Systems Thinking in Systems Engineering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Systems Thinking: Managing Chaos and Complexity This Page Intentionally Left Blank Systems Thinking: Managing Chaos and Complexity
Systems Thinking: Managing Chaos and Complexity This Page Intentionally Left Blank Systems Thinking: Managing Chaos and Complexity A Platform for Designing Business Architecture SECOND EDITION Jamshid Gharajedaghi AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Butterworth-Heinemann is an imprint of Elsevier Butterworth-Heinemann is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK This book is printed on acid-free paper. Copyright © 2006, Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: [email protected]. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.” Library of Congress Cataloging-in-Publication Data Gharajedaghi, Jamshid. Systems thinking : managing chaos and complexity : a platform for designing business architecture / Jamshid Gharajedaghi. p. cm. Includes bibliographical references and index. ISBN 0-7506-7163-7 (alk. paper) 1. System analysis. 2. Chaotic behavior in systems. 3. Industrial management. 4. Technological complexity. I. Title. T57.6.G52 1999 003—dc21 98-55939 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. -
Consciousness and Its Evolution: from a Human Being to a Post-Human
Uniwersytet Marii Curie-Skłodowskiej w Lublinie Wydział Filozofii i Socjologii Taras Handziy Consciousness and Its Evolution: From a Human Being to a Post-Human Rozprawa doktorska napisana pod kierunkiem dr hab. Zbysława Muszyńskiego, prof. nadzw. UMCS Lublin 2014 Table of Contents Introduction ………………………………………………………………………………………. 8 Chapter 1: Consciousness, Mind, and Body …………………………………………………… 18 1.1 Conceptions of Consciousness …………………………………………………………. 18 1.1.1 Colin McGinn’s Conception of Consciousness ……………………………………….... 18 1.1.1.1 Owen Flanagan’s Analysis of Colin McGinn’s Conception of Consciousness ….…….. 20 1.1.2 Paola Zizzi’s Conception of Consciousness ………………………………………….… 21 1.1.3 William James’ Stream of Consciousness ……………………………………………… 22 1.1.4 Ervin Laszlo’s Conception of Consciousness …………………………………………... 22 1.2 Consciousness and Soul ………………………………………...………………………. 24 1.3 Problems in Definition of Consciousness ………………………………………………. 24 1.4 Distinctions between Consciousness and Mind ………………………………………... 25 1.5 Problems in Definition of Mind ………………………………………………………… 26 1.6 Dogmatism in Mind and Mind without Dogmatism ……………………………………. 27 1.6.1 Dogmatism in Mind …………………………………………………………………….. 27 1.6.2 Mind without Dogmatism …………………………………………………………….… 28 1.6.3 Rupert Sheldrake’s Dogmatism in Science …………………………………………….. 29 1.7 Criticism of Scientific Approaches towards Study of Mind ……………….…………… 30 1.8 Conceptions of Mind …………………………………………………………………… 31 1.8.1 Rupert Sheldrake’s Conception of Extended Mind …………………………………….. 31 1.8.2 Colin McGinns’s Knowing and Willing Halves of Mind ……………………………..... 34 1.8.3 Francisco Varela’s, Evan Thompson’s, and Eleanor Rosch’s Embodied Mind ………... 35 1.8.4 Andy Clark’s Extended Mind …………………………………………………………... 35 1.8.5 Role of Mind Understood by Paola Zizzi ………………………………………………. 36 1.9 Mind in Buddhism, Consciousness in Tibetan Buddhism ……………………………… 36 1.9.1 Mind in Buddhism ……………………………………………………………………… 36 1.9.2 B. -
Hard Or Soft Environmental Systems?
