3. Systems Inquiry and Its Application in Education

Total Page:16

File Type:pdf, Size:1020Kb

3. Systems Inquiry and Its Application in Education 3. SYSTEMS INQUIRY AND ITS APPLICATION IN EDUCATION Bela H. Banathy INTERNATIONAL SYSTEMS INSTITUTE 3.1 PART 1: SYSTEMS INQUIRY theory, the science of complexity. In defining systems theory, I review the key ideas of Bertalanffy and Boulding, who were The first part of this chapter is a review of the evolution two of the founders of the Society for the Advancement of of the systems movement and a discussion of human sys- General Systems Theory. Later, the name of the society was tems inquiry. changed to the Society for General Systems Research, then the International Society for Systems research, and recently 3.1.1 A Definition of Systems Inquiry to the International Society for the Systems Sciences. Systems inquiry incorporates three interrelated domains 3.1.1.1.1. Bertalanffy (1956, pp. 1—10). He suggested of disciplined inquiry: systems theory, systems philosophy, that “modem science is characterized by its ever-increasing and systems methodology. Bertalanffy (1968) notes that in specialization, necessitated by the enormous amount of data, contrast with the analytical, reductionist, and linear-causal the complexity of techniques, and structures within every paradigm of classical science, systems philosophy brings forth field. This, however, led to a breakdown of science as an a reorientation of thought and world view, manifested by an integrated realm. “Scientists, operating in the various dis- expansionist, nonlinear dynamic, and synthetic mode of ciplines, are encapsulated in their private universe, and it is thinking. The scientific exploration of systems theories and difficult to get word from one cocoon to the other.” Against the development of systems theories in the various sciences this background, he observes a remarkable development, have brought forth a general theory of systems, a set of inter- namely, that “similar general viewpoints and conceptions related concepts and principles, applying to all systems. Sys- have appeared in very different fields.” Reviewing this de- tems methodology provides us with a set of models, strate- velopment in those fields, Bertalanffy suggests that there exist gies, methods, and tools that instrumentalize systems theory models, principles, and laws that can be generalized across and philosophy in analysis, design, development, and man- various systems, their components, and the relationships agement of complex systems. among them. “It seems legitimate to ask for a theory, not of systems of a more or less special kind, but of universal prin- 3.1.1.1. Systems Theory. During the early 1950s, the ciples applying to systems in general.” basic concepts and principles of a general theory of systems were set forth by such pioneers of the systems movement as The first consequence of this approach is the recognition Ashby, Bertalanffy, Boulding, Fagen, Gerard, Rappoport, and of the existence of systems properties that are general and Wienner. They came from a variety of disciplines and fields structural similarities or isomorphies in different fields: of study. They shared and articulated a common conviction: the unified nature of reality. They recognized a compelling There are correspondences in the principles which govern need for a unified disciplined inquiry in understanding and the behavior of entities that are intrinsically widely different. dealing with increasing complexities, complexities that are These correspondences are due to the fact that they all can be considered, in certain aspects, “systems,” that is, complexes beyond the competence of any single discipline. As a result, of elements standing in interaction. [It seems] that a general they developed a transdisciplinary perspective that empha- theory of systems would be a useful tool providing, on the sized the intrinsic order and interdependence of the world in one hand, models that can be used in, and transferred to, all its manifestations. From their work emerged systems different fields, and safeguarding, on the other hand, from vague analogies which often have marred the progress in This paper is dedicated to the memory of my dear friend these fields. and colleague, Kenneth Boulding, one of the founders of the systems movement and the first president of the Society for General Systems Research. The second consequence of the idea of a general theory Somewhere between the specific that has no meaning and is to deal with organized complexity, which is a main prob- the general that has no content there must be, for each lem of modern science. purpose and at each level of abstraction, an optimum degree of generality. Concepts like those of organization, wholeness, directiveness, teleology, control, self-regulation, differentia- The objectives of GST, then, can be set out with varying tion, and the like are alien to conventional science. However, degrees of ambitions and confidence. At a low level of am- they pop up everywhere in the biological, behavioral, and bition, but with a high degree of confidence, it