Upgrading Human Brain to Blue Brain
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Artificial Consciousness and the Consciousness-Attention Dissociation
Consciousness and Cognition 45 (2016) 210–225 Contents lists available at ScienceDirect Consciousness and Cognition journal homepage: www.elsevier.com/locate/concog Review article Artificial consciousness and the consciousness-attention dissociation ⇑ Harry Haroutioun Haladjian a, , Carlos Montemayor b a Laboratoire Psychologie de la Perception, CNRS (UMR 8242), Université Paris Descartes, Centre Biomédical des Saints-Pères, 45 rue des Saints-Pères, 75006 Paris, France b San Francisco State University, Philosophy Department, 1600 Holloway Avenue, San Francisco, CA 94132 USA article info abstract Article history: Artificial Intelligence is at a turning point, with a substantial increase in projects aiming to Received 6 July 2016 implement sophisticated forms of human intelligence in machines. This research attempts Accepted 12 August 2016 to model specific forms of intelligence through brute-force search heuristics and also reproduce features of human perception and cognition, including emotions. Such goals have implications for artificial consciousness, with some arguing that it will be achievable Keywords: once we overcome short-term engineering challenges. We believe, however, that phenom- Artificial intelligence enal consciousness cannot be implemented in machines. This becomes clear when consid- Artificial consciousness ering emotions and examining the dissociation between consciousness and attention in Consciousness Visual attention humans. While we may be able to program ethical behavior based on rules and machine Phenomenology learning, we will never be able to reproduce emotions or empathy by programming such Emotions control systems—these will be merely simulations. Arguments in favor of this claim include Empathy considerations about evolution, the neuropsychological aspects of emotions, and the disso- ciation between attention and consciousness found in humans. -
Reverse-Engineering the Brain [email protected]
Prof. Henry Markram Dr. Felix Schürmann Reverse-Engineering the Brain [email protected] http://bluebrainproject.epfl.ch Brain Mind Institute © Blue Brain Project The Electrophysiologist’s View BBP BBP BBP © Blue Brain Project Accurate Models that Relate to Experiment LBCÆPC SBCÆPC NBCÆPC BTCÆPC MCÆPC © Blue Brain Project BBP Phase I: Neocortical Column Create a faithful “in silico” replica at cellular level of a neocortical column of a young rat by the means of: • reverse engineering the biology components • forward constructing functional mathematical models • Building 10,000 morphologically complex neurons • Constructing a circuit with 30,000,000 dynamic synapses • Simulating the column close to real-time © Blue Brain Project Building and Simulating the NCC BBP © Blue Brain Project The Electrocphysiologist’s View - Revisited BBP BBP BBP © Blue Brain Project BBP Phase I: « in vitro » vs. « in silico » BBP BBP BBP BBP in silico in silico in vitro in vitro © Blue Brain Project Level of Detail 0x Channels ,00 Compartment 10 ~20HH style channels/compartment Neuron ~350compartments/neuron Synapses A Rat’s Neocortical Column: IT Challenge: • ~1mm^3 • 3,500,000 compartments • 6 layers • passive (cable, Gauss • > 50 morphological classes Elimination) • ~340 morpho-electrical types • active HH style channels • ~200 types of ion channels • 30,000,000 synapses ~3,000/neuron • 10,000 neurons • dynamic • 18 types of synapses • 30,000,000 synapses • Æ reporting 1 value/compartment Æ 140GB/biol sec © Blue Brain Project Usage of BG/L in the BBP Dedicated 4 rack BG/L @ EPFL with 8192 processors, 2TB of distributed memory, 22.4 TFlop (peak) ÆUsed throughout all parts of the project ÆAllows iteration of complete process within a week • Building: Run evolutionary algorithms for fitting of thousands of single cell models to data typical job size: 2048 procs S. -
A Case Study of a Blue Brain Working on the Neural Network Concept
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com International Journal of Multidisciplinary Research and Growth Evaluation ISSN: 2582-7138 Received: 03-06-2021; Accepted: 19-06-2021 www.allmultidisciplinaryjournal.com Volume 2; Issue 4; July-August 2021; Page No. 201-206 A case study of a blue brain working on the neural network concept Neha Verma Student, Department of Computer Applications, RIMT University, Mandi Gobindgarh, Punjab, India Corresponding Author: Neha Verma Abstract Blue brain is the name of the world's first virtual brain So IBM is trying to create an artificial brain that can think, initiated and founded by the scientist Henry Markram at response and take decisions like human brain. It is called EPFL in Lausanne Switzerland. The main aim behind this "Blue Brain". Hence this paper consists of the concepts of project is to save knowledge of the human brain for decades. Blue Brain, the requirements of the Blue Brain project, It is a well known fact that human doesn't live for thousands various strategies undertaken to build the Blue Brain, of years and the intelligence is also lost after a person's death. advantages and disadvantages and many more. Keywords: Neurons, Nanobots, Blue Gene, Virtual mind, Neuroscience 1. Introduction As we know the human brain is most powerful creation of God and it is very complex to understand the circuit of human brain. However with the advancement in technology, now it is possible to create a virtual brain so in future, the human brains are going to be attacked by the blue brain and it is going to be very useful for all of us. -