HARD OR SOFT ENVIRONMENTAL SYSTEMS? M.B . Beck International Institute for Applied Systems Analysis, Austria RR-81-4 March 1981 Reprinted from Ecological Modelling, volume 11 (1981) INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS Laxenburg, Austria Research Reports, which record research conducted at IIASA, are independently reviewed before publication. However, the views and opinions they express are not necessarily those of the Institute or the National Member Organizations that support it. Reprinted with permission from Ecological Modelling 11 :233 - 251 , 1981 Copyright© 1981 Elsevier Scientific Publishing Company All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without permission in writing from the copyright holder. iii FOREWORD In recent years there has been considerable interest in developing models for river and lake ecological systems, much of it directed toward large and complex simulation models. However, this trend gives rise to concern on several important counts. In particular, relatively little attention has been given to the problems of uncertainty and errors in field data, of inadequate amounts of field data, and of uncertainty about parameter estimates and the relations between important variables. The work of the International Institute for Applied Systems Analysis (IIASA) on environmental quality control and management is addressing problems such as these, and one of the principal themes of the work is to develop a framework for modeling poorly defined environmental systems. This paper discusses, in qualitative terms, the preliminary outlines of such a frame work. -
Systems Thinking in Tobacco Control
NCI TOBACCO CONTROL MONOGRAPH SERIES 18 National Cancer Institute Greater Than the Sum Systems Thinking in Tobacco Control Edited by Allan Best, Ph.D. Pamela I. Clark, Ph.D. Scott J. Leischow, Ph.D. U.S. DEPARTMENT William M. K. Trochim, Ph.D. OF HEALTH AND HUMAN SERVICES National Institutes of Health Other NCI Tobacco Control Monographs Strategies to Control Tobacco Use in the United States: A Blueprint for Public Health Action in the 1990’s. Smoking and Tobacco Control Monograph No. 1. NIH Pub. No. 92-3316, December 1991. Smokeless Tobacco or Health: An International Perspective. Smoking and Tobacco Control Monograph No. 2. NIH Pub. No. 92-3461, September 1992. Major Local Tobacco Control Ordinances in the United States. Smoking and Tobacco Control Monograph No. 3. NIH Pub. No. 93-3532, May 1993. Respiratory Health Effects of Passive Smoking: Lung Cancer and Other Disorders. Smoking and Tobacco Control Monograph No. 4. NIH Pub. No. 93-3605, August 1993. Tobacco and the Clinician: Interventions for Medical and Dental Practice. Smoking and Tobacco Control Monograph No. 5. NIH Pub. No. 94-3693, January 1994. Community-based Interventions for Smokers: The COMMIT Field Experience. Smoking and Tobacco Control Monograph No. 6. NIH Pub. No. 95-4028, August 1995. The FTC Cigarette Test Method for Determining Tar, Nicotine, and Carbon Monoxide Yields of U.S. Cigarettes. Report of the NCI Expert Committee. Smoking and Tobacco Control Monograph No. 7. NIH Pub. No. 96-4028, August 1996. Changes in Cigarette-Related Disease Risks and Their Implications for Prevention and Control. Smoking and Tobacco Control Monograph No. -
1 Umpleby Stuart Reconsidering Cybernetics
UMPLEBY STUART RECONSIDERING CYBERNETICS The field of cybernetics attracted great attention in the 1950s and 1960s with its prediction of a Second Industrial Revolution due to computer technology. In recent years few people in the US have heard of cybernetics (Umpleby, 2015a, see Figures 1 and 2 at the end of Paper). But a wave of recent books suggests that interest in cybernetics is returning (Umpleby and Hughes, 2016, see Figure at the end of Paper). This white paper reviews some basic ideas in cybernetics. I recommend these and other ideas as a resource for better understanding and modeling of social systems, including threat and response dynamics. Some may claim that whatever was useful has already been incorporated in current work generally falling under the complexity label, but that is not the case. Work in cybernetics has continued with notable contributions in recent years. Systems science, complex systems, and cybernetics are three largely independent fields with their own associations, journals and conferences (Umpleby, 2017). Four types of descriptions used in social science After working in social science and systems science for many years I realized that different academic disciplines use different basic elements. Economists use measurable variables such as price, savings, GDP, imports and exports. Psychologists focus on ideas, concepts and attitudes. Sociologists and political scientists focus on groups, organizations, and coalitions. Historians and legal scholars emphasize events and procedures. People trained in different disciplines construct different narratives using these basic elements. One way to reveal more of the variety in a social system is to create at least four descriptions – one each using variables, ideas, groups, and events (See the figures and tables in Medvedeva & Umpleby, 2015). -
82 Chapter IV Niklas Luhmann's Communicative Systems Theory
Chapter IV Niklas Luhmann’s Communicative Systems Theory Framework With his concentrated formulations in Ecological Communication (1989), Luhmann deals with ecological communication far more directly than Bateson. In principle, that must make it easier to introduce his framework, especially given the additional facility his highly systematic approach to both writing and composing was supposed to impart. In reality, however, it is no less difficult introducing Luhmann in the current context because of the following factors: One, he has been no less lucky than was Bateson at having been “discovered” and had his general thought introduced by the excellent introducers to his individual books that have been translated into English.1 Two, the temptation to introduce Luhmann’s overall social theory, instead of focusing strictly on his theory of EC, is enormous: The temptation is only transformed into a treacherous pressure because of his systematic style of writing and conceptualization in which each one of his individual philosophical forays is to a great extent a specific replay of his overall philosophy. For example, his theory of EC is, in most ways, a tightly- designed and shortened localization of his larger philosophy of social systems. Three, and in relation to the above, it is also very tempting to introduce the history of systems theory as a whole (part of which I have done already in the earlier part of this essay), make a comprehensive gesture at placing Luhmann’s particular interventions within it (constitutive of his overall systems philosophy), and then to place his theory of EC within the above two. And, four, Luhmann’s work is highly self-referential, obtuse, abstract, and frightfully repetitive! What follows below does not completely resolve the above technical difficulties of introducing—some of which translate, on the whole, into the age-old problem of detecting and managing avoidable detail. -
What Is Systems Theory?
