrial 2.5.1, Cross-Chapter Box 9 in Chapter 4}. levels can be identified under a range of assumptions about economic growth, technology developments and lifestyles. In comparison to a 2°C limit, the transformations required to limit However, lack of global cooperation, lack of governance of the required warming to 1.5°C are qualitatively similar but more pronounced energy and land transformation, and increases in resource-intensive and rapid over the next decades (high confidence). 1.5°C implies consumption are key impediments to achieving 1.5°C pathways. very ambitious, internationally cooperative policy environments that
Recommended publications
  • The Anthropocene: Acknowledging the Extent of Global Resource Overshoot , and What We Must Do About It
    Research, education, and policy guidance for a better global future. The Anthropocene: Acknowledging the extent of global resource overshoot , and what we must do about it. Research, education, and policy guidance for a better global future. Understanding the balance between human needs and environmental resources Research, education, and policy guidance for a better global future. The Anthropocene Story 3 minute video Reflections on the Anthropocene Story “ … we must find a safe operating space for humanity” “... we must understand resource limits and size ourselves to operate within planetary boundaries” Reflections on the Anthropocene Story “…our creativity, energy, and industry offer hope” Empty words Cognitive and behavioral paradigm shifts would offer ‘guarded’ optimism for the future. A preview of this afternoon’s discussion: 1. Realistic meta-level picture of humanity’s relationship with the planet 2. Talk about that relationship and the conceptual meaning of sustainability 3. Discuss the need for ‘transformative’ change and one approach to achieving future sustainability The Problem Climate change is not the problem. Water shortages, overgrazing, erosion, desertification and the rapid extinction of species are not the problem. Deforestation, Deforestation, reduced cropland productivity, Deforestation, reduced cropland productivity, and the collapse of fisheries are not the problem. Each of these crises, though alarming, is a symptom of a single, over-riding issue. Humanity is simply demanding more than the earth can provide. Climate change Witnessing dysfunctional human behavior Deforestation Desertification Collapse of fisheries Rapid extinction of species Supply = 1 Earth Today’s reality: Global Resource Overshoot How do we know we are - living beyond our resource means? - exceeding global capacity? - experiencing resource overshoot? • Millennium Ecosystem Assessment Released in 2005, the Millennium Ecosystem Assessment was a four-year global effort involving more than 1,300 experts that assessed the condition of and trends in the world’s ecosystems.
    [Show full text]
  • Reading 23 Limits to Growth1 Overshoot
    Reading 23 Limits to Growth1 Overshoot To overshoot means to go too far, to go be- cal, political, psychological, or other features of a yond limits accidentally—without intention. Peo- system. ple experience overshoots every day. When you The delays, too, arise in many ways. They may rise too quickly from a chair, you may momen- result from inattention, faulty data, delayed in- tarily lose your balance. If you turn on the hot formation, slow reflexes, a cumbersome or quar- water faucet too far in the shower, you may be relling bureaucracy, a false theory about how the scalded. On an icy road your car might slide past system responds, or from momentum that pre- a stop sign. At a party you may drink much more vents the system from being stopped quickly de- alcohol than your body can safely metabolize; in spite the best efforts to halt it. For example, de- the morning you will have a ferocious headache. lays may result when a driver does not realize how Construction companies periodically build more much his car’s braking traction has been reduced condominiums than are demanded, forcing them by ice on the road; the contractor uses current to sell units below cost and confront the possi- prices to make decisions about construction activ- bility of bankruptcy. Too many fishing boats are ity that will affect the market two or three years in often constructed. Then fishing fleets grow so the future; the fishing fleet owners base their deci- large that they catch far more than the sustainable sions on data about recent catch, not information harvest.
    [Show full text]
  • Aircraft Design for Reduced Climate Impact A
    AIRCRAFT DESIGN FOR REDUCED CLIMATE IMPACT A DISSERTATION SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Emily Schwartz Dallara February 2011 © 2011 by Emily Dallara. All Rights Reserved. Re-distributed by Stanford University under license with the author. This dissertation is online at: http://purl.stanford.edu/yf499mg3300 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Ilan Kroo, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Juan Alonso I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Mark Jacobson Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Commercial aviation has grown rapidly over the past several decades. Aviation emis- sions have also grown, despite improvements in fuel efficiency. These emissions affect the radiative balance of the Earth system by changing concentrations of greenhouse gases and their precursors and by altering cloud properties.