Artificial Brain Project of Visual Motion
In this issue: • Editorial: Feeding the senses • Supervised learning in spiking neural networks V o l u m e 3 N u m b e r 2 M a r c h 2 0 0 7 • Dealing with unexpected words • Embedded vision system for real-time applications • Can spike-based speech Brain-inspired auditory recognition systems outperform conventional approaches? processor and the • Book review: Analog VLSI circuits for the perception Artificial Brain project of visual motion The Korean Brain Neuroinformatics Re- search Program has two goals: to under- stand information processing mechanisms in biological brains and to develop intel- ligent machines with human-like functions based on these mechanisms. We are now developing an integrated hardware and software platform for brain-like intelligent systems called the Artificial Brain. It has two microphones, two cameras, and one speaker, looks like a human head, and has the functions of vision, audition, inference, and behavior (see Figure 1). The sensory modules receive audio and video signals from the environment, and perform source localization, signal enhancement, feature extraction, and user recognition in the forward ‘path’. In the backward path, top-down attention is per- formed, greatly improving the recognition performance of real-world noisy speech and occluded patterns. The fusion of audio and visual signals for lip-reading is also influenced by this path. The inference module has a recurrent architecture with internal states to imple- ment human-like emotion and self-esteem. Also, we would like the Artificial Brain to eventually have the abilities to perform user modeling and active learning, as well as to be able to ask the right questions both to the right people and to other Artificial Brains. -
ABS: Scanning Neural Networks for Back-Doors by Artificial Brain
ABS: Scanning Neural Networks for Back-doors by Artificial Brain Stimulation Yingqi Liu Wen-Chuan Lee Guanhong Tao [email protected] [email protected] [email protected] Purdue University Purdue University Purdue University Shiqing Ma Yousra Aafer Xiangyu Zhang [email protected] [email protected] [email protected] Rutgers University Purdue University Purdue University ABSTRACT Kingdom. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/ This paper presents a technique to scan neural network based AI 3319535.3363216 models to determine if they are trojaned. Pre-trained AI models may contain back-doors that are injected through training or by 1 INTRODUCTION transforming inner neuron weights. These trojaned models operate Neural networks based artificial intelligence models are widely normally when regular inputs are provided, and mis-classify to a used in many applications, such as face recognition [47], object specific output label when the input is stamped with some special detection [49] and autonomous driving [14], demonstrating their pattern called trojan trigger. We develop a novel technique that advantages over traditional computing methodologies. More and analyzes inner neuron behaviors by determining how output acti- more people tend to believe that the applications of AI models vations change when we introduce different levels of stimulation to in all aspects of life is around the corner [7, 8]. With increasing a neuron. The neurons that substantially elevate the activation of a complexity and functionalities, training such models entails enor- particular output label regardless of the provided input is considered mous efforts in collecting training data and optimizing performance. -
Blue Brain Project
Blue Brain Project The Blue Brain Project is an attempt to create a with 100 mesocircuits totalling a hundred million cells. synthetic brain by reverse-engineering mammalian brain Finally a cellular human brain is predicted possible by circuitry. The aim of the project, founded in May 2005 by 2023 equivalent to 1000 rat brains with a total of a hun- the Brain and Mind Institute of the École Polytechnique dred billion cells.[8][9] Fédérale de Lausanne (EPFL) in Switzerland, is to study Now that the column is finished, the project is currently the brain’s architectural and functional principles. busying itself with the publishing of initial results in sci- The project is headed by the founding director Henry entific literature, and pursuing two separate goals: Markram and co-directed by Felix Schürmann and Sean Hill. Using a Blue Gene supercomputer running Michael 1. construction of a simulation on the molecular Hines’s NEURON software, the simulation does not con- level,[1] which is desirable since it allows studying sist simply of an artificial neural network, but involves the effects of gene expression; a biologically realistic model of neurons.[1][2][3] It is hoped that it will eventually shed light on the nature of 2. simplification of the column simulation to allow for consciousness.[3] parallel simulation of large numbers of connected There are a number of sub-projects, including the Cajal columns, with the ultimate goal of simulating a Blue Brain, coordinated by the Supercomputing and Vi- whole neocortex (which in humans consists of about sualization Center of Madrid (CeSViMa), and others run 1 million cortical columns). -
