Development of Palladium-Catalyzed Decarboxylative Allylation of Electron-Deficient Sulfones: Method Development and Mechanistic Studies

Total Page:16

File Type:pdf, Size:1020Kb

Development of Palladium-Catalyzed Decarboxylative Allylation of Electron-Deficient Sulfones: Method Development and Mechanistic Studies Development of Palladium-Catalyzed Decarboxylative Allylation of Electron-Deficient Sulfones: Method Development and Mechanistic Studies by Monica Anne Gill A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Carleton University Ottawa, Ontario © 2015, Monica Anne Gill Abstract Palladium-catalyzed decarboxylative allylation is a powerful method of carbon-carbon bond construction. This methodology relies on an electron- withdrawing group to promote the reaction. The use of sulfones in decarboxylative allylation has been explored using the trifluoromethylsulfonyl (triflyl) group, as well as the bis(3,5-trifluoromethyl)phenylsulfonyl (BTMP) group. These substrates are highly reactive at room temperature (triflyl) and 50 oC (BTMP sulfones). A detailed mechanistic study using deuterium-labelled substrates was performed to understand the origin of the protonation side-product. It was proposed that a β- hydride elimination from the η1 allyl on palladium could generate a palladium hydride intermediate along with an allene. Although small amounts of deuterium incorporation were observed in the protonated products, the proposed mechanism could not be the major pathway. Using isotopically labelled ligand, however, all protonation was supressed. This suggests that the origin of the proton is actually from the ligand and that kinetic isotope effects may be responsible for inhibiting the protonation pathway with labelled ligand. ii Acknowledgments I would like to thank Dr. Jeff Manthorpe for giving me the chance to pursue my PhD in his lab. I always appreciated Jeff’s enthusiasm for organic chemistry as well as his vast knowledge of the subject. Some of my most fond lab memories are of group brainstorming at the chalkboard with Jeff and whoever else was in the lab at the time. During my time as a PhD student, I had the opportunity to train and mentor a large (18!) number of undergraduate researchers. In fact, three went on to pursue Master’s degrees in the Manthorpe lab. It was very rewarding to watch as the students grew from inexperienced undergrads to very capable graduate students. Han Kong, you were both an excellent colleague and friend. John Palko, your enthusiasm was refreshing. Sam Shields, I’m proud of the scientist you’ve become. Thank you to members of the DeRosa lab who unofficially adopted me into their group when I began and had no fellow graduate students in my lab. I value the friendship of both past and present members of that group. Also, thank you to members of the Miller lab, both past and present, who have been residents of the grad office 410. One never knows what is being discussed when one walks through the door, but you can be sure it’s interesting, and probably hillarious. Thank you to members of the Wang lab, both past and present, for their generous loan of so many chemicals to our group over the years. I would like to extend my thanks to Jim Logan for his expertise in fixing a wide array of electronics in our lab, as well as helping me out on occasion with my personal laptop. I’d also like to acknowledge the role of Peter Mosher in preventing iii Steacie from simply imploding on itself at any given time. Thank you to Tanya and Susa in stores for always being friendly faces and being up for a chat. Also, a huge thanks to Ann Anderson and Chantelle Gravelle (and Marilyn Stock before that) for all of their administrative assistance over the years. I would like to thank my former co-workers at BioVectra for their support of me over the years. I learned so much from all of you while working in research and development, and have never forgotten the lessons I learned while in industry. I am very grateful that I am able to continue to count you all amongst my friends. My family has always been very supportive of my desire to pursue my PhD. Thank you to my mother Elaine, and my sister Angela for their patience, support and understanding during the past years. My late father, Patrick, always encouraged my curious nature, and I know that was a major contributor to my scientific career. I would like to finish by acknowledging the huge role that my fiancé Vince has played in my life during my degree. The level of support that he has shown me and the sacrifices that he made so willingly so that I could complete the work I needed to do are nothing short of stunning. Whether it be cooking me meals or sitting with me in the lab until the wee hours of the morning, he did it without hesitation. Thank you from the bottom of my heart for believing in my abilities and having more faith in me than I ever had in myself. iv Table of Contents Abstract ..............................................................................................................ii Acknowledgments ............................................................................................. iii Table of Contents .............................................................................................. v List of Abbreviations ........................................................................................ viii List of Figures ....................................................................................................xi List of Schemes ................................................................................................xv List of Tables ................................................................................................... xix Chapter 1 : Introduction to Metal-Catalyzed Decarboxylative Allylation ................ 1 1.1 Metal-Catalyzed Cross-Coupling Reactions ................................................ 1 1.2 Palladium-Catalyzed Allylation .................................................................... 2 1.2.1 Initial Discovery using Stoichiometric Palladium ................................... 2 1.2.2 Early Catalytic Allylation and Regiochemistry ....................................... 3 1.2.3 Catalytic Enantioselective Allylation ...................................................... 4 1.3 Decarboxylative Variants ............................................................................. 5 1.4 Stereoselective DcA .................................................................................. 12 1.5 Applications of DcA in Total Synthesis ...................................................... 16 1.6 Mechanism of Metal-Catalyzed DcA ......................................................... 18 1.7 DcA with Non-Enolate Nucleophiles .......................................................... 25 1.8 Project Goals ............................................................................................. 25 Chapter 2 : Pd-Catalyzed Decarboxylative Allylation of α-Triflones .................... 27 2.1 Introduction ............................................................................................... 27 2.2 Attempts at Expanding Substrate Scope ................................................... 31 2.2.1 Preparation of Other Secondary Alkyllithiums ..................................... 31 2.2.2 Andersen Sulfoxide Approach ............................................................. 34 2.2.3 Ruppert-Prakash Reagent .................................................................. 36 2.2.4 Disulfide Approach .............................................................................. 37 2.2.5 Sequential Alkylation & Acylation ........................................................ 38 2.2.6 Insight Into Behavior of α-Triflyl Anions ............................................... 40 2.3 Extending Substrate Scope (Allylic ester) ................................................. 41 2.3.1 Substrate preparation .......................................................................... 41 v 2.3.2 Reductive Cleavage of Homoallylic Triflone ........................................ 42 2.4 Methylation of α-Triflyl Esters .................................................................... 43 2.5 Attempted Derivatization of Triflyl-Substituted Ambiphilic Alkenes ............ 46 2.6 Radical trap work ....................................................................................... 49 2.6.1 Preparation of appropriate substrate ................................................... 50 2.6.2 Attempts at radical and anionic cyclization of ambiphilic alkene ......... 51 2.7 Contemporary Work .................................................................................. 52 2.8 Experimental ............................................................................................. 54 Chapter 3 : Pd-Catalyzed Decarboxylative Allylation of BTMP Sulfones ............ 64 3.1 Alternate Electron-Withdrawing Group ...................................................... 64 3.2 Synthetic Approach ................................................................................... 65 3.3 Development of New Esterification Method ............................................... 73 3.3.1 Reaction Optimization ......................................................................... 73 3.3.2 Substrate Scope ................................................................................. 77 3.4 Optimization of Oxidation .......................................................................... 78 3.5 Optimization of Alkylation .......................................................................... 81 3.6 Early DcA Studies ....................................................................................
