Artificial Intelligence (AI)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
KNOWLEDGE ACCORDING to IDEALISM Idealism As a Philosophy
KNOWLEDGE ACCORDING TO IDEALISM Idealism as a philosophy had its greatest impact during the nineteenth century. It is a philosophical approach that has as its central tenet that ideas are the only true reality, the only thing worth knowing. In a search for truth, beauty, and justice that is enduring and everlasting; the focus is on conscious reasoning in the mind. The main tenant of idealism is that ideas and knowledge are the truest reality. Many things in the world change, but ideas and knowledge are enduring. Idealism was often referred to as “idea-ism”. Idealists believe that ideas can change lives. The most important part of a person is the mind. It is to be nourished and developed. Etymologically Its origin is: from Greek idea “form, shape” from weid- also the origin of the “his” in his-tor “wise, learned” underlying English “history.” In Latin this root became videre “to see” and related words. It is the same root in Sanskrit veda “knowledge as in the Rig-Veda. The stem entered Germanic as witan “know,” seen in Modern German wissen “to know” and in English “wisdom” and “twit,” a shortened form of Middle English atwite derived from æt “at” +witen “reproach.” In short Idealism is a philosophical position which adheres to the view that nothing exists except as it is an idea in the mind of man or the mind of God. The idealist believes that the universe has intelligence and a will; that all material things are explainable in terms of a mind standing behind them. PHILOSOPHICAL RATIONALE OF IDEALISM a) The Universe (Ontology or Metaphysics) To the idealist, the nature of the universe is mind; it is an idea. -
Artificial Consciousness and the Consciousness-Attention Dissociation
Consciousness and Cognition 45 (2016) 210–225 Contents lists available at ScienceDirect Consciousness and Cognition journal homepage: www.elsevier.com/locate/concog Review article Artificial consciousness and the consciousness-attention dissociation ⇑ Harry Haroutioun Haladjian a, , Carlos Montemayor b a Laboratoire Psychologie de la Perception, CNRS (UMR 8242), Université Paris Descartes, Centre Biomédical des Saints-Pères, 45 rue des Saints-Pères, 75006 Paris, France b San Francisco State University, Philosophy Department, 1600 Holloway Avenue, San Francisco, CA 94132 USA article info abstract Article history: Artificial Intelligence is at a turning point, with a substantial increase in projects aiming to Received 6 July 2016 implement sophisticated forms of human intelligence in machines. This research attempts Accepted 12 August 2016 to model specific forms of intelligence through brute-force search heuristics and also reproduce features of human perception and cognition, including emotions. Such goals have implications for artificial consciousness, with some arguing that it will be achievable Keywords: once we overcome short-term engineering challenges. We believe, however, that phenom- Artificial intelligence enal consciousness cannot be implemented in machines. This becomes clear when consid- Artificial consciousness ering emotions and examining the dissociation between consciousness and attention in Consciousness Visual attention humans. While we may be able to program ethical behavior based on rules and machine Phenomenology learning, we will never be able to reproduce emotions or empathy by programming such Emotions control systems—these will be merely simulations. Arguments in favor of this claim include Empathy considerations about evolution, the neuropsychological aspects of emotions, and the disso- ciation between attention and consciousness found in humans. -
Is AI Intelligent, Really? Bruce D
Seattle aP cific nivU ersity Digital Commons @ SPU SPU Works Summer August 23rd, 2019 Is AI intelligent, really? Bruce D. Baker Seattle Pacific nU iversity Follow this and additional works at: https://digitalcommons.spu.edu/works Part of the Artificial Intelligence and Robotics Commons, Comparative Methodologies and Theories Commons, Epistemology Commons, Philosophy of Science Commons, and the Practical Theology Commons Recommended Citation Baker, Bruce D., "Is AI intelligent, really?" (2019). SPU Works. 140. https://digitalcommons.spu.edu/works/140 This Article is brought to you for free and open access by Digital Commons @ SPU. It has been accepted for inclusion in SPU Works by an authorized administrator of Digital Commons @ SPU. Bruce Baker August 23, 2019 Is AI intelligent, really? Good question. On the surface, it seems simple enough. Assign any standard you like as a demonstration of intelligence, and then ask whether you could (theoretically) set up an AI to perform it. Sure, it seems common sense that given sufficiently advanced technology you could set up a computer or a robot to do just about anything that you could define as being doable. But what does this prove? Have you proven the AI is really intelligent? Or have you merely shown that there exists a solution to your pre- determined puzzle? Hmmm. This is why AI futurist Max Tegmark emphasizes the difference between narrow (machine-like) and broad (human-like) intelligence.1 And so the question remains: Can the AI be intelligent, really, in the same broad way its creator is? Why is this question so intractable? Because intelligence is not a monolithic property. -