The Project Loon
AISSMS INSTITUTE OF INFORMATION TECHNOLOGY Affiliated to Savitribai Phule Pune University , Approved by AICTE, New Delhi and Recognised by Govt. Of Maharashtra (ID No. PU/PN/ENGG/124/1998) Accredited by NAAC with ‘A’ Grade TELESCAN 2K19 TELESCAN 2019 Editorial Committee We, the students of Electronics & Telecommunication feel the privilege to present the Technical Departmental Magazine of Academic year- TELESCAN 2019 in front of you the magazine provides a platform for the students to express their technical knowledge and enhance their own technical knowledge. We would like to thank Dr.M.P.Sardey (HOD) and Prof. Santosh H Lavate for their constant support and encouraging us throughout the semester to make the magazine great hit. Editorial Team: Staff Co-ordinator: Sanmay Kamble (BE) Santosh H Lavate Abhishek Parte (BE) Supriya Lohar Nehal Gholse (TE) Ankush Muley (TE) TELESCAN 2019 VISION OF E&TC DEPARTMENT To provide quality education in Electronics & Telecommunication Engineering with professional ethics MISSION OF E&TC DEPATMENT To develop technical competency, ethics for professional growth and sense of social responsibility among students TELESCAN 2019 INDEX Sr No. Topic Page No. 1 3 Dimensional Integrated Circuit 1 2 4D Printer 4 3 5 Nanometer Semiconductor 5 4 AI: Changing The Face Of Defence 7 5 Artificial Intelligence 10 6 AI: A Boon Or A Bane 11 7 Block Chain 12 8 Blue Brain 14 9 Cobra Effect 16 10 A New Era In Industrial Production 18 11 Radiometry 20 12 Growing Need For Large Bank Of Test Item 21 13 The Project Loon 23 14 -
Blue Brain-A Massive Storage Space
Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 7 (2017) pp. 2125-2136 © Research India Publications http://www.ripublication.com Blue Brain-A Massive Storage Space Y.Vijayalakshmi Dept. of CSE, Karpagam University, Coimbatore, Tamilnadu, India Teena Jose Research Scholar, CS, Bharathiar University Coimbatore, Tamilnadu, India Dr. S. Sasidhar Babu Professor, Dept. of CSE, Sree Narayana Gurukulam College of Engineering, Ernakulam Dt. Kerala, India Sruthi R. Glorya Jose Dept. of CS, St.Thomas College, Thrisur, Kerala, India Dr. P. Manimegalai Prof.,Dept. of ECE, Karpagam University, Coimbatore, Tamilnadu, India. Abstract Human brain, the greatest creation of god which is package of unimaginative functions. A man is intelligent because of the brain. ”Blue Brain” is world’s first virtual brain. Pink brain is special because of that it can think, respond, take decision without any effort and keep anything in memory. Aim of the project is to archive features of Pink brain to a Digital system. In short, ”Brain to a Digital System”. After death of a human, data including intelligence, knowledge, personality, memory and feelings can be used for further development of society. BB Storage space is an extracted concept from Blue brain project. Storing numerous and variety of data on memory is an advantage provided. By this concept, registers act as neurons and Electric signals as simulation impulses. Variation of data are identified based on signal variation that reach the registers. Registers mentioned here is same that a normal system maintains. Benefit 2126 Y.Vijayalakshmi et al focused by this concept of storage is storing data without deletion on real time as normal brain does. -
An New Type of Artificial Brain Using Controlled Neurons
New Developments in Neural Networks, J. R. Burger An New Type Of Artificial Brain Using Controlled Neurons John Robert Burger, Emeritus Professor, ECE Department, California State University Northridge, [email protected] Abstract -- Plans for a new type of artificial brain are possible because of realistic neurons in logically structured arrays of controlled toggles, one toggle per neuron. Controlled toggles can be made to compute, in parallel, parameters of critical importance for each of several complex images recalled from associative long term memory. Controlled toggles are shown below to amount to a new type of neural network that supports autonomous behavior and action. I. INTRODUCTION A brain-inspired system is proposed below in order to demonstrate the utility of electrically realistic neurons as controlled toggles. Plans for artificial brains are certainly not new [1, 2]. As in other such systems, the system below will monitor external information, analogous to that flowing from eyes, ears and other sensors. If the information is significant, for instance, bright spots, or loud passages, or if identical information is presented several times, it will automatically be committed to associative long term memory; it will automatically be memorized. External information is concurrently impressed on a short term memory, which is a logical row of short term memory neurons. From here cues are derived and held long enough to accomplish a search of associative long term memory. Unless the cues are very exacting indeed, several returned images are expected. Each return then undergoes calculations for priority; an image with maximum priority is imposed on (and overwrites the current contents of) short term memory. -
Is Google Making Us Stupid?
