From Product Design to Supply Chain Design: Which Methodologies for the Upstream Stages of Innovation?

Total Page:16

File Type:pdf, Size:1020Kb

From Product Design to Supply Chain Design: Which Methodologies for the Upstream Stages of Innovation? From product design to supply chain design : Which methodologies for the upstream stages of innovation? Brunelle Marche To cite this version: Brunelle Marche. From product design to supply chain design : Which methodologies for the upstream stages of innovation?. Engineering Sciences [physics]. Université de Lorraine, 2018. English. NNT : 2018LORR0155. tel-01946850 HAL Id: tel-01946850 https://tel.archives-ouvertes.fr/tel-01946850 Submitted on 6 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION DU GRADE DE DOCTEUR DE L’UNIVERSITÉ DE LORRAINE Spécialité : GENIE DES SYSTEMES INDUSTRIELS De la conception de produit à la conception de filière : Quelles méthodologies pour les étapes amont de l’innovation ? From product design to supply chain design: Which methodologies for the upstream stages of innovation? Brunelle MARCHE École doctorale SIMPPE (Sciences et Ingénierie des Molécules, des Produits, des Procédés et de l’Energie) - Université de Lorraine ERPI (Équipe de Recherche sur les Processus Innovatifs) Soutenue publiquement le 22 novembre 2018 à Nancy devant le jury d’examen : Professeur des Universités, Institut Mme Peggy ZWOLINSKI polytechnique de Grenoble, Laboratoire G- Rapporteur SCOP Professeur des Universités, ENSIACET-INP M. Stéphane NEGNY Toulouse, Laboratoire LGC Rapporteur Professeur des Universités, Université de Mme Nadège TROUSSIER Technologie de Troyes, CREIDD Examinateur Associate Professor, Delft University of M. J. Roland ORTT Technology, Faculty of Technology Policy and Examinateur Management Professeur des Universités, Université de M. Vincent BOLY Lorraine, Laboratoire ERPI Directeur de Thèse Professeur des Universités, Université de Mme Laure MOREL Lorraine, Laboratoire ERPI Co-Directeur de thèse ERPI – 8 RUE BASTIEN LEPAGE 54000 NANCY 1 To R., “Si on me presse de dire pourquoi je l’aimais, je sens que cela ne peut s’exprimer qu’en répondant : « Parce que c’était elle, parce que c’était moi, parce que c’était nous »“ (Inspiré de Montaigne) 2 3 Acknowledgement The road that leads to a PhD thesis is often lonely and full of doubts. This thesis is the result of a three-years’ work which, today, comes to an end. It is the result of many collaborations and meetings. Therefore, I wish to thank all those who participated in its realization. Indeed, this thesis represents for me an outcome both professional and personal. First, I would like to thank my thesis directors: Vincent BOLY for your confidence and enthusiasm. Taking risks and surpassing myself accompanied me throughout this thesis and it was with a real pleasure (and sometimes with a hint of discouragement) that I took up all these challenges. Because a challenge never comes alone, I want to thank you for giving me the opportunity to teach and for encouraging me to come up with new pedagogic ideas. Laure MOREL, for your patience and your always relevant remarks. Each of our exchanges took me out of my comfort, and it was good for me. Although I have tried to avoid them, I must admit today that your critical eye has brought really added value to my work. My research problems were gone after each of our meetings, and I thank you for that. You have both provided me with an enriching work experience that I hope will continue. Thank you very much for giving me this opportunity. This thesis is the result of teamwork. Therefore, it is essential for me to thank the many people who took their time to accompany, advise and support me during these three years. Roland ORTT, for your optimism and good mood. First of all, I would like to salute your patience in our exchanges in English. Our exchanges, always very constructive, were systematically encouraging and positive and allowed me to deepen my work. I keep an excellent memory of my stay in Delft, these few days have been very enriching both professionally and personally. One thing for sure, I’ll be back!! Mauricio CAMARGO, for your involvement, your generosity and your kindness. A little advice: don’t leave your office door open anymore, it might encourage me