    [Show full text]
  • Metrics for Comparison of Climate Impacts from Well Mixed
    1 ACCRI Theme 7 2 3 Metrics for comparison of climate impacts from well mixed greenhouse gases and 4 inhomogeneous forcing such as those from UT/LS ozone, contrails and contrail- 5 cirrus 6 7 Piers Forster & Helen Rogers 8 9 Acknowledgement: The numbers in Table 5 and a many of the ideas are derived from a 10 unpublished manuscript led by Keith Shine that Piers Forster and Helen Rogers were co- 11 author of. 12 13 Executive Summary.......................................................................................................... 2 14 1. Introduction and Background ................................................................................. 5 15 2. Review ........................................................................................................................ 8 16 2.1. Current state of science....................................................................................... 8 17 2.1.1. Air travel – its emissions and its trends ...................................................... 8 18 2.1.2. Aviation’s climate impact......................................................................... 10 19 2.1.3. Review of the RF characteristics and uncertainties of mechanisms ......... 12 20 2.1.3.1. Chemistry of importance to aviation..................................................... 12 21 2.1.3.2. Modelling the impact of aviation.......................................................... 14 22 2.1.4. Regional and timescale issues................................................................... 16 23 2.2. Critical
    [Show full text]
  • Scientists' Letter Re: Methane
    July 29, 2014 John Holdren, Director Office of Science and Technology Policy Eisenhower Executive Office Building 1650 Pennsylvania Avenue Gina McCarthy, Administrator Washington, DC 20504 Environmental Protection Agency 1200 Pennsylvania Avenue, NW Michael Boots, Acting Chair Washington, DC 20460 Council on Environmental Quality 722 Jackson Place, NW Dan Utech, Director for Energy and Climate Washington, DC 20503 Change White House Domestic Policy Council Ernest Moniz, Secretary 1600 Pennsylvania Avenue NW Department of Energy Washington, DC 20500 1000 Independence Avenue, SW Washington, DC 20585 Re: Recommendation to accurately account for warming effects of methane We write to recommend that you take several actions to ensure that the strong, near-term warming influence of methane emissions be accurately measured, reported, and addressed in the Administration’s program to slow global warming. To assist with the development and implementation of urgently needed methane reductions – particularly in the oil and gas industry, the agricultural sector, landfills and coal mining – the most current and relevant information possible regarding the very important contributions of methane emissions to near- and long-term global climate change must be available to and used by policy-makers. Accurate representation of methane’s warming influence on the climate is important not only because methane’s warming influence over the 21st century makes it the second most important anthropogenic greenhouse gas (with a current radiative forcing of 1 watt per square 1 meter compared to 1.7 for CO2), but also – at least as importantly – because the climate system responds more quickly to methane with its short residence time in the atmosphere than to CO2, where climate lags are quite long.
    [Show full text]
  • Jeremy Baskin, “Paradigm Dressed As Epoch: the Ideology of The
    Paradigm Dressed as Epoch: The Ideology of the Anthropocene JEREMY BASKIN School of Social and Political Sciences University of Melbourne Victoria 3010, Australia Email: [email protected] ABSTRACT The Anthropocene is a radical reconceptualisation of the relationship between humanity and nature. It posits that we have entered a new geological epoch in which the human species is now the dominant Earth-shaping force, and it is rapidly gaining traction in both the natural and social sciences. This article critically explores the scientific representation of the concept and argues that the Anthropocene is less a scientific concept than the ideational underpinning for a particular worldview. It is paradigm dressed as epoch. In particular, it normalises a certain portion of humanity as the ‘human’ of the Anthropocene, reinserting ‘man’ into nature only to re-elevate ‘him’ above it. This move pro- motes instrumental reason. It implies that humanity and its planet are in an exceptional state, explicitly invoking the idea of planetary management and legitimising major interventions into the workings of the earth, such as geoen- gineering. I conclude that the scientific origins of the term have diminished its radical potential, and ask whether the concept’s radical core can be retrieved. KEYWORDS Anthropocene, ideology, geoengineering, environmental politics, earth management INTRODUCTION ‘The Anthropocene’ is an emergent idea, which posits that the human spe- cies is now the dominant Earth-shaping force. Initially promoted by scholars from the physical and earth sciences, it argues that we have exited the current geological epoch, the 12,000-year-old Holocene, and entered a new epoch, Environmental Values 24 (2015): 9–29.
    [Show full text]
  • China Air Pollution Levels
    China’s air pollution overshoots pre-crisis levels for the first time Levels of health-harming air pollutants in China have exceeded concentrations at the same time last year in the past 30 days, for the first time since the start of the COVID-19 crisis. This includes PM2.5, NO2, SO2 and ozone. Air pollutant levels plummeted during the national lockdown in February, bottomed out in early March and have now overshot their pre-crisis levels. The rebound appears to be driven by industrial emissions, as the pollution levels in the largest cities, Beijing and Shanghai, are still trailing below last year. More broadly, pollution levels tended to increase more in areas where coal-burning is a larger source of pollution. Ozone levels are close to the record level of 2018. Rebounding air pollutant levels are a demonstration of the importance of prioritizing green economy and clean energy in the recovery from the COVID-19 crisis. All eyes are on China, as the first major economy to return to work after a lockdown. China’s previous economic recoveries, including the aftermath of the Global Financial Crisis in 2008 and the SARS epidemic of 2003, have been associated with surges in air pollution and CO2 emissions. CREA’s new Air Pollution Rebound Tracker can be used to track this development in real ​ ​ time. Controlling for meteorological conditions, national average PM2.5, SO2 and ozone concentrations in the past 30 days were above their pre-crisis levels, while NO2 concentrations were at the same levels as before the crisis, showing that the rebound cannot be accounted for by weather factors.