aims to point social scrences and are, in fact, indispensable for dealing out similarities in the theoretical constructions of different with living organisms or social groups. Thus, a basic problem disciplines, where these exist, and to develop theoretical posed to modern science is a general theory of organization. models having applicability to different fields of study. At a General Systems Theory is, in principle, capable of giving higher level of ambition, but perhaps with a lower level of exact definitions for such concepts. confidence, it hopes to develop something like a “spectrum” Thirdly, Bertalanffy suggested that it is important to say of theories—a system of systems that may perform a “ge- what a general theory of systems is not. It is not identical stalt” in theoretical constructions. It is the main objective of with the triviality of mathematics of some sort that can be GST, says Boulding, to develop “generalized ears” that over- applied to any sort of problems; instead “it poses special come the “specialized deafness” of the specific disciplines, problems that are far from being trivial.” It is not meaning that someone who ought to know something that someone else knows isn’t able to find it out for lack of gen- a search for superficial analogies between physical, eralized ears. Developing a framework of a general theory biological, and social systems. The isomorphy we have will enable the specialist to catch relevant communications mentioned is a consequence of the fact that, in certain from others. aspects, corresponding abstractions and conceptual models can be applied to different phenomena. It is only in view of In the closing section of his paper, Boulding referred to these aspects that system laws apply. the subtitle of his paper: GST as “the skeleton of science. It Bertalanffy summarizes the aims of a general theory of is a skeleton in the sense—he says—that: systems as follows: It aims to provide a framework or structure of systems on which to hang the flesh and blood of particular disciplines (a) There is a general tendency towards integration in the and particular subject matters in an orderly and coherent various sciences, natural and social. (b) Such integration corpus of knowledge. It is also, however, something of a seems to be centered in a general theory of systems. (c) Such skeleton in a cupboard—the cupboard in this case being the theory may be an important means of aiming at exact theory unwillingness of science to admit the tendency to shut the in the nonphysical fields of science. (d) Developing unifying door on problems and subject matters which do not fit easily principles running “vertically” through the universe of the into simple mechanical schemes. Science, for all its success, individual sciences, this theory brings us nearer to the goal of still has a very long way to go. GST may at times be an the unity of sciences. (e) This can lead to a much needed embarrassment in pointing out how very far we still have to integration in scientific education. go, and in deflating excessive philosophical claims for overly Commenting later on education, Bertalanffy noted that simple systems. It also may be helpful, however, in pointing education treats the various scientific disciplines as separate out to some extent where we have to go. The skeleton must come out of the cupboards before its dry bones can live. domains, where increasingly smaller subdomains become separate sciences, unconnected with the rest. In contrast, the The two papers introduced above set forth the vision of educational demands of scientific generalists and developing the systems movement. That vision still guides us today. At transdisciplinary basic principles are precisely those that this point it seems to be appropriate to tell the story that marks General Systems Theory (GST) tries to fill. In this sense, the genesis of the systems movement. Kenneth Boulding told GST seems to make an important headway toward this story at the occasion when I was privileged to present to transdisciplinary synthesis and integrated education. him the distinguished scholarship award of the Society of General Systems Research at our 1983 Annual Meeting. The 3.1.1.1.2. Boulding (1956, pp. 11—17). He underscored year was 1954. At the Center for Behavioral Sciences, at the need for a general theory as he suggested that in recent Stanford University, four Center Fellows—Bertalanffy (bi- years increasing need has been felt for a body of theoretical ology), Boulding (economics), Gerard (psychology), and constructs that will discuss the general relationships of the Rappoport (mathematics) — had a discussion in a meeting empirical world. room. Another Center Fellow walked in and asked: “What’s This is the quest of General Systems Theory (GST). It going on here?” Ken answered: “We are angered about the does not seek, of course, to establish a single, self-contained state of the human condition and ask: ‘What can we—what “general theory of practically everything” which will replace can science—do about improving the human condition? all the special theories of particular disciplines.