Artificial Intelligence and National Security
Artificial Intelligence and National Security Artificial intelligence will have immense implications for national and international security, and AI’s potential applications for defense and intelligence have been identified by the federal government as a major priority. There are, however, significant bureaucratic and technical challenges to the adoption and scaling of AI across U.S. defense and intelligence organizations. Moreover, other nations—particularly China and Russia—are also investing in military AI applications. As the strategic competition intensifies, the pressure to deploy untested and poorly understood systems to gain competitive advantage could lead to accidents, failures, and unintended escalation. The Bipartisan Policy Center and Georgetown University’s Center for Security and Emerging Technology (CSET), in consultation with Reps. Robin Kelly (D-IL) and Will Hurd (R-TX), have worked with government officials, industry representatives, civil society advocates, and academics to better understand the major AI-related national and economic security issues the country faces. This paper hopes to shed more clarity on these challenges and provide actionable policy recommendations, to help guide a U.S. national strategy for AI. BPC’s effort is primarily designed to complement the work done by the Obama and Trump administrations, including President Barack Obama’s 2016 The National Artificial Intelligence Research and Development Strategic Plan,i President Donald Trump’s Executive Order 13859, announcing the American AI Initiative,ii and the Office of Management and Budget’s subsequentGuidance for Regulation of Artificial Intelligence Applications.iii The effort is also designed to further June 2020 advance work done by Kelly and Hurd in their 2018 Committee on Oversight 1 and Government Reform (Information Technology Subcommittee) white paper Rise of the Machines: Artificial Intelligence and its Growing Impact on U.S. -
Theory of Mind As Inverse Reinforcement Learning. Current
Available online at www.sciencedirect.com ScienceDirect Theory of mind as inverse reinforcement learning 1,2 Julian Jara-Ettinger We review the idea that Theory of Mind—our ability to reason think or want based on how they behave. Research in about other people’s mental states—can be formalized as cognitive science suggests that we infer mental states by inverse reinforcement learning. Under this framework, thinking of other people as utility maximizers: constantly expectations about how mental states produce behavior are acting to maximize the rewards they obtain while mini- captured in a reinforcement learning (RL) model. Predicting mizing the costs that they incur [3–5]. Using this assump- other people’s actions is achieved by simulating a RL model tion, even children can infer other people’s preferences with the hypothesized beliefs and desires, while mental-state [6,7], knowledge [8,9], and moral standing [10–12]. inference is achieved by inverting this model. Although many advances in inverse reinforcement learning (IRL) did not have Theory of mind as inverse reinforcement human Theory of Mind in mind, here we focus on what they learning reveal when conceptualized as cognitive theories. We discuss Computationally, our intuitions about how other minds landmark successes of IRL, and key challenges in building work can be formalized using frameworks developed in a human-like Theory of Mind. classical area of AI: model-based reinforcement learning 1 Addresses (hereafter reinforcement learning or RL) . RL problems 1 Department of Psychology, Yale University, New Haven, CT, United focus on how to combine a world model with a reward States function to produce a sequence of actions, called a policy, 2 Department of Computer Science, Yale University, New Haven, CT, that maximizes agents’ rewards while minimizing their United States costs. -
Artificial Brain Project of Visual Motion
In this issue: • Editorial: Feeding the senses • Supervised learning in spiking neural networks V o l u m e 3 N u m b e r 2 M a r c h 2 0 0 7 • Dealing with unexpected words • Embedded vision system for real-time applications • Can spike-based speech Brain-inspired auditory recognition systems outperform conventional approaches? processor and the • Book review: Analog VLSI circuits for the perception Artificial Brain project of visual motion The Korean Brain Neuroinformatics Re- search Program has two goals: to under- stand information processing mechanisms in biological brains and to develop intel- ligent machines with human-like functions based on these mechanisms. We are now developing an integrated hardware and software platform for brain-like intelligent systems called the Artificial Brain. It has two microphones, two cameras, and one speaker, looks like a human head, and has the functions of vision, audition, inference, and behavior (see Figure 1). The sensory modules receive audio and video signals from the environment, and perform source localization, signal enhancement, feature extraction, and user recognition in the forward ‘path’. In the backward path, top-down attention is per- formed, greatly improving the recognition performance of real-world noisy speech and occluded patterns. The fusion of audio and visual signals for lip-reading is also influenced by this path. The inference module has a recurrent architecture with internal states to imple- ment human-like emotion and self-esteem. Also, we would like the Artificial Brain to eventually have the abilities to perform user modeling and active learning, as well as to be able to ask the right questions both to the right people and to other Artificial Brains. -
