Article An Efficient Method to Predict Compressibility Factor of Natural Gas Streams Vassilis Gaganis 1,†, Dirar Homouz 2,†, Maher Maalouf 3,* , Naji Khoury 4 and Kyriaki Polychronopoulou 5,*,‡ 1 Mining and Metallurgical Engineering, National Technical University of Athens, Athens 157 73, Greece 2 Applied Mathematics and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates 3 Industrial and Systems Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates 4 Civil and Environmental Engineering, Notre Dame University Louaize, Beirut, P.O. Box 72, Zouk Mikael, Lebanon 5 Mechanical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates * Correspondence:
[email protected] (M.M.);
[email protected] (K.P.) † These authors contributed equally to this work. ‡ Current address: Center for Catalysis and Separations, Khalifa University, Abu Dhabi, P.O.Box 127788, United Arab Emirates. Received: 17 April 2019; Accepted: 24 May 2019; Published: 4 July 2019 Abstract: The gas compressibility factor, also known as the deviation or Z-factor, is one of the most important parameters in the petroleum and chemical industries involving natural gas, as it is directly related to the density of a gas stream, hence its flow rate and isothermal compressibility. Obtaining accurate values of the Z-factor for gas mixtures of hydrocarbons is challenging due to the fact that natural gas is a multicomponent, non-ideal system. Traditionally, the process of estimating the Z-factor involved simple empirical correlations, which often yielded weak results either due to their limited accuracy or due to calculation convergence difficulties.