Recommended publications
  • Aldrich Raman
    Aldrich Raman Library Listing – 14,033 spectra This library represents the most comprehensive collection of FT-Raman spectral references available. It contains many common chemicals found in the Aldrich Handbook of Fine Chemicals. To create the Aldrich Raman Condensed Phase Library, 14,033 compounds found in the Aldrich Collection of FT-IR Spectra Edition II Library were excited with an Nd:YVO4 laser (1064 nm) using laser powers between 400 - 600 mW, measured at the sample. A Thermo FT-Raman spectrometer (with a Ge detector) was used to collect the Raman spectra. The spectra were saved in Raman Shift format. Aldrich Raman Index Compound Name Index Compound Name 4803 ((1R)-(ENDO,ANTI))-(+)-3- 4246 (+)-3-ISOPROPYL-7A- BROMOCAMPHOR-8- SULFONIC METHYLTETRAHYDRO- ACID, AMMONIUM SALT PYRROLO(2,1-B)OXAZOL-5(6H)- 2207 ((1R)-ENDO)-(+)-3- ONE, BROMOCAMPHOR, 98% 12568 (+)-4-CHOLESTEN-3-ONE, 98% 4804 ((1S)-(ENDO,ANTI))-(-)-3- 3774 (+)-5,6-O-CYCLOHEXYLIDENE-L- BROMOCAMPHOR-8- SULFONIC ASCORBIC ACID, 98% ACID, AMMONIUM SALT 11632 (+)-5-BROMO-2'-DEOXYURIDINE, 2208 ((1S)-ENDO)-(-)-3- 97% BROMOCAMPHOR, 98% 11634 (+)-5-FLUORODEOXYURIDINE, 769 ((1S)-ENDO)-(-)-BORNEOL, 99% 98+% 13454 ((2S,3S)-(+)- 11633 (+)-5-IODO-2'-DEOXYURIDINE, 98% BIS(DIPHENYLPHOSPHINO)- 4228 (+)-6-AMINOPENICILLANIC ACID, BUTANE)(N3-ALLYL)PD(II) CL04, 96% 97 8167 (+)-6-METHOXY-ALPHA-METHYL- 10297 ((3- 2- NAPHTHALENEACETIC ACID, DIMETHYLAMINO)PROPYL)TRIPH 98% ENYL- PHOSPHONIUM BROMIDE, 12586 (+)-ANDROSTA-1,4-DIENE-3,17- 99% DIONE, 98% 13458 ((R)-(+)-2,2'- 963 (+)-ARABINOGALACTAN BIS(DIPHENYLPHOSPHINO)-1,1'-
    [Show full text]
  • C-Metalated Nitriles: Diastereoselective Alkylations and Arylations
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Fall 12-20-2019 C-Metalated Nitriles: Diastereoselective Alkylations and Arylations Robert John Mycka Duquesne University Follow this and additional works at: https://dsc.duq.edu/etd Part of the Organic Chemistry Commons Recommended Citation Mycka, R. J. (2019). C-Metalated Nitriles: Diastereoselective Alkylations and Arylations (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/1851 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. C-METALATED NITRILES: DIASTEREOSELECTIVE ALKYLATIONS AND ARYLATIONS A Dissertation Submitted to the Bayer School of Natural and Environmental Sciences Duquesne University In partial fulfillment of the requirements for the degree of Doctor of Philosophy By Robert J. Mycka December 2019 Copyright by Robert J. Mycka 2019 C-METALATED NITRILES: DIASTEREOSELECTIVE ALKYLATIONS AND ARYLATIONS By Robert J. Mycka Approved November 13, 2019 ________________________________ ________________________________ Dr. Bruce D. Beaver Dr. Jeffrey D. Evanseck Professor of Chemistry and Biochemistry Professor of Chemistry and Biochemistry (Committee Chair) (Committee Member) ________________________________ ________________________________ Dr. Shahed U. M. Khan Dr. Patrick T. Flaherty Associate Professor of Chemistry and
    [Show full text]
  • Shelf-Stable Electrophilic Trifluoromethylating Reagents: a Brief Historical Perspective
    Shelf-stable electrophilic trifluoromethylating reagents: A brief historical perspective Norio Shibata*1, Andrej Matsnev1 and Dominique Cahard*2 Review Open Access Address: Beilstein J. Org. Chem. 2010, 6, No. 65. doi:10.3762/bjoc.6.65 1Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya Received: 15 March 2010 466-8555, Japan and 2UMR 6014 CNRS – C.O.B.R.A. Université et Accepted: 21 May 2010 INSA de Rouen, 1 rue Tesnière, 76130 Mont Saint Aignan, France Published: 16 June 2010 Email: Guest Editor: D. O'Hagan Norio Shibata* - [email protected]; Dominique Cahard* - [email protected] © 2010 Shibata et al; licensee Beilstein-Institut. License and terms: see end of document. * Corresponding author Keywords: asymmetric synthesis; electrophilic; fluorine; reagent; trifluoromethylation Abstract Since the discovery by Yagupolskii and co-workers that S-trifluoromethyl diarylsulfonium salts are effective for the