Artificial Intelligence in the Context of Human Consciousness
Running head: AI IN THE CONTEXT OF HUMAN CONSCIOUSNESS 1 Artificial Intelligence in the Context of Human Consciousness Hannah DeFries A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2019 AI IN THE CONTEXT OF HUMAN CONSCIOUSNESS 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ Kyung K. Bae, Ph.D. Thesis Chair ______________________________ Jung-Uk Lim, Ph.D. Committee Member ______________________________ Mark Harris, Ph.D. Committee Member ______________________________ James H. Nutter, D.A. Honors Director ______________________________ Date AI IN THE CONTEXT OF HUMAN CONSCIOUSNESS 3 Abstract Artificial intelligence (AI) can be defined as the ability of a machine to learn and make decisions based on acquired information. AI’s development has incited rampant public speculation regarding the singularity theory: a futuristic phase in which intelligent machines are capable of creating increasingly intelligent systems. Its implications, combined with the close relationship between humanity and their machines, make achieving understanding both natural and artificial intelligence imperative. Researchers are continuing to discover natural processes responsible for essential human skills like decision-making, understanding language, and performing multiple processes simultaneously. Artificial intelligence -
ABS: Scanning Neural Networks for Back-Doors by Artificial Brain
ABS: Scanning Neural Networks for Back-doors by Artificial Brain Stimulation Yingqi Liu Wen-Chuan Lee Guanhong Tao [email protected] [email protected] [email protected] Purdue University Purdue University Purdue University Shiqing Ma Yousra Aafer Xiangyu Zhang [email protected] [email protected] [email protected] Rutgers University Purdue University Purdue University ABSTRACT Kingdom. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/ This paper presents a technique to scan neural network based AI 3319535.3363216 models to determine if they are trojaned. Pre-trained AI models may contain back-doors that are injected through training or by 1 INTRODUCTION transforming inner neuron weights. These trojaned models operate Neural networks based artificial intelligence models are widely normally when regular inputs are provided, and mis-classify to a used in many applications, such as face recognition [47], object specific output label when the input is stamped with some special detection [49] and autonomous driving [14], demonstrating their pattern called trojan trigger. We develop a novel technique that advantages over traditional computing methodologies. More and analyzes inner neuron behaviors by determining how output acti- more people tend to believe that the applications of AI models vations change when we introduce different levels of stimulation to in all aspects of life is around the corner [7, 8]. With increasing a neuron. The neurons that substantially elevate the activation of a complexity and functionalities, training such models entails enor- particular output label regardless of the provided input is considered mous efforts in collecting training data and optimizing performance. -
Defense Primer: National and Defense Intelligence
Updated December 30, 2020 Defense Primer: National and Defense Intelligence The Intelligence Community (IC) is charged with providing Intelligence Program (NIP) budget appropriations, which insight into actual or potential threats to the U.S. homeland, are a consolidation of appropriations for the ODNI; CIA; the American people, and national interests at home and general defense; and national cryptologic, reconnaissance, abroad. It does so through the production of timely and geospatial, and other specialized intelligence programs. The apolitical products and services. Intelligence products and NIP, therefore, provides funding for not only the ODNI, services result from the collection, processing, analysis, and CIA and IC elements of the Departments of Homeland evaluation of information for its significance to national Security, Energy, the Treasury, Justice and State, but also, security at the strategic, operational, and tactical levels. substantially, for the programs and activities of the Consumers of intelligence include the President, National intelligence agencies within the DOD, to include the NSA, Security Council (NSC), designated personnel in executive NGA, DIA, and NRO. branch departments and agencies, the military, Congress, and the law enforcement community. Defense intelligence comprises the intelligence organizations and capabilities of the Joint Staff, the DIA, The IC comprises 17 elements, two of which are combatant command joint intelligence centers, and the independent, and 15 of which are component organizations military services that address strategic, operational or of six separate departments of the federal government. tactical requirements supporting military strategy, planning, Many IC elements and most intelligence funding reside and operations. Defense intelligence provides products and within the Department of Defense (DOD). -