to come and talk to you again. I enjoyed our many discussions in the laboratory, at conferences or around a beer. You have always been an excellent listener and you have passed on your passion for research to me. Frédérique MAYER, for your help, patience and support. Good mood, smiles and anecdote are always there. I know when I walk into your office, never when I walk out: so many things to talk about. I would like to thank you for the moments when you were the “System Engineering” expert and for all the others, especially those when spirits were not high. Thanks to the company managers and Michel HEHN from the Jean Lamour Institute who agreed to devote their time to my experiments. Thanks to the French, Dutch and German researchers with whom I had very enriching exchanges. 4 I have been fortunate over the past three years to enjoy a pleasant working environment. I must convey my thanks to the whole ERPI laboratory and ENSGSI team. Thank you for your help, thank you for welcoming me as a future colleague and thank you for your confidence. I would like to thank Hakim BOUDAOUD for the confidence he gave me by giving me the opportunity to prove myself as a beginner teacher. Still today, I wonder which is more difficult: to support your humor or to teach mechanics… In any case, I thank you for having given me my chance. I take this opportunity to thank Valérie RAULT for all this advice so that I can improve myself as a teacher. Thanks to Eric BONJOUR, Véronique FALK for your advice and ideas. Thanks to Laurent DUPONT for all our constructive exchanges (surprisingly, I only remember the non- constructive ones!), especially in conferences. A huge thank you to Martine TANI for her energy, kindness and friendship. Your presence during the most difficult event of my life was a real comfort to me. You have helped me by respecting my grief and sorrow and even today, your kindness is a precious help. It is with full head projects that I want to thank you, I hope to realize them and thanks to them, to realize myself. Thanks to Manon ENJOLRAS for her professional and personal help. I wish us many more entertaining exchanges. My thanks also go to my doctoral colleagues and friends (past and present): Fabio, Giovanny, Hélène, Lamia, Alex, Aline, Julien, Andrea, Jonathan, Giang, Pedro, Fatima, Linda, Javier, Carlos, Juan David and Pavlo. Thank you for all these discussions, serious or not, for your good mood and for all the occasions when we had a drink. Thanks to Noémie BARTHELEMY, Stéphane SCHNEIDER and Cindy NEVES for their administrative help. These three years of thesis would not have been the same without the presence of my family. So I thank my parents and my brother for their patience, supporting me during these three years must not have been an easy task. Thank you for being there in difficult times. A huge thanks to Fred. Our complicity is precious to me and despite our (sometimes!) tumultuous relationship, you always believed in me. You have supported me in difficult times and helped me overcome many obstacles. Whatever happens, I won’t forget it. Thanks to the Nudrevillois friends (Coco, Bos and all the others) for these aperitifs, these restaurants, these training sessions, these games evenings, these concerts and all these other moments shared with you. A great thanks to you for your presence and your support in good times and bad. From the bottom of my heart, thank you. 5 TABLE OF CONTENTS GENERAL INTRODUCTION .......................................................................................................... 16 1. THESIS APPROACH ....................................................................................................... 17 2. THESIS STRUCTURE ...................................................................................................... 19 PART 1: RESEARCH POSITIONING............................................................................................. 22 CHAPTER 1 CONTEXT AND RESEARCH POSITIONING .......................................................... 24 INTRODUCTION ......................................................................................................................... 24 1.1 Context: innovation goes beyond the company’s boundaries ......................................