Recommended publications
  • Systems Thinking: Managing Chaos and Complexity This Page Intentionally Left Blank Systems Thinking: Managing Chaos and Complexity
    Systems Thinking: Managing Chaos and Complexity This Page Intentionally Left Blank Systems Thinking: Managing Chaos and Complexity A Platform for Designing Business Architecture SECOND EDITION Jamshid Gharajedaghi AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Butterworth-Heinemann is an imprint of Elsevier Butterworth-Heinemann is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK This book is printed on acid-free paper. Copyright © 2006, Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: [email protected]. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.” Library of Congress Cataloging-in-Publication Data Gharajedaghi, Jamshid. Systems thinking : managing chaos and complexity : a platform for designing business architecture / Jamshid Gharajedaghi. p. cm. Includes bibliographical references and index. ISBN 0-7506-7163-7 (alk. paper) 1. System analysis. 2. Chaotic behavior in systems. 3. Industrial management. 4. Technological complexity. I. Title. T57.6.G52 1999 003—dc21 98-55939 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.
    [Show full text]
  • Consciousness and Its Evolution: from a Human Being to a Post-Human
    Uniwersytet Marii Curie-Skłodowskiej w Lublinie Wydział Filozofii i Socjologii Taras Handziy Consciousness and Its Evolution: From a Human Being to a Post-Human Rozprawa doktorska napisana pod kierunkiem dr hab. Zbysława Muszyńskiego, prof. nadzw. UMCS Lublin 2014 Table of Contents Introduction ………………………………………………………………………………………. 8 Chapter 1: Consciousness, Mind, and Body …………………………………………………… 18 1.1 Conceptions of Consciousness …………………………………………………………. 18 1.1.1 Colin McGinn’s Conception of Consciousness ……………………………………….... 18 1.1.1.1 Owen Flanagan’s Analysis of Colin McGinn’s Conception of Consciousness ….…….. 20 1.1.2 Paola Zizzi’s Conception of Consciousness ………………………………………….… 21 1.1.3 William James’ Stream of Consciousness ……………………………………………… 22 1.1.4 Ervin Laszlo’s Conception of Consciousness …………………………………………... 22 1.2 Consciousness and Soul ………………………………………...………………………. 24 1.3 Problems in Definition of Consciousness ………………………………………………. 24 1.4 Distinctions between Consciousness and Mind ………………………………………... 25 1.5 Problems in Definition of Mind ………………………………………………………… 26 1.6 Dogmatism in Mind and Mind without Dogmatism ……………………………………. 27 1.6.1 Dogmatism in Mind …………………………………………………………………….. 27 1.6.2 Mind without Dogmatism …………………………………………………………….… 28 1.6.3 Rupert Sheldrake’s Dogmatism in Science …………………………………………….. 29 1.7 Criticism of Scientific Approaches towards Study of Mind ……………….…………… 30 1.8 Conceptions of Mind …………………………………………………………………… 31 1.8.1 Rupert Sheldrake’s Conception of Extended Mind …………………………………….. 31 1.8.2 Colin McGinns’s Knowing and Willing Halves of Mind ……………………………..... 34 1.8.3 Francisco Varela’s, Evan Thompson’s, and Eleanor Rosch’s Embodied Mind ………... 35 1.8.4 Andy Clark’s Extended Mind …………………………………………………………... 35 1.8.5 Role of Mind Understood by Paola Zizzi ………………………………………………. 36 1.9 Mind in Buddhism, Consciousness in Tibetan Buddhism ……………………………… 36 1.9.1 Mind in Buddhism ……………………………………………………………………… 36 1.9.2 B.