What is Systems Theory? Systems theory is an interdisciplinary theory about the nature of complex systems in nature, society, and science, and is a framework by which one can investigate and/or describe any group of objects that work together to produce some result. This could be a single organism, any organization or society, or any electro-mechanical or informational artifact. As a technical and general academic area of study it predominantly refers to the science of systems that resulted from Bertalanffy's General System Theory (GST), among others, in initiating what became a project of systems research and practice. Systems theoretical approaches were later appropriated in other fields, such as in the structural functionalist sociology of Talcott Parsons and Niklas Luhmann . Contents - 1 Overview - 2 History - 3 Developments in system theories - 3.1 General systems research and systems inquiry - 3.2 Cybernetics - 3.3 Complex adaptive systems - 4 Applications of system theories - 4.1 Living systems theory - 4.2 Organizational theory - 4.3 Software and computing - 4.4 Sociology and Sociocybernetics - 4.5 System dynamics - 4.6 Systems engineering - 4.7 Systems psychology - 5 See also - 6 References - 7 Further reading - 8 External links - 9 Organisations // Overview 1 / 20 What is Systems Theory? Margaret Mead was an influential figure in systems theory. Contemporary ideas from systems theory have grown with diversified areas, exemplified by the work of Béla H. Bánáthy, ecological systems with Howard T. Odum, Eugene Odum and Fritj of Capra , organizational theory and management with individuals such as Peter Senge , interdisciplinary study with areas like Human Resource Development from the work of Richard A. -
Systems Thinking Is the Process of Understanding How Things Influence One Another Within a Whole
Systems Thinking Systems thinking is the process of understanding how things influence one another within a whole. In nature, systems thinking examples include ecosystems in which various elements such as air, water, movement, plants, and animals work together to survive or perish. In organizations, systems consist of people, structures, and processes that work together to make an organization healthy or unhealthy. Systems Thinking has been defined as an approach to problem solving, by viewing "problems" as parts of an overall system, rather than reacting to specific part, outcomes or events and potentially contributing to further development of unintended consequences. Systems thinking is not one thing but a set of habits or practices [1] within a framework that is based on the belief that the component parts of a system can best be understood in the context of relationships with each other and with other systems, rather than in isolation. Systems thinking focuses on cyclical rather than linear cause and effect. In science systems, it is argued that the only way to fully understand why a problem or element occurs and persists is to understand the parts in relation to the whole. [2] Standing in contrast to Descartes's scientific reductionism and philosophical analysis , it proposes to view systems in a holistic manner. Consistent with systems philosophy , systems thinking concerns an understanding of a system by examining the linkages and 1 / 8 Systems Thinking interactions between the elements that compose the entirety of the system. Science systems thinking attempts to illustrate that events are separated by distance and time and that small catalytic events can cause large changes in complex systems . -
Hard OR, Soft OR, Problem Structuring Methods, Critical Systems Thinking: a Primer
Hard OR, Soft OR, Problem Structuring Methods, Critical Systems Thinking: A Primer Hans G. Daellenbach Department of Management University of Canterbury Christchurch, NZ [email protected] Abstract Up until the early 1970s there was a fair consensus among operations researchers and manage- ment scientists of what MS/OR meant, i.e., the application of quantitative methods to model decision making situations in view of achieving some well-defined objective within a systems framework. Optimization of some performance measure was usually an integral part of the methodology. This all changed in the 70s, 80s and 90s with the development of alternative approaches to decision making and problem solving. The methods and methodologies ex- panded systems thinking to a more diverse and wider range of problem situations, which put greater emphasis on the inherent human aspects and where the concept of optimization largely lost its meaning. These methods also claim to belong to MS/OR. This paper gives an ele- mentary overview of this development, classifying the approaches, and highlighting their major features. The discussion is highly influenced by M. C. Jackson’s Systems Approaches to Management [5]. 1 Problem Situation Context Jackson and Keys [3] classify problem situations along two dimensions: complexity and divergence of values and interests. Complexity is understood as the number of elements and their interactions. Few elements and well-defined, linear, stationary interactions imply low complexity; many elements, many interrelationships, dynamic and not well-understood re- lationships in a turbulent environment imply high complexity. They divide divergence of views into unitary, pluralistic, and conflicting/coercive, where unitary implies agreement of views of the stakeholders involved, pluralist implies multiple views within a shared common core, and conflicting/coercive implies irreconcilable views and differences in the power relationships between stakeholders. -
