Conservation of the Eurasian Lynx (Lynx Lynx) in a Fragmented Landscape – Habitat Models, Dispersal and Potential Distribution
Total Page:16
File Type:pdf, Size:1020Kb
Faculté de Biologie et de Médecine Département d’Ecologie et Evolution Conservation of the Eurasian Lynx (Lynx lynx) in a fragmented landscape – habitat models, dispersal and potential distribution Thèse de doctorat ès sciences de la vie (PhD) Présentée à la Faculté de biologie et de médecine de l’Université de Lausanne Par Fridolin Zimmermann Biologiste Diplômé de l’Université de Lausanne Jury Prof. Dieter Haas, Président Prof. Jacques Hausser, Directeur de thèse Prof. Luigi Boitani, Expert Dr. Urs Breitenmoser, Expert Dr. Alexandre Hirzel, Expert LAUSANNE 2004 Digital environmental data sets: Lakes, rivers, and political boundaries: GEOSTAT © Swiss Federal Statistical Office; Euromaps © Bartholomew Human population density: GEOSTAT © Swiss Federal Statistical Office Settlements, roads, railways, and forest: Vector 200 © Federal Office of Topography; Euromaps © Bartholomew Digital elevation model: DHM25, RIMINI © Federal Office of Topography; MONA Pro Europe 250 m © GEOSYS DATA Land use: AS85r, AS97 © Swiss Federal Statistical Office GEOSTAT; CORINE Land Cover © Swiss Federal Statistical Office GEOSTAT for Switzerland and European Environmental Agency for the remaining areas Delimitation of the Alpine Convention and borders of the national and natural reserves © Réseau Alpin des Espaces Protégés to Manuela to my parents ‘No amount of clever modeling or detailed GIS habitat maps can circumvent our need for this natural history information’ Ruckelshaus et al., (1999) M24 pictured by a camera-trap during the intensive session conducted in winter 2003-04 in the Simmental and Saanenland. This lynx has been captured in the year 1998 as juvenile and fitted with a radio-collar. We could follow his dispersal and home range establishment until March 2001 when the signal of his radio-collar got interrupted. Later on, he has frequently been pictured by means of camera traps in the study area. Abstract The expansion of a recovering population – whether re-introduced or spontaneously returning – is shaped by (i) biological (intrinsic) factors such as the land tenure system or dispersal, (ii) the distribution and availability of resources (e.g. prey), (iii) habitat and landscape features, and (iv) human attitudes and activities. In order to develop efficient conservation and recovery strategies, we need to understand all these factors and to predict the potential distribution and explore ways to reach it. An increased number of lynx in the north-western Swiss Alps in the nineties lead to a new controversy about the return of this cat. When the large carnivores were given legal protection in many European countries, most organizations and individuals promoting their protection did not foresee the consequences. Management plans describing how to handle conflicts with large predators are needed to find a balance between “overabundance” and extinction. Wildlife and conservation biologists need to evaluate the various threats confronting populations so that adequate management decisions can be taken. I developed a GIS probability model for the lynx, based on habitat information and radio-telemetry data from the Swiss Jura Mountains, in order to predict the potential distribution of the lynx in this mountain range, which is presently only partly occupied by lynx. Three of the 18 variables tested for each square kilometre describing land use, vegetation, and topography, qualified to predict the probability of lynx presence. The resulting map was evaluated with data from dispersing subadult lynx. Young lynx that were not able to establish home ranges in what was identified as good lynx habitat did not survive their first year of independence, whereas the only one that died in good lynx habitat was illegally killed. Radio-telemetry fixes are often used as input data to calibrate habitat models. Radio-telemetry is the only way to gather accurate and unbiased data on habitat use of elusive larger terrestrial mammals. However, it is time consuming and expensive, and can therefore only be applied in limited areas. Habitat models extrapolated over large areas can in turn be problematic, as habitat characteristics and availability may change from one area to the other. I analysed the predictive power of Ecological Niche Factor Analysis (ENFA) in Switzerland with the lynx as focal species. According to my results, the optimal sampling strategy to predict species distribution in an Alpine area lacking available data would be to pool presence cells from contrasted regions (Jura Mountains, Alps), whereas in regions with a low ecological variance (Jura Mountains), only local presence cells should be used for the calibration of the model. Dispersal influences the