    [Show full text]
  • 1 Umpleby Stuart Reconsidering Cybernetics
    UMPLEBY STUART RECONSIDERING CYBERNETICS The field of cybernetics attracted great attention in the 1950s and 1960s with its prediction of a Second Industrial Revolution due to computer technology. In recent years few people in the US have heard of cybernetics (Umpleby, 2015a, see Figures 1 and 2 at the end of Paper). But a wave of recent books suggests that interest in cybernetics is returning (Umpleby and Hughes, 2016, see Figure at the end of Paper). This white paper reviews some basic ideas in cybernetics. I recommend these and other ideas as a resource for better understanding and modeling of social systems, including threat and response dynamics. Some may claim that whatever was useful has already been incorporated in current work generally falling under the complexity label, but that is not the case. Work in cybernetics has continued with notable contributions in recent years. Systems science, complex systems, and cybernetics are three largely independent fields with their own associations, journals and conferences (Umpleby, 2017). Four types of descriptions used in social science After working in social science and systems science for many years I realized that different academic disciplines use different basic elements. Economists use measurable variables such as price, savings, GDP, imports and exports. Psychologists focus on ideas, concepts and attitudes. Sociologists and political scientists focus on groups, organizations, and coalitions. Historians and legal scholars emphasize events and procedures. People trained in different disciplines construct different narratives using these basic elements. One way to reveal more of the variety in a social system is to create at least four descriptions – one each using variables, ideas, groups, and events (See the figures and tables in Medvedeva & Umpleby, 2015).
    [Show full text]
  • 82 Chapter IV Niklas Luhmann's Communicative Systems Theory
    Chapter IV Niklas Luhmann’s Communicative Systems Theory Framework With his concentrated formulations in Ecological Communication (1989), Luhmann deals with ecological communication far more directly than Bateson. In principle, that must make it easier to introduce his framework, especially given the additional facility his highly systematic approach to both writing and composing was supposed to impart. In reality, however, it is no less difficult introducing Luhmann in the current context because of the following factors: One, he has been no less lucky than was Bateson at having been “discovered” and had his general thought introduced by the excellent introducers to his individual books that have been translated into English.1 Two, the temptation to introduce Luhmann’s overall social theory, instead of focusing strictly on his theory of EC, is enormous: The temptation is only transformed into a treacherous pressure because of his systematic style of writing and conceptualization in which each one of his individual philosophical forays is to a great extent a specific replay of his overall philosophy. For example, his theory of EC is, in most ways, a tightly- designed and shortened localization of his larger philosophy of social systems. Three, and in relation to the above, it is also very tempting to introduce the history of systems theory as a whole (part of which I have done already in the earlier part of this essay), make a comprehensive gesture at placing Luhmann’s particular interventions within it (constitutive of his overall systems philosophy), and then to place his theory of EC within the above two. And, four, Luhmann’s work is highly self-referential, obtuse, abstract, and frightfully repetitive! What follows below does not completely resolve the above technical difficulties of introducing—some of which translate, on the whole, into the age-old problem of detecting and managing avoidable detail.
    [Show full text]
  • What Is Systems Theory?
    What is Systems Theory? Systems theory is an interdisciplinary theory about the nature of complex systems in nature, society, and science, and is a framework by which one can investigate and/or describe any group of objects that work together to produce some result. This could be a single organism, any organization or society, or any electro-mechanical or informational artifact. As a technical and general academic area of study it predominantly refers to the science of systems that resulted from Bertalanffy's General System Theory (GST), among others, in initiating what became a project of systems research and practice. Systems theoretical approaches were later appropriated in other fields, such as in the structural functionalist sociology of Talcott Parsons and Niklas Luhmann . Contents - 1 Overview - 2 History - 3 Developments in system theories - 3.1 General systems research and systems inquiry - 3.2 Cybernetics - 3.3 Complex adaptive systems - 4 Applications of system theories - 4.1 Living systems theory - 4.2 Organizational theory - 4.3 Software and computing - 4.4 Sociology and Sociocybernetics - 4.5 System dynamics - 4.6 Systems engineering - 4.7 Systems psychology - 5 See also - 6 References - 7 Further reading - 8 External links - 9 Organisations // Overview 1 / 20 What is Systems Theory? Margaret Mead was an influential figure in systems theory. Contemporary ideas from systems theory have grown with diversified areas, exemplified by the work of Béla H. Bánáthy, ecological systems with Howard T. Odum, Eugene Odum and Fritj of Capra , organizational theory and management with individuals such as Peter Senge , interdisciplinary study with areas like Human Resource Development from the work of Richard A.