The Project Loon
AISSMS INSTITUTE OF INFORMATION TECHNOLOGY Affiliated to Savitribai Phule Pune University , Approved by AICTE, New Delhi and Recognised by Govt. Of Maharashtra (ID No. PU/PN/ENGG/124/1998) Accredited by NAAC with ‘A’ Grade TELESCAN 2K19 TELESCAN 2019 Editorial Committee We, the students of Electronics & Telecommunication feel the privilege to present the Technical Departmental Magazine of Academic year- TELESCAN 2019 in front of you the magazine provides a platform for the students to express their technical knowledge and enhance their own technical knowledge. We would like to thank Dr.M.P.Sardey (HOD) and Prof. Santosh H Lavate for their constant support and encouraging us throughout the semester to make the magazine great hit. Editorial Team: Staff Co-ordinator: Sanmay Kamble (BE) Santosh H Lavate Abhishek Parte (BE) Supriya Lohar Nehal Gholse (TE) Ankush Muley (TE) TELESCAN 2019 VISION OF E&TC DEPARTMENT To provide quality education in Electronics & Telecommunication Engineering with professional ethics MISSION OF E&TC DEPATMENT To develop technical competency, ethics for professional growth and sense of social responsibility among students TELESCAN 2019 INDEX Sr No. Topic Page No. 1 3 Dimensional Integrated Circuit 1 2 4D Printer 4 3 5 Nanometer Semiconductor 5 4 AI: Changing The Face Of Defence 7 5 Artificial Intelligence 10 6 AI: A Boon Or A Bane 11 7 Block Chain 12 8 Blue Brain 14 9 Cobra Effect 16 10 A New Era In Industrial Production 18 11 Radiometry 20 12 Growing Need For Large Bank Of Test Item 21 13 The Project Loon 23 14 -
Artificial Intelligence: a Roadmap for California
Artificial Intelligence: A Roadmap for California Report #245, November 2018 Milton Marks Commission on California State Government Organization and Economy Little Hoover Commission Dedicated to Promoting Economy and Efficiency Pedro Nava Chairman in California State Government Sean Varner Vice Chairman/ Subcommitee Member The Little Hoover Commission, formally known as the Milton Marks “Little Hoover” David Beier Commission on California State Government Organization and Economy, is an Subcommitee Chair independent state oversight agency created in 1962. By statute, the Commission Iveta Brigis is bipartisan and composed of nine public members, two senators and two Subcommitee Member assemblymembers. Cynthia Buiza In creating the Commission, the Legislature declared its purpose: Anthony Cannella Senator [T]o secure assistance for the Governor and itself in promoting Chad Mayes economy, efficiency and improved services in the transaction of Assemblymember the public business in the various departments, agencies and Don Perata instrumentalities of the executive branch of the state government, Bill Quirk and in making the operation of all state departments, agencies and Assemblymember instrumentalities, and all expenditures of public funds, more directly Richard Roth responsive to the wishes of the people as expressed by their elected Senator representatives. Cathy Schwamberger The Commission fulfills this charge by holding public hearings, consulting with experts Janna Sidley and listening to stakeholders. During the course of its studies, the Commission may Former Commissioners Who create subcommittees and conduct site visits. Served During The Study Joshua LaFarga The findings and recommendations of the Commission are submitted to the Governor and the Legislature for their consideration. Recommendations often take the form of Helen Iris Torres legislation, which the Commission supports through the legislative process. -
AI for Autonomous Ships – Challenges in Design and Validation
VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD AI for Autonomous Ships – Challenges in Design and Validation ISSAV 2018 Eetu Heikkilä Autonomous ships - activities in VTT . Autonomous ship systems . Unmanned engine room . Situation awareness . Autonomous autopilot . Connectivity . Human factors of remote and autonomous systems . Safety assessment 22/03/2018 2 Contents . AI technologies for autonomous shipping . Design & validation challenges . Methodological . Technical . Acknowledgements: Olli Saarela, Heli Helaakoski, Heikki Ailisto, Jussi Martio 22/03/2018 3 AI technologies Definitions - Autonomy Level Name 1 Human operated Autonomy is the ability of a system to 2 Human assisted achieve operational goals in complex domains by making decisions and executing 3 Human delegated actions on behalf of or in cooperation with 4 Supervised humans. (NFA, 2012) 5 Mixed initiative . Target to increase productivity, cost 6 Fully autonomous efficiency, and safety . Not only by reducing human work, but also by enabling new business logic 22/03/2018 5 Definitions - Artificial Intelligence . The Turing test: Can a person tell which of the other parties is a machine . AI is a moving target . When a computer program is able to perform a task, people start to consider the task “merely” computational, not requiring actual intelligence after all. ”AI is all the software we don’t yet know how to write.” . More practically: AI is a collection of technologies facilitating “smart” operation of machines and systems. Conclusions and actions fitting the prevailing