University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2014 Explorations into host defense against Plasmodium falciparum: mechanistic and structure-function studies of antimalarial chemokines Melissa Suzanne Love University of Pennsylvania,
[email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biochemistry Commons, Parasitology Commons, and the Pharmacology Commons Recommended Citation Love, Melissa Suzanne, "Explorations into host defense against Plasmodium falciparum: mechanistic and structure-function studies of antimalarial chemokines" (2014). Publicly Accessible Penn Dissertations. 1352. https://repository.upenn.edu/edissertations/1352 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1352 For more information, please contact
[email protected]. Explorations into host defense against Plasmodium falciparum: mechanistic and structure-function studies of antimalarial chemokines Abstract Antimicrobial peptides (AMPs) are small (2-8kDa) peptides that have remained an important part of innate immunity over evolutionary time. AMPs vary greatly in sequence and structure, but display broad- spectrum activity against bacteria, yeast, and fungi via direct perturbation of the pathogen membrane. AMPs are typically amphipathic, and contain 2-4 positively charged amino acid residues. It has been previously shown that many chemokines also display AMP activity, both via their canonical function recruiting immune cells to the site of an infection and by direct interaction with the pathogen itself. Many antimicrobial chemokines have the same tertiary structure: an N-terminal loop responsible for receptor recognition; a three-stranded antiparallel β-sheet domain that provides a stable scaffold; and a C-terminal α-helix that folds over the β-sheet and helps to stabilize the overall structure.