    [Show full text]
  • Systems Thinking Is the Process of Understanding How Things Influence One Another Within a Whole
    Systems Thinking Systems thinking is the process of understanding how things influence one another within a whole. In nature, systems thinking examples include ecosystems in which various elements such as air, water, movement, plants, and animals work together to survive or perish. In organizations, systems consist of people, structures, and processes that work together to make an organization healthy or unhealthy. Systems Thinking has been defined as an approach to problem solving, by viewing "problems" as parts of an overall system, rather than reacting to specific part, outcomes or events and potentially contributing to further development of unintended consequences. Systems thinking is not one thing but a set of habits or practices [1] within a framework that is based on the belief that the component parts of a system can best be understood in the context of relationships with each other and with other systems, rather than in isolation. Systems thinking focuses on cyclical rather than linear cause and effect. In science systems, it is argued that the only way to fully understand why a problem or element occurs and persists is to understand the parts in relation to the whole. [2] Standing in contrast to Descartes's scientific reductionism and philosophical analysis , it proposes to view systems in a holistic manner. Consistent with systems philosophy , systems thinking concerns an understanding of a system by examining the linkages and 1 / 8 Systems Thinking interactions between the elements that compose the entirety of the system. Science systems thinking attempts to illustrate that events are separated by distance and time and that small catalytic events can cause large changes in complex systems .
    [Show full text]
  • Gregory Bateson, Cybernetics, and the Social/Behavioral Sciences
    GREGORY BATESON, CYBERNETICS, AND THE SOCIAL/BEHAVIORAL SCIENCES ABSTRACT Gregory Bateson's interdisciplinary work in Anthropology, Psychiatry, Evolution, and Epistemology was profoundly influenced by the ideas set forth in systems theory, communication theory, information theory and cybernetics. As is now quite common, Bateson used the single term cybernetics in reference to an aggregate of these ideas that grew together shortly after World War II. For him, cybernetics, or communication theory, or information theory, or systems theory, together constituted a unified set of ideas, and he was among the first to appreciate the fact that the patterns of organization and relational symmetry evident in all living systems are indicative of mind. Here, we must not forget that due to the nineteenth century polemic between science and religion, any consideration of purpose and plan, e.g., mental process, had been a priori excluded from science as non-empirical, or immeasurable. Any reference to mind as an explanatory or causal principle had been banned from biology. Even in the social/behavioral sciences, references to mind remained suspect. Building on the work of Norbert Wiener, Warren McCulloch, and W. Ross Ashby, Bateson realized that it is precisely mental process or mind which must be investigated. Thus, he formulated the criteria of mind and the cybernetic epistemology that are pivotal elements in his "ecological philosophy." In fact, he referred to cybernetics as an epistemology: e.g., the model, itself, is a means of knowing what sort of world this is, and also the limitations that exist concerning our ability to know something (or perhaps nothing) of such matters.