Recommended publications
  • Logistics Systems Engineer – Interdisciplinary Competence
    PAPER LOGISTICS SYSTEMS ENGINEER – INTERDISCIPLINARY COMPETENCE MODEL FOR MODERN EDUCATION Logistics Systems Engineer – Interdisciplinary Competence Model for Modern Education http://dx.doi.org/10.3991/ijep.v5i2.4578 Tarvo Niine and Ott Koppel Tallinn University of Technology, Tallinn, Estonia Abstract—Logistics is an interdisciplinary field of study. However, based on research of university curricula, it is Modern logisticians need to integrate business management observed that the field of logistics education does not and administration skills with technology design, IT systems include engineering aspects to enough extent. This is both and other engineering fields. However, based on research of in terms of technologies as well as the systematic nature of university curricula and competence standards in logistics, engineering thinking. Large proportion of logistics the engineering aspect is not represented to full potential. curricula are focused on business administration with only There are some treatments of logistician competences which selected engineering topics touched, usually focusing on relate to engineering, but not a modernized one with wide- case studies of implementation benefits rather than how to spread recognition. This paper aims to explain the situation specifically design, develop such technologies and to re- from the conceptual development point of view and suggests engineer processes to accommodate with the changes. In a competence profile for “logistics system engineer”, which terms of logistics system design and underlying thought introduces the viewpoint of systems engineering into processes, the approach could often benefit from being logistics. For that purpose, the paper analyses requirements more systematic. of various topical competence models and merges the introductory competences of systems engineering into Similar gap can be observed on the level of competence logistics.
    [Show full text]
  • Industrial Engineering and Management M.Sc. ()
    Module Handbook Industrial Engineering and Management M.Sc. SPO 2015 Winter term 2021/22 Date: 30/09/2021 KIT DEPARTMENT OF ECONOMICS AND MANAGEMENT KIT – The Research University in the Helmholtz Association www.kit.edu Table Of Contents Table Of Contents 1. General information ....................................................................................................................................................................................................... 13 1.1. Structural elements .......................................................................................................................................................................................................13 1.2. Begin and completion of a module .......................................................................................................................................................................... 13 1.3. Module versions ..............................................................................................................................................................................................................13 1.4. General and partial examinations ............................................................................................................................................................................13 1.5. Types of exams ...............................................................................................................................................................................................................
    [Show full text]
  • Springer.Comspringer.Com.Cn
    ABCD springer.comspringer.com.cn Springer 工程學 2010年 上半年度 ABCD springer.com Don’t wait! Sign up today! Accelerate your business and join us, using all of the tools Springer has created to keep you informed tailored to your specific needs 7 Sign up today for the Springer NEWS online at springer.com/springeralerts/booksellers 7 Create your own catalogs quickly and easily using the SIGN UP ! Springer Customized Catalog at springer.com/customizedbooklist 7 Keep track of journals that have transferred to us at springer.com/forgetmenot 7 Learn more about the full range of our new, forthcoming and just released titles 7 Get notice about Price Changes and Special Offers and last but not least… 7 Make use of the electronic Book Order Form and email your order directly to Springer Customer Service Center Sign up at springer.com/bookseller springer.com 014262x springer.com Table of Contents 1 Engineering Aerospace Technology and Astronautics ................................................................................................. 2 Appl. Mathematics / Computational Methods of Engineering .......................................................... 3 Automotive Engineering ......................................................................................................................... 5 Biomedical Engineering ............................................................................................................................ 6 Building Construction, HVAC, Refrigeration .....................................................................................