trifluoro- methylation of thiophenolates, the design and synthesis of electrophilic trifluoromethylating reagents have been extensively researched in both academia and industry, due to the significant unique features that trifluoromethylated compounds have in phar- maceuticals, agricultural chemicals, and functional materials. Several effective reagents have been developed by the groups of Yagupolskii, Umemoto, Shreeve, Adachi, Magnier, Togni and Shibata. Due to the high stability and reactivity of these reagents, a series of Umemoto reagents, Togni reagent and Shibata reagent are now commercially available. In this review, we wish to briefly provide a historical perspective of the development of so-called “shelf-stable electrophilic trifluoromethylating reagents”, although this field is in constant development. Review The chemistry of fluoro-organic compounds is one of the areas [3].
    [Show full text]
  • Perfluoro-3-Ethyl-2,4-Dimethyl-3
    Journal of Fluorine Chemistry 227 (2019) 109370 Contents lists available at ScienceDirect Journal of Fluorine Chemistry journal homepage: www.elsevier.com/locate/fluor Perfluoro-3-ethyl-2,4-dimethyl-3-pentyl persistent radical: A new reagent T for direct, metal-free radical trifluoromethylation and polymer initiation ⁎ ⁎ ⁎ Haibo Meia, Jianlin Hana, , Sarah Whiteb, , Greg Butlerb, Vadim A. Soloshonokc,d, a College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China b Oakwood Chemical, Inc. 730 Columbia Hwy. N, Estill, SC, 29918, USA c Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain d IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain ARTICLE INFO ABSTRACT Keywords: This review comprehensively profiles perfluoro-3-ethyl-2,4-dimethyl-3-pentyl persistent radical (PPFR) asanew Fluorine reagent for radical trifluoromethylation, trifluoromethylation/fluorination and polymer initiation. The PPFRis Trifluoromethylation perfectly stable at ambient conditions, but at temperatures above 80 °C undergoes β-scission to generate tri- Persistent radical fluoromethyl radical. This property can be used to initiate various chain-polymerization or trifluoromethylation Fluorination reactions. The unique feature of this process, distinguishing it from all other known methods for ·CF3-radical Polymer generation, is that the radical is produced under neutral, inert and additive-free
    [Show full text]
  • Chemical Resistance of Plastics
    (c) Bürkle GmbH 2010 Important Important information The tables “Chemical resistance of plastics”, “Plastics and their properties” and “Viscosity of liquids" as well as the information about chemical resistance given in the particular product descriptions have been drawn up based on information provided by various raw material manufacturers. These values are based solely on laboratory tests with raw materials. Plastic components produced from these raw materials are frequently subject to influences that cannot be recognized in laboratory tests (temperature, pressure, material stress, effects of chemicals, construction features, etc.). For this reason the values given are only to be regarded as being guidelines. In critical cases it is essential that a test is carried out first. No legal claims can be derived from this information; nor do we accept any liability for it. A knowledge of the chemical and mechanical Copyright This table has been published and updated by Bürkle GmbH, D-79415 Bad Bellingen as a work of reference. This Copyright clause must not be removed. The table may be freely passed on and copied, provided that Extensions, additions and translations If your own experiences with materials and media could be used to extend this table then we would be pleased to receive any additional information. Please send an E-Mail to [email protected]. We would also like to receive translations into other languages. Please visit our website at http://www.buerkle.de from time to Thanks Our special thanks to Franz Kass ([email protected]), who has completed and extended these lists with great enthusiasm and his excellent specialist knowledge.