    [Show full text]
  • SYSTEMS SCIENCE and CYBERNETICS – Vol
    SYSTEMS SCIENCE AND CYBERNETICS – Vol. I - Systems Science and Cybernetics: The Long Road to World Sociosystemicity - Francisco Parra-Luna SYSTEMS SCIENCE AND CYBERNETICS: THE LONG ROAD TO WORLD SOCIOSYSTEMICITY Francisco Parra-Luna Facultad de Ciencias Políticas y Sociología, Universidad Complutense de Madrid, Spain Keywords: Relativism, Complementarism, Critical science, Epistemology, Hard Systems, Soft Systems, Interpretivism, Methodology, System Science, System Thinking, Total Systems Intervention, Universals, Inputs, Transformation, Objective Outputs, Subjective Outputs, First Outputs, Second Outputs, Regulation, Feedback, Control, cybernetics, Needs, Values, Reference Pattern of Values, Change, Progress, World Pseudosystem. Contents 1. Introduction 2. The Essential Features of the Systemic Method 3. Types of Systems 4. The Universal Scope of Systems 5. Current Trends 5.1. The Return of the Subject 5.2. Information Systems 5.3. Artificial Intelligence 5.4. Internet 5.5. Management 5.6. Critical Systems Theory 5.7. The “World” System 5.8. Systemic Ethics 5.9. Theoretical-Methodological Integration 5.10. Formal Systems 5.11. Biomedical Studies 6. The Social System Concept: Differential Characteristics 7. Social Synergy as a Rational Design 8. Content andUNESCO Structure of Contributions to –this ThemeEOLSS 9. Application of Systems Science and Cybernetics: Modeling Society 10. Does the System Change? 11. Needs and Values: the Reference Pattern of Values 12. System Outputs:SAMPLE Raison D’ Être of “Systems CHAPTERS Science and Cybernetics” 13. An Axiological Model of the World Pseudosystem 14. A New Model for the World System? 15. Conclusion Glossary Bibliography Biographical Sketch Summary ©Encyclopedia of Life Support Systems (EOLSS) SYSTEMS SCIENCE AND CYBERNETICS – Vol. I - Systems Science and Cybernetics: The Long Road to World Sociosystemicity - Francisco Parra-Luna This introductory article is implicitly divided into two parts.
    [Show full text]
  • Conceptual Trends in the History of Systems Philosophy
    International Journal of Humanities and Social Science Vol. 1 No. 11 [Special Issue – August 2011] Conceptual Trends in the History of Systems Philosophy Robert Drury King Assistant Professor, Department of Humanities Sierra Nevada College 999 Tahoe Boulevard, Incline Village, NV Email: [email protected] Abstract This article charts the history of the concept of system in order to establish a set of conceptual trends in the philosophy of systems. Establishing the importance of the German Idealists, and especially Hegel, in this history, we then focus on the system of Leibniz since he marks a decisive turn toward the problem of individuation within the systematic, ontological immanence so important to Hegel and later, Gilles Deleuze. We also concentrate on the Kantian system, however, because the system ontologies of Hegel and Deleuze are defined most clearly as post-Kantian projects. Finally, the article defines the problem of “system individuation” as a recent historical trend in systems philosophy, a project unique to both Hegel and Deleuze. Key Words: system, individuation, autopoiesis, German Idealism, Hegel, Leibniz, Kant, Deleuze 1. Introduction Little attention has been paid to the historical development of the concept of system in order to understand what is meant by the term. Yet work outside of philosophy—work in experimental embryology, developmental psychology, sociological theory, even the physical and chemical sciences—has converged on a conception of system which first found decisive focus in the German Idealist philosophical tradition. To be sure, the widespread, even casual, use of the term in the 20th and 21st centuries—we speak readily of „ecosystems,‟ „political systems‟—owes a conceptual debt to the German Idealists who first formalized the notion of system as a philosophical concept in its own right.