    [Show full text]
  • Towards a Strategic Management Framework for Engineering of Organizational Robustness and Resilience
    Towards a Strategic Management Framework for Engineering of Organizational Robustness and Resilience Der Rechts- und Wirtschaftswissenschaftlichen Fakultät / dem Fachbereich Wirtschafts- und Sozialwissenschaften der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. pol. vorgelegt von Florian Maurer, MA aus Bregenz, Österreich Als Dissertation genehmigt von der Rechts- und Wirtschaftswissenschaftlichen Fakultät / vom Fachbereich Wirtschafts- und Sozialwissenschaften der Friedrich-Alexander-Universität Erlangen-Nürnberg Promotionstermin: .. Tag der mündlichen Prüfung: .. Vorsitzende/r des Promotionsorgans: Prof. Dr. Markus Beckmann Gutachter/in: Prof. Dr. Kathrin M. Möslein Prof. Dr. Ulrike Lechner Abstract I Abstract The concepts of organizational robustness and resilience are essential to organizations to withstand internal and external dynamics, risks, uncertainties and crisis. These concepts enable organizations to innovate within these adverse situation and to find a better position before the occurrence of events. Nevertheless, these concepts are less understood in Service Science research. Main focus within this theory is still on joint co-creation of value in service networks and less on innovation from organizational crisis situation. This dissertation at hand investigates into the concepts of organizational robustness and resilience from a theoretical and empirical perspective. Both perspectives are antecedent to design, develop and engineer the Strategic Management Framework for Engineering
    [Show full text]
  • Supply Chain Engineering
    Supply Chain Engineering Marc Goetschalckx Errata First Edition, Springer, 2011. Last updated 19-May-14 5:45:00 PM Foreword 05-Sep-2011 Replace “missing” by “mission’ in line 4. 27-Aug-2011 Replace “breath-first” by “breadth-first”. Note that this error also appears in the introductory description on Internet sites such as Amazon, but has already been corrected in the printed version. Introduction 18-May-2014 On page 18, replace “disposal time is the required” with “disposal time is the time required”. 09-Dec-2011 In the References on page 14, reference 2, replace “upply chain” with “supply chain”. Update publisher information to “Pitman Publishing, London.” Page 4, replace first sentence with “For an organization to become a long term component of a supply chain requires that the relationship between them is beneficial in the long run for the organization and for the rest of the supply chain, i.e. it is a win-win relationship.” Page 4, first paragraph, change “In the manufacturing industries, examples are” to “In the manufacturing industries, examples of supply chains are”. 31-Aug-2011 In Figure 1.5, change “Stratetic” to “Strategic” in the top left cell of the matrix. Engineering Planning and Design 18-May-2014 On page 30, replace “recyclable materials collected for” with “recyclable materials collected from”. On page 55, replace “higher- level” with “higher-level” without the extra space. 24-Oct-2012 On page 34, second paragraph, replace “articles and book has been published” with “articles and books have been published”. On page 38, last paragraph, replace “There exist a separation” with “There exists a separation”.
    [Show full text]
  • MS in Advanced and Intelligent Manufacturing (AIM)
    Proposal for New Program MS in Advanced and Intelligent Manufacturing (AIM) Graduate School of Engineering AIM MS Proposal Led & Prepared by Sagar Kamarthi Intended AIM MS Co-directors to be Hongli ‘Julie’ Zhu and Xiaoning ‘Sarah’ Jin Nov 20, 2020 1 EXECUTIVE SUMMARY In the last five years, the United States has seen a resurgence in advanced manufacturing fueled in part by the creation of 14 National Network of Manufacturing Innovation Institutes. The US government and industry have invested several billion dollars to revitalize advanced manufacturing in the US. As a result, all stakeholders including industry, academia, research labs, and government agencies have been forming strong partnerships to rapidly transfer science and technology into manufacturing high-tech products and processes. To meet the current and projected demand for engineers, researchers, and scientists trained in advanced and smart manufacturing and leverage Northeastern’s recognized research and development in nano and microscale manufacturing, smart manufacturing, and data analytics, the College of Engineering (COE) proposes to start a new graduate program, MS in Advanced and Intelligent Manufacturing (AIM). This program will enable students to acquire the necessary engineering, analytical and research skills to design, supervise, and manage advanced and manufacturing facilities and projects in industry, government or academia. Figure 1 depicts an infographic of advanced and smart manufacturing1. The program will address conventional manufacturing as well as advanced manufacturing. Conventional manufacturing covers topics such metal removal, forming, casting, and particulate processes. In contrast advanced manufacturing covers topics such as nanomanufacturing, fabrication and printing of micro and nano devices, additive 3D printing of parts, electronics, sensors, medical, materials and energy applications.