    [Show full text]
  • Advances in Catalytic Enantioselective Fluorination, Mono‑,Di‑, and Trifluoromethylation, and Trifluoromethylthiolation Reactions ‡ ‡ † Xiaoyu Yang, Tao Wu, Robert J
    Review pubs.acs.org/CR Advances in Catalytic Enantioselective Fluorination, Mono‑,Di‑, and Trifluoromethylation, and Trifluoromethylthiolation Reactions ‡ ‡ † Xiaoyu Yang, Tao Wu, Robert J. Phipps, and F. Dean Toste* Department of Chemistry, University of California, Berkeley, California 94720, United States 6. Catalytic Enantioselective Trifluoromethylthiola- tion 865 7. Summary and Outlook 866 Author Information 866 Corresponding Author 866 Present Address 866 Author Contributions 866 Notes 866 CONTENTS Biographies 866 Acknowledgments 867 1. Introduction 826 References 867 2. Catalytic Enantioselective Fluorination 827 2.1. Electrophilic Fluorination 827 2.1.1. Metal-Catalyzed Fluorination Involving 1. INTRODUCTION Enolates 827 Despite being largely absent from natural products and 2.1.2. Metal-Catalyzed Fluorination Not In- biological processes, fluorine plays a conspicuous and volving Enolates 834 increasingly important role within pharmaceuticals and agro- 2.1.3. Organocatalytic Electrophilic Fluorina- − chemicals, as well as in materials science.1a c Indeed, as many as tion 835 35% of agrochemicals and 20% of pharmaceuticals on the 2.1.4. Fluorination Using Multiple Catalysts 846 market contain fluorine.1d Fluorine is the most electronegative 2.1.5. One-Pot and Tandem Processes 848 element in the periodic table, and the introduction of one or 2.2. Nucleophilic Fluorination 850 more fluorine atoms into a molecule can result in greatly 3. Catalytic Enantioselective Trifluoromethylation perturbed properties. Fluorine substituents can potentially and Perfluoroalkylation 853 impact a number of variables, such as the acidity or basicity of 3.1. Asymmetric Nucleophilic Trifluoromethyla- neighboring groups, dipole moment, and properties such as tion 853 lipophilicity, metabolic stability, and bioavailability. The 3.1.1. Overview of Nucleophilic Trifluorome- multitude of effects that can arise from the introduction of thylation 853 fluorine in small molecules in the context of medicinal 3.1.2.
    [Show full text]
  • CV-PSB-August 2020
    Curriculum Vitae Phil S. Baran Appointment: Scripps Research Professor, Department of Chemistry 10550 North Torrey Pines Road, BCC-436 La Jolla, California 92037 Telephone: (858) 784-7373 Facsimile: (858) 784-7575 Email: [email protected] Website: www.scripps.edu/chem/baran/ January, 2013 Darlene Shiley Professor of Chemistry April, 2009 Member, Skaggs Institute for Chemical Biology June, 2008 Professor of Chemistry July, 2006 Associate Professor of Chemistry (with Tenure) June, 2003 Assistant Professor of Chemistry Date/Place of Birth: 10 Aug 1977 / Denville, NJ, USA Citizenship: United States Education 2001 – 2003 Postdoctoral Associate Advisor: Professor E.J. Corey Harvard University, Cambridge, Massachusetts 1997 – 2001 Ph.D. Graduate Student in Chemistry Advisor: Professor K.C. Nicolaou The Scripps Research Institute, La Jolla, California 1995 – 1997 B.S. with Honors in Chemistry Advisor: Professor D.I. Schuster New York University, New York, New York 1991 – 1995 Simultaneous high school graduation from Mt. Dora High School and A.A. degree with honors, Lake Sumter Community College, Florida Awards • Inhoffen Medal, 2019 • Manchot Research Professorship, 2017 • Member, The National Academy of Sciences, 2017 • Emanuel Merck Lectureship, 2017 • Blavatnik National Laureate in Chemistry, 2016 • ACS Elias J. Corey Award, 2016 • Member, American Academy of Arts and Sciences, 2015 • College of Arts and Science Alumni Distinguished Service Award, New York University, 2015 • Reagent of the Year Award (EROS), 2015 • Mukaiyama Award, 2014 •