Gregory Bateson, Cybernetics, and the Social/Behavioral Sciences
GREGORY BATESON, CYBERNETICS, AND THE SOCIAL/BEHAVIORAL SCIENCES ABSTRACT Gregory Bateson's interdisciplinary work in Anthropology, Psychiatry, Evolution, and Epistemology was profoundly influenced by the ideas set forth in systems theory, communication theory, information theory and cybernetics. As is now quite common, Bateson used the single term cybernetics in reference to an aggregate of these ideas that grew together shortly after World War II. For him, cybernetics, or communication theory, or information theory, or systems theory, together constituted a unified set of ideas, and he was among the first to appreciate the fact that the patterns of organization and relational symmetry evident in all living systems are indicative of mind. Here, we must not forget that due to the nineteenth century polemic between science and religion, any consideration of purpose and plan, e.g., mental process, had been a priori excluded from science as non-empirical, or immeasurable. Any reference to mind as an explanatory or causal principle had been banned from biology. Even in the social/behavioral sciences, references to mind remained suspect. Building on the work of Norbert Wiener, Warren McCulloch, and W. Ross Ashby, Bateson realized that it is precisely mental process or mind which must be investigated. Thus, he formulated the criteria of mind and the cybernetic epistemology that are pivotal elements in his "ecological philosophy." In fact, he referred to cybernetics as an epistemology: e.g., the model, itself, is a means of knowing what sort of world this is, and also the limitations that exist concerning our ability to know something (or perhaps nothing) of such matters. -
Models and Meaning
ISSN: 1402-1544 ISBN 978-91-86233-XX-X Se i listan och fyll i siffror där kryssen är LICENTIATE T H E SIS Department of Business Administration and Social Sciences Hallencreutz Jacob Division of Quality Management ISSN: 1402-1757 ISBN 978-91-7439-020-9 Models and Meaning Luleå University of Technology 2009 On management models and systems of meaning Models and Meaning when implementing change On management models and systems of meaning when implementing change Jacob Hallencreutz Licentiate Thesis no. 36 Division of Quality Management Models and Meaning On management models and systems of meaning when implementing change Luleå University of Technology Department of Business Administration and Social Sciences Division of Quality Management October 2009 Printed by Universitetstryckeriet, Luleå 2009 ISSN: 1402-1757 ISBN: 978-91-7439-020-9 Luleå 2009 www.ltu.se II ABSTRACT Change has become a vital business partner for many organizations. Survival of most organizations depends on their ability to implement adequate changes to support the organization. This thesis deals with questions about measurement systems, process based system models and organizational change with a specific focus on implementation challenges. The purpose of this research is to explore the relationship between management models and systems of meaning in change implementation processes and hopefully contribute to the understanding of organizational change through empirical research based on practical experience. To be able to accomplish the purpose, the following research questions have been formulated: 1. How can a measurement system act as a driver for organizational change? 2. How can business excellence models be designed to focus on stakeholder demands and organizational sustainability? 3. -
3. Systems Inquiry and Its Application in Education
3. SYSTEMS INQUIRY AND ITS APPLICATION IN EDUCATION Bela H. Banathy INTERNATIONAL SYSTEMS INSTITUTE 3.1 PART 1: SYSTEMS INQUIRY theory, the science of complexity. In defining systems theory, I review the key ideas of Bertalanffy and Boulding, who were The first part of this chapter is a review of the evolution two of the founders of the Society for the Advancement of of the systems movement and a discussion of human sys- General Systems Theory. Later, the name of the society was tems inquiry. changed to the Society for General Systems Research, then the International Society for Systems research, and recently 3.1.1 A Definition of Systems Inquiry to the International Society for the Systems Sciences. Systems inquiry incorporates three interrelated domains 3.1.1.1.1. Bertalanffy (1956, pp. 1—10). He suggested of disciplined inquiry: systems theory, systems philosophy, that “modem science is characterized by its ever-increasing and systems methodology. Bertalanffy (1968) notes that in specialization, necessitated by the enormous amount of data, contrast with the analytical, reductionist, and linear-causal the complexity of techniques, and structures within every paradigm of classical science, systems philosophy brings forth field. This, however, led to a breakdown of science as an a reorientation of thought and world view, manifested by an integrated realm. “Scientists, operating in the various dis- expansionist, nonlinear dynamic, and synthetic mode of ciplines, are encapsulated in their private universe, and it is thinking. The scientific exploration of systems theories and difficult to get word from one cocoon to the other.” Against the development of systems theories in the various sciences this background, he observes a remarkable development, have brought forth a general theory of systems, a set of inter- namely, that “similar general viewpoints and conceptions related concepts and principles, applying to all systems.