Is Google Making Us Stupid? What the Internet is doing to our brains Nicholas Carr Jul 1 2008, 12:00 PM ET "Dave, stop. Stop, will you? Stop, Dave. Will you stop, Dave?” So the supercomputer HAL pleads with the implacable astronaut Dave Bowman in a famous and weirdly poignant scene toward the end of Stanley Kubrick’s 2001: A Space Odyssey. Bowman, having nearly been sent to a deep-space death by the malfunctioning machine, is calmly, coldly disconnecting the memory circuits that control its artificial “ brain. “Dave, my mind is going,” HAL says, forlornly. “I can feel it. I can feel it.” I can feel it, too. Over the past few years I’ve had an uncomfortable sense that someone, or something, has been tinkering with my brain, remapping the neural circuitry, reprogramming the memory. My mind isn’t going—so far as I can tell—but it’s changing. I’m not thinking the way I used to think. I can feel it most strongly when I’m reading. Immersing myself in a book or a lengthy article used to be easy. My mind would get caught up in the narrative or the turns of the argument, and I’d spend hours strolling through long stretches of prose. That’s rarely the case anymore. Now my concentration often starts to drift after two or three pages. I get fidgety, lose the thread, and begin looking for something else to do. I feel as if I’m always dragging my wayward brain back to the text. The deep reading that used to come naturally has become a struggle. -
Large-Scale Simulation of Brain Tissue, Blue Brain Project, EPFL
ANL/ALCF/ESP-17/3 Large-Scale Simulation of Brain Tissue, Blue Brain Project, EPFL Technical Report for the ALCF Theta Early Science Program Argonne Leadership Computing Facility ALCF Early Science Program (ESP) Technical Report ESP Technical Reports describe the code development, porting, and optimization done in preparing an ESP project's application code(s) for the next generation ALCF computer system. This report is for a project in the Theta ESP, preparing for the ALCF Theta computer system. About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratoryfs main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. DOCUMENT AVAILABILITY Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free at OSTI.GOV (http://www.osti.gov/), a service of the U.S. Dept. of Energy's Office of Scientific and Technical Information Reports not in digital format may be purchased by the public from the National Technical Information Service (NTIS): U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd Alexandria, VA 22312 www.ntis.gov Phone: (800) 553-NTIS (6847) or (703) 605-6000 Fax: (703) 605-6900 Email: [email protected] Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI): U.S. Department of Energy Office of Scientific and Technical Information P.O. -
An Overview of Mind Uploading
IOSR Journal of Engineering (IOSR JEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 18-25 An Overview of Mind Uploading Mrs. Mausami Sawarkar1, Mr. Dhiraj Rane2 Dept of CSE, Priydarshani J L CoE, Nagpur Dept. of CS, GHRIIT, Nagpur Abstract: Mind uploading is an ongoing area of active research, bringing together ideas from neuroscience, computer science, engineering, and philosophy. Realistically, mind uploading likely lies many decades in the future, but the short-term offers the possibility of advanced neural prostheses that may benefit us. Mind uploading is the conceptual futuristic technology of transferring human minds tocomputer hardware using whole-brain emulation process. In this research work, we have discuss the brief review of the technological prospectsfor mind uploading, a range of philosophical and ethical aspects of the technology. We have also summarizes various issues for mind uploading. There are many technologies are working on these issues will be summarize. These include questions about whether uploads will have consciousness and whether uploading willpreserve personal identity, as well as what impact on society a working uploading technology is likelyto have and whether these impacts are desirable. The issue of whether we ought to move forwardstowards uploading technology remains as unclear as ever. Keywords: Mind Uploading, Whole brain simulation, I. Introduction Mind uploading is an ongoing area of active research, bringing together ideas from neuroscience, computer science, engineering, and philosophy. Realistically, mind uploading likely lies many decades in the future, but the short-term offers the possibility of advanced neural prostheses that may benefit us. Mind uploading is a popular term for a process by which the mind, a collection of memories, personality, and attributes of a specific individual, is transferred from its original biological brain to an artificial computational substrate.