    [Show full text]
  • Synthesis of Polycyclic Natural Products Tuan Hoang Nguyen Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2003 Synthesis of polycyclic natural products Tuan Hoang Nguyen Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Medicinal and Pharmaceutical Chemistry Commons, Medicinal Chemistry and Pharmaceutics Commons, Medicinal-Pharmaceutical Chemistry Commons, and the Organic Chemistry Commons Recommended Citation Nguyen, Tuan Hoang, "Synthesis of polycyclic natural products " (2003). Retrospective Theses and Dissertations. 1452. https://lib.dr.iastate.edu/rtd/1452 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Synthesis of polycyclic natural products by Tuan Hoang Nguyen A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR. OF PHILOSOPHY Major: Organic Chemistry Program of Study Committee: George A. Kraus (Major Professor) Richard C. Larock Valerie V. Sheares-Ashby Jacob W. Petrich Earl G. Hammond Iowa State University Ames, Iowa 2003 UMI Number: 3105095 UMI UMI Microform 3105095 Copyright 2003 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 ii Graduate College Iowa State University This is to certify that the doctoral dissertation of Tuan Hoang Nguyen has met the requirements of Iowa State University Signature was redacted for privacy.
    [Show full text]
  • Innate C-H Trifluoromethylation of Heterocycles
    Innate C-H trifluoromethylation of heterocycles Yining Ji1, Tobias Brueckl1, Ryan D. Baxter, Yuta Fujiwara, Ian B. Seiple, Shun Su, Donna G. Blackmond, and Phil S. Baran2 Department of Chemistry, The Scripps Research Institute, 10650 North Torrey Pines Road, La Jolla, CA 92037 Edited* by Stephen L. Buchwald, Massachusetts Institute of Technology, Cambridge, MA, and approved July 18, 2011 (received for review June 6, 2011) Direct methods for the trifluoromethylation of heteroaromatic systems are in extremely high demand in nearly every sector of chemical industry. Here we report the discovery of a general pro- cedure using a benchtop stable trifluoromethyl radical source that functions broadly on a variety of electron deficient and rich hetero- aromatic systems and demonstrates high functional group toler- ance. This C-H trifluoromethylation protocol is operationally simple (avoids gaseous CF3I), scalable, proceeds at ambient tem- perature, can be used directly on unprotected molecules, and is demonstrated to proceed at the innately reactive positions of the substrate. The unique and orthogonal reactivity of the trifluor- omethyl radical relative to aryl radicals has also been investigated on both a complex natural product and a pharmaceutical agent. Finally, preliminary data suggest that the regioselectivity of C-H trifluoromethylation can be fine-tuned simply by judicious solvent choice. medicinal chemistry ∣ C-H functionalization ∣ synthetic methodology he trifluoromethyl group is becoming an increasingly common Ttrait among molecules found in billion-dollar pharmaceuti- cals, agrochemicals, liquid crystals, dyes, and polymers (1–6). The inclusion of this motif and the unique properties its presence elicits is a testament to the success of chemical synthesis, as it is notably absent in Nature.