dynamics and persistence of populations, the distribution and abundance of species, and gives the communities and ecosystems their characteristic texture in space and time. Between 1988 and 2001, the spatio-temporal behaviour of subadult Eurasian lynx in two re-introduced populations in Switzerland was studied, based on 39 juvenile lynx of which 24 were radio-tagged to understand the factors influencing dispersal. Subadults become independent from their mothers at the age of 8-11 months. No sex bias neither in the dispersal rate nor in the distance moved was detected. Lynx are conservative dispersers, compared to bear and wolf, and settled within or close to known lynx occurrences. Dispersal distances reached in the high lynx density population – shorter than those reported in other Eurasian lynx studies – are limited by habitat restriction hindering connections with neighbouring metapopulations. I postulated that high lynx density would lead to an expansion of the population and validated my predictions with data from the north-western Swiss Alps where about 1995 a strong increase in lynx abundance took place. The general hypothesis that high population density will foster the expansion of the population was not confirmed. This has consequences for the re-introduction and recovery of carnivores in a fragmented landscape. To establish a strong source population in one place might not be an optimal strategy. Rather, population nuclei should be founded in several neighbouring patches. Exchange between established neighbouring subpopulations will later on take place, as adult lynx show a higher propensity to cross barriers than subadults. To estimate the potential population size of the lynx in the Jura Mountains and to assess possible corridors between this population and adjacent areas, I adapted a habitat probability model for lynx distribution in the Jura Mountains with new environmental data and extrapolated it over the entire mountain range. The model predicts a breeding population ranging from 74-101 individuals and from 51-79 individuals when continuous habitat patches < 50 km2 are disregarded. The Jura Mountains could once be part of a metapopulation, as potential corridors exist to the adjoining areas (Alps, Vosges Mountains, and Black Forest). Monitoring of the population size, spatial expansion, and the genetic surveillance in the Jura Mountains must be continued, as the status of the population is still critical. ENFA was used to predict the potential distribution of lynx in the Alps. The resulting model divided the Alps into 37 suitable habitat patches ranging from 50 to 18,711 km2, covering a total area of about 93,600 km2. When using the range of lynx densities found in field studies in Switzerland, the Alps could host a population of 961 to 1,827 residents. The results of the cost-distance analysis revealed that all patches were within the reach of dispersing lynx, as the connection costs were in the range of dispersal cost of radio-tagged subadult lynx moving through unfavourable habitat. Thus, the whole Alps could once be considered as a metapopulation. But experience suggests that only few disperser will cross unsuitable areas and barriers. This low migration rate may seldom allow the spontaneous foundation of new populations in unsettled areas. As an alternative to natural dispersal, artificial transfer of individuals across the barriers should be considered. Wildlife biologists can play a crucial role in developing adaptive management experiments to help managers learning by trial. The case of the lynx in Switzerland is a good example of a fruitful cooperation between wildlife biologists, managers, decision makers and politician in an adaptive management process. This cooperation resulted in a Lynx Management Plan which was implemented in 2000 and updated in 2004 to give the cantons directives on how to handle lynx-related problems. This plan was put into practice e.g. in regard to translocation of lynx into unsettled areas. Résumé L’expansion d’une population en phase de recolonisation, qu’elle soit issue de réintroductions ou d’un retour naturel dépend 1) de facteurs biologiques tels que le système social et le mode de dispersion, 2) de la distribution et la disponibilité des ressources (proies), 3) de l’habitat et des éléments du paysage, 4) de l’acceptation de l’espèce par la population locale et des activités humaines. Afin de pouvoir dé- velopper des stratégies efficaces de conservation et de favoriser la recolonisation, chacun de ces fac- teurs doit être pris en compte. En plus, la distribution potentielle de l’espèces doit pouvoir être déter- minée et enfin, toutes les possibilités pour atteindre les objectifs, examinées. La phase de haute densité que la population de lynx a connue dans les années nonante dans le nord- ouest des Alpes suisses a donné lieu à une controverse