    [Show full text]
  • On the Confounding of Overshoot and Collapse Predictions by Economic Dynamics
    On the Confounding of Overshoot and Collapse Predictions by Economic Dynamics Corey Lofdahl SAIC, 20 Mall Road, Suite 130 Burlington, Massachusetts USA 01803 [email protected] Abstract At the 19th International Conference of the System Dynamics Society held in Atlanta, Willard Fey and Ann Lam (2001) asked why system dynamicists by and large believe that the world population is limited and yet don’t act on this belief on a day to day basis. Because this is a deceptively difficult question, this study addresses it from several different perspectives. From the literature, it examines current critiques of The Limits to Growth, Malthus, and Simon’s bounded rationality. The study finds that theories, predictions, and criticisms concerning complex systems cannot be answered definitively. Instead both the initial theory and its criticisms must be considered together, a conclusion supported by 20th century philosophy. From this perspective, instead of offering definitive, closed-form solutions, three heuristics are developed. The first contrasts notions of possibility and prediction from an information theory perspective. The second examines the mechanics of standard overshoot and collapse systems and how collapse predictions can go awry. Third, an example of overshoot and collapse is examined with an eye towards timing the collapse and understanding how decision makers interpret information from within the system. Systematic errors from this smaller, economic system are then applied to Fey and Lam’s concern regarding world population, a system that may have overshot but has not yet collapsed. 1. Introduction At the 19th International Conference of the System Dynamics Society held in Atlanta, Willard Fey and Ann Lam (2001) discussed, explored, and furthered some of the key themes of The Limits to Growth (Meadows et al 1972).
    [Show full text]
  • Sources of Variability in Transport and Deposition of Arctic Aerosols in Changing Climates
    Sources of Variability in Transport and Deposition of Arctic Aerosols in Changing Climates by Chaoyi Jiao A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Atmospheric, Oceanic and Space Sciences) in The University of Michigan 2016 Doctoral Committee: Associate Professor Mark G. Flanner, Chair Assistant Professor Sarah M. Aciego Associate Professor Christiane Jablonowski Professor Joyce E. Penner c Chaoyi Jiao 2016 All Rights Reserved To my parents. ii ACKNOWLEDGEMENTS First and foremost, I would like to express my sincere gratitude to my advisor, Prof. Mark Flanner. Mark provided continuous guidance, support and encourage- ment which inspire and help me to conduct and finish my graduate research. Mark is a great mentor and I have learned a lot from his broad knowledge and experience in climate science. Mark is also a great scientist who has strong intellectual curiosity and inspires me to pursue research in many interesting topics. I would also like to thank my committee members: Prof. Sarah Aciego, Prof. Christiane Jablonowski and Prof. Joyce Penner. Their support and help were essential to this dissertation. Many collaborators and colleagues provided help and support as well. Sarah Doherty and Sabine Eckhardt offered crucial help to the datasets used in this work. I also benefited a lot from many interesting conversations and discussions shared with Tami Bond, Thomas Kirchstetter, Liang Liu, Tianye Sun and Chelsea Preble. The collaborations with Drew Shindell and Yunha Lee helped me to broaden my research horizons. I also enjoyed many discussions shared with the group members: Justin Perket, Alex Gardner, Adam Schneider, Ayoe Buus Hansen, Deepak Singh and Jamie Ward.
    [Show full text]
  • Overpopulation Is Not the Problem - Nytimes.Com Page 1 of 3
    Overpopulation Is Not the Problem - NYTimes.com Page 1 of 3 September 13, 2013 Overpopulation Is Not the Problem By ERLE C. ELLIS BALTIMORE — MANY scientists believe that by transforming the earth’s natural landscapes, we are undermining the very life support systems that sustain us. Like bacteria in a petri dish, our exploding numbers are reaching the limits of a finite planet, with dire consequences. Disaster looms as humans exceed the earth’s natural carrying capacity. Clearly, this could not be sustainable. This is nonsense. Even today, I hear some of my scientific colleagues repeat these and similar claims — often unchallenged. And once, I too believed them. Yet these claims demonstrate a profound misunderstanding of the ecology of human systems. The conditions that sustain humanity are not natural and never have been. Since prehistory, human populations have used technologies and engineered ecosystems to sustain populations well beyond the capabilities of unaltered “natural” ecosystems. The evidence from archaeology is clear. Our predecessors in the genus Homo used social hunting strategies and tools of stone and fire to extract more sustenance from landscapes than would otherwise be possible. And, of course, Homo sapiens went much further, learning over generations, once their preferred big game became rare or extinct, to make use of a far broader spectrum of species. They did this by extracting more nutrients from these species by cooking and grinding them, by propagating the most useful species and by burning woodlands to enhance hunting and foraging success. Even before the last ice age had ended, thousands of years before agriculture, hunter- gatherer societies were well established across the earth and depended increasingly on sophisticated technological strategies to sustain growing populations in landscapes long ago transformed by their ancestors.