    [Show full text]
  • Study Programme
    Study Programme Academic year 2021-2022 Faculty of Engineering and Architecture Ghent University (Programme jointly organized by Ghent University, Vrije Universiteit Brussel) European Master of Science in Photonics (v6) Language of instruction English Valid in the academic year 2020-2021 - accessible by re-enrolment only 1 General Courses These general courses are taught in parallel at Ghent University and at Vrije Universiteit Brussel (with lecturers from both universities), with the exception of the course 'Innovation Management' (the VUB counterpart is ‘Business Aspects of Micro-Electronics and Photonics'). The programme of the European Master of Science in Photonics has a compulsory international mobility, that can be taken as follows: • An international exchange through Erasmus of at least one semester; • An international internship of 10 credit units; • A master's dissertation at an international partner university (30 credit units); • A master's dissertation with a strong international component or an international research exchange of at least 6 credit units. The compulsory international mobility can partly be met by following an international Summer School (outside of Belgium), of at least 3 credit units. No.Course name Lecturer (dept.) CRDT Ref MT1 MT2 SemesterContact Study 1 Optical Materials Kristiaan Neyts TW06 6 1 1 60 180 2 Microphotonics Dries Van Thourhout TW05 6 1 1 60 180 3 Lasers Geert Morthier TW05 4 1 1 30 120 4 Introduction to Entrepreneurship Petra Andries EB23 3 1 1 15 90 5 Mathematics in Photonics Peter Bienstman TW05 4 1 1 30 120 6 Laboratories in Photonics Research Nicolas Le Thomas TW05 6 1 2 76 180 7 Optical Communication Systems Geert Morthier TW05 6 1 2 60 180 8 Sensors and Microsystem Electronics Herbert De Smet TW06 6 1 2 60 180 9 Physics of Semiconductor Technologies and Geert Van Steenberge TW06 4 1 2 36 120 Devices 10 Innovation Management Katrien Verleye EB23 3 1 2 30 90 11 Recent Trends in Photonics Wim Bogaerts TW05 4 2 1 30 120 2 Elective Courses Subscribe to 38 credit units from 2 modules from the following list.
    [Show full text]
  • Print Programme (V3)
    Study Programme Academic year 2021-2022 Faculty of Engineering and Architecture Ghent University (Programme jointly organized by Ghent University, Vrije Universiteit Brussel) Master of Science in Photonics Engineering (v3) Language of instruction English Valid as from the academic year 2021-2022 1 General Courses These general courses are taught in parallel at Ghent University and at Vrije Universiteit Brussel (with lecturers from both universities). A key feature of this programme is that there is an option to take the first master year without being physically present in Belgian, as all courses of the programme will be live streamed and/or recorded. Students who choose this option, select the O-sessions ("online") in their curriculum. No.Course name Lecturer (dept.) CRDT Ref MT1 MT2 SemesterContact Study 1 Optical Materials Kristiaan Neyts TW06 6 1 A:11, O: 60 180 2 Microphotonics Dries Van Thourhout TW05 6 1 A:11, O: 60 180 3 Lasers Geert Morthier TW05 4 1 A:11, O: 30 120 4 Mathematics in Photonics Peter Bienstman TW05 4 1 A:11, O: 30 120 5 Optical Communication Systems Geert Morthier TW05 6 1 A:22, O: 60 180 6 Sensors and Microsystem Electronics Herbert De Smet TW06 6 1 A:22, O: 60 180 7 Physics of Semiconductor Technologies and Geert Van Steenberge TW06 4 1 A:22, O: 36 120 Devices 8 Innovation Management Katrien Verleye EB23 3 1 A:22, O: 30 90 9 Recent Trends in Photonics Wim Bogaerts TW05 4 2 1 30 120 2 General Courses Subscribe to no less than 7 and no more than 9 credit units from the following list.