    [Show full text]
  • ISA - RC 51 on SOCIOCYBERNETICS - Science of Social Systems - Dr
    ISA - RC 51 ON SOCIOCYBERNETICS - Science of Social Systems - Dr. Bernd R.Hornung 23.08.2005 ________________________________________________________________________ European Systems Science Union (ESSU) 6th Congress Paris, France, September 19-22, 2005 SYMPOSION ON SOCIOCYBERNETICS "Social Complexities from the Individual to Cyberspace" PRINCIPLES OF SOCIOCYBERNETICS Bernd R. Hornung Dr. rer. soc., Diplomsoziologe Senior Researcher and Data Protection Commissioner Marburg University, Germany University Hospital - Data Protection Office Robert-Koch-Str. 5, D-33037 Marburg E-mail: [email protected], Fax: +6421 286 6572; Phone +6421 286 6395 ABSTRACT Keywords: System Theory, Cybernetics, Sociocybernetics, Social Systems, Constructivism The paper aims at providing a short introductory outline of what is sociocybernetics, how it relates to (general) system theory and cybernetics, and to illustrate how some of its basic principles can be applied to sociology. Sociocybernetics is defined as the application of systems science and first and second order cybernetics to sociology and other social sciences. The paper will then briefly sketch in which way systems science and cybernetics, at a meta-disciplinary level, constitute a paradigm in the sense of Thomas S. Kuhn. A third part of the paper will be devoted to identifying some of the basic principles of system theory and cybernetics like circular causality, positive and negative feedback, steering and control, goal-orientation, information processing and communication, boundaries and boundary maintenance, interrelated components, holon-property and emergence, and finally self-organization/self-reference and the observer-dependence of all knowledge in the context of second order cybernetics. Limitations of time may lead to not dealing with all of these concepts in the presentation.
    [Show full text]
  • Overview of Systems Philosophy
    Snow On The Desert A Study of Natural Systems http://snowonthedesert.com Overview of Systems Philosophy Date : February 26, 2018 This section is part of a chapter which includes: Overview of Systems Philosophy Section on Natural Systems Overview of Bowen Theory The purpose of this chapter is to position Bowen theory in relation to mainstream research and applied psychology. An important aspect of describing this position is to distinguish the unique paradigmatic position of the theory, which to the greatest extent is called here natural systems philosophy. Without such a distinction, it is easy to confuse the subtle meanings of biological terms used in Bowen theory such as basic-self, emotion, differentiation, fusion, etc. with general systems or non-systems concepts, and lose sight of the broad reach of Bowen’s contribution to the natural sciences. Like the prominent systems philosophers described earlier, Bowen valued developing an integrative framework which organizes information from many levels and believed this would only be possible with a move to systems thinking. He worked in the context of a grand integrative natural system theory which would “bind the millions of disparate facts of the physical universe into one, overarching system” (Wylie, 1991). However, it is probably not accurate to say that Bowen conducted his research within the systems paradigm as it is understood by prominent systems philosophers. We will position Bowen’s work in relation to popular systems philosophers by first examining popular notions of systems philosophy, followed by a look at what set Bowen apart in his natural systems view. First, we will review the philosophical foundation of the systems paradigm in general and what sets it apart from mainstream science.
    [Show full text]
  • Systems Philosophy and Cybernetics
    Systems Philosophy and Cybernetics Nagib Callaos Founding President of the International Institute of Informatics and Systemics (IIIS) Abstract1 The general purpose of this article is to outline the intellectual importance and the pragmatic value of Cybernetics Philosophy. With this orientation, we will try to show the plausibility that Cybernetics, in its essence, is not new but, on the contrary, it seems consubstantial with human nature and, plausibly with Nature itself. Based on this plausibility, we will try to reason why it is intellectually important and pragmatically valuable, to foster reflections oriented to a Philosophy of Cybernetics. Consequently, we will suggest that applying systems philosophy, to be applied to Cybernetic systems, as a species. Additionally, it would be required to identify the differentia specifica of cybernetic systems and, hence, add other predicates to the notion of Cybernetics. This does not mean that we will be suggesting the use of the Aristotelian Definition and adding another definition to the overwhelming number of definitions that already exist. What we are suggesting is to use the Aristotelian notion of ‘definition’, in a more comprehensive context, i.e., not to define but to describe the notion or the idea of Cybernetics. In this context, we suggest the support of ‘Control Philosophy’ as a source to identify the differentia specifica of “cybernetics” in the context of the genus “general system”. This suggestion will emerge as we provide details regarding the con-essential nature of cybernetics to human beings and potential with Nature and its Evolution. Based on the details, we will provide regarding the above paragraph, we will suggest cybernetic relationships that tacitly, implicitly, or explicitly exist between the most important notions; which we will provide as related to the general- purpose briefly described above.
    [Show full text]