    [Show full text]
  • Ethical Implications of Population Growth and Reduction Tiana Sepahpour [email protected]
    Fordham University Masthead Logo DigitalResearch@Fordham Student Theses 2015-Present Environmental Studies Spring 5-10-2019 Ethical Implications of Population Growth and Reduction Tiana Sepahpour [email protected] Follow this and additional works at: https://fordham.bepress.com/environ_2015 Part of the Ethics and Political Philosophy Commons, and the Natural Resources and Conservation Commons Recommended Citation Sepahpour, Tiana, "Ethical Implications of Population Growth and Reduction" (2019). Student Theses 2015-Present. 75. https://fordham.bepress.com/environ_2015/75 This is brought to you for free and open access by the Environmental Studies at DigitalResearch@Fordham. It has been accepted for inclusion in Student Theses 2015-Present by an authorized administrator of DigitalResearch@Fordham. For more information, please contact [email protected]. Ethical Implications of Population Growth and Reduction Tiana Sepahpour Fordham University Department of Environmental Studies and Philosophy May 2019 Abstract This thesis addresses the ethical dimensions of the overuse of the Earth’s ecosystem services and how human population growth exacerbates it, necessitating an ethically motivated reduction in ​ human population size by means of changes in population policy. This policy change serves the ​ goal of reducing the overall global population as the most effective means to alleviate global issues of climate change and resource abuse. Chapter 1 draws on the United Nations’ Millennium ​ Ecosystem Assessment and other sources to document the human overuse and degradation of ​ ecosystem services, including energy resources. Chapter 2 explores the history of energy consumption and climate change. Chapter 3 examines the economic impact of reducing populations and how healthcare and retirement plans would be impacted by a decrease in a working population.
    [Show full text]
  • Summary for Policymakers. In: Climate Change 2021: the Physical Science Basis
    Climate Change 2021 The Physical Science Basis Summary for Policymakers Working Group I contribution to the WGI Sixth Assessment Report of the Intergovernmental Panel on Climate Change Approved Version Summary for Policymakers IPCC AR6 WGI Summary for Policymakers Drafting Authors: Richard P. Allan (United Kingdom), Paola A. Arias (Colombia), Sophie Berger (France/Belgium), Josep G. Canadell (Australia), Christophe Cassou (France), Deliang Chen (Sweden), Annalisa Cherchi (Italy), Sarah L. Connors (France/United Kingdom), Erika Coppola (Italy), Faye Abigail Cruz (Philippines), Aïda Diongue-Niang (Senegal), Francisco J. Doblas-Reyes (Spain), Hervé Douville (France), Fatima Driouech (Morocco), Tamsin L. Edwards (United Kingdom), François Engelbrecht (South Africa), Veronika Eyring (Germany), Erich Fischer (Switzerland), Gregory M. Flato (Canada), Piers Forster (United Kingdom), Baylor Fox-Kemper (United States of America), Jan S. Fuglestvedt (Norway), John C. Fyfe (Canada), Nathan P. Gillett (Canada), Melissa I. Gomis (France/Switzerland), Sergey K. Gulev (Russian Federation), José Manuel Gutiérrez (Spain), Rafiq Hamdi (Belgium), Jordan Harold (United Kingdom), Mathias Hauser (Switzerland), Ed Hawkins (United Kingdom), Helene T. Hewitt (United Kingdom), Tom Gabriel Johansen (Norway), Christopher Jones (United Kingdom), Richard G. Jones (United Kingdom), Darrell S. Kaufman (United States of America), Zbigniew Klimont (Austria/Poland), Robert E. Kopp (United States of America), Charles Koven (United States of America), Gerhard Krinner (France/Germany, France), June-Yi Lee (Republic of Korea), Irene Lorenzoni (United Kingdom/Italy), Jochem Marotzke (Germany), Valérie Masson-Delmotte (France), Thomas K. Maycock (United States of America), Malte Meinshausen (Australia/Germany), Pedro M.S. Monteiro (South Africa), Angela Morelli (Norway/Italy), Vaishali Naik (United States of America), Dirk Notz (Germany), Friederike Otto (United Kingdom/Germany), Matthew D.
    [Show full text]