    [Show full text]
  • ABSTRACT ZOU, YAN. Applications of [2+2+2] Cyclotrimerization
    ABSTRACT ZOU, YAN. Applications of [2+2+2] Cyclotrimerization Reactions and Light-Cleavable Groups in the Generation of Biologically Active Molecules. (Under the direction of Dr. Alexander Deiters). [2+2+2] Cyclotrimerization reactions are a versatile tool for constructing the poly- substituted carbo- and hetero- cyclic ring systems. A number of transition metal catalysts, such as Co, Ru, Rh, Ni and Pd complexes, have been applied. However, there are still regio- and chemo- selectivity issues present in [2+2+2] cyclotrimerization reactions, and only few applications of cyclotrimerization reactions in the synthesis of natural products have been reported. We aimed to develop cyclotrimerization reactions for the assembly of benzene and pyridine core structures found in natural products and for applications in the synthesis of fluorophores. Microwave irradiation, a more recent method used to assist organic reactions, was employed in various cyclotrimerization reactions. In order to obtain greater control over the chemoselectivity of these reactions, we developed a solid-supported method of cyclotrimerization reactions through the immobilization of an alkyne or diyne onto a polymer backbone. This methodology was applied to the assembly of poly-substituted pyridines. Furthermore, the microwave mediated cyclotrimerization methodology was utilized to synthesize various anthracene and azaanthracene fluorophores. Additionally, a cyclotrimerization reaction was used in key steps of the total synthesis of the natural products cryptoacetalide and the pyridine core of cyclothiazomycin. Currently, the cyclotrimerization reaction is being utilized in the ongoing synthesis of petrosasponglide L. Photolabile protecting groups (caging groups) have attracted considerable attention in the field of chemical biology. These caging groups are installed on biomolecules of interest to control their function with light.
    [Show full text]
  • Template for Electronic Submission to ACS Journals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Real-time spectroscopic analysis enabling quantitative and safe consumption of fluoroform during nucleophilic trifluoromethylation in flow. Biagia Musio,* Elena Gala,† Steven V. Ley* Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K. *Email: [email protected] (B. Musio); [email protected] (S. V. Ley). ABSTRACT: The productive use of toxic waste materials derived from industrial processes is one of the main goals of modern chemical research to increase sustainability of the large scale production. Here we devise a simple and robust strategy for the utilization of trifluoromethane, obtained in large quantities from polytetrafluoroethylene (PTFE) manufacture, and the conversion of this greenhouse gas into valuable fluorinated compounds. The generation of the trifluoromethyl carbanion and its direct and complete consumption through trapping with a number of electrophiles were achieved by a fully contained flow reactor setup. The adoption of modern in-line analytical tools, such as portable FT-IR and NMR devices, allowed the accurate reagent dosing with considerable benefits in terms of controlling the environmental impact during this continuous process. The advantages of the method, with respect to the batch procedure, will be discussed and demonstrated experimentally. 1 KEYWORDS: trifluoromethylation, continuous process, in-line analysis, bench-top NMR, fluoroform. INTRODUCTION There is a clear need to develop modern synthetic strategies which employ renewable starting materials. Furthermore, there is also a need to convert waste materials derived from certain industrial processes into valuable synthetic compounds improving the sustainability of large scale production.1-3 A case in point is the industrial manufacture of PTFE which generates very 4 large amounts of trifluoromethane (CF3H) as a by-product.
    [Show full text]
  • Studies in Meroterpenoid Synthesis
    Studies in Meroterpenoid Synthesis A thesis presented by Jonathan W. Lockner to The Scripps Research Institute Graduate Program in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemistry for The Scripps Research Institute La Jolla, California November 2011 1 UMI Number: 3507067 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3507067 Copyright 2012 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 © 2011 by Jonathan W. Lockner All rights reserved. 2 Thesis Acceptance Form 3 Acknowledgements As a high school student in Plainfield, Illinois, I had the benefit of learning chemistry from Mr. Hill. He supplemented my experience with “Semi-Micro Qualitative Analysis” – allowing me to perform simple chemistry experiments after school. As an undergraduate at the University of Illinois at Urbana-Champaign, I had the opportunity to carry out synthetic organic chemistry research in the laboratory of Professor Robert M. Coates. I am indebted to him, as well as Dr. Chad Davis (then a graduate student and my mentor), for their influence in setting me on the path of scientific research. My first employment was at Pharmacia in Kalamazoo, Michigan.
    [Show full text]