    [Show full text]
  • Brothers, Sheila C
    Brothers, Sheila C. From: Cramer, Aaron M. Sent: Saturday, December 14, 2019 6:52 AM To: Bird-Pollan, Jennifer; Brothers, Sheila C.; Ett-Mims, Joanie; Woolery, Stephanie L. Cc: Badurdeen, F F. Subject: NEW MS: Supply Chain Engineering Attachments: New Masters Deg Pgm Form-Final-SCE (December 2019).pdf Proposed New MS in Supply Chain Engineering This is a recommendation that the University Senate approve, for submission to the Board of Trustees, the establishment of a new MS degree: Supply Chain Engineering, in the Department of Mechanical Engineering within the College of Engineering. Rationale: There is a national skills gap and demand for professionals in supply-chain-related careers. Demand in this area is reported to exceed supply by six to one. In Kentucky alone, there were more than 6,000 job postings for supply- chain positions in the previous year. There are very few similar programs, and the most comparable at Georgia Tech is not oriented towards working professionals. This two-year, non-thesis program, to be offered in an online formatted, has been developed in cooperation with the Gatton College of Business and Economics. The program features nine hours of common core courses (shared with the forthcoming proposed MS in Supply Chain Management program), 15 hours of Engineering-specific core courses, three elective hours, and three hours of capstone industry project. An initial cohort of 10 students followed by steady-state enrollment of 15 students is anticipated. Aaron Aaron M. Cramer Kentucky Utilities Associate Professor of Electrical and Computer Engineering Director of Graduate Studies, Electrical Engineering Chair, Senate Academic Programs Committee University of Kentucky 859-257-9113 [email protected] 1 NEW MASTER’S DEGREE PROGRAM Office of Strategic Planning and Institutional Effectiveness (OSPIE).
    [Show full text]
  • Ryder Forms Strategic Partnership with Plug and Play to Support Development of Innovative Supply Chain and Logistics Startups
    NEWS RELEASE Ryder Forms Strategic Partnership with Plug and Play to Support Development of Innovative Supply Chain and Logistics Startups 11/28/2017 - Ryder Demonstrates its Leadership in Bringing Innovative Solutions to Market with Support for Startup Accelerator - MIAMI--(BUSINESS WIRE)-- Ryder System, Inc. (NYSE: R), a leader in commercial fleet management, dedicated transportation, and supply chain solutions, announced today that the Company is expanding its commitment to innovation with several new partnerships, including sponsoring Plug and Play, a global startup ecosystem and venture fund specializing in the development of early-to-growth stage technology startups in 12 verticals. “Ryder is constantly looking for new ways to promote innovation and efficiency within our customers’ supply chain operations and this latest partnership with Plug and Play will help us accomplish just that by accelerating the development of some of the greatest emerging technologies to date,” said Steve Sensing, Ryder President of Global Supply Chain Solutions. “We’re confident Ryder’s unparalleled engineering and analytics expertise will advance the strategic priorities of Plug and Play and its partners, and ultimately drive innovation within supply chain and logistics.” Ryder’s sponsorship of Plug and Play will focus on accelerating projects across a variety of industries, addressing the need for supply chain management and effective logistical operations in almost every type of business. Ryder will engage with a select group of startups to provide executive mentoring, technical expertise, and the opportunity to potentially pilot startup solutions within its own operations. This will create an added benefit beyond standard startup scouting. “Plug and Play is proud to receive support and industry expertise from Ryder as the newest addition to our Plug and Play Supply Chain & Logistics program,” said Saeed Amidi, Founder and CEO of Plug and Play.
    [Show full text]
  • NYU ‘S Tandon School of Engineering!
    Welcome to NYU ‘s Tandon School of Engineering! Master of Science Industrial Engineering Program Overview Fall 2020 The team – we are here to support you Aric C. Meyer Administrative Director Technology Management and Innovation Thomas Mazzone Director of Industrial Engineering, Industry Associate Professor Elizabeth Spock Academic Advisor Technology Management and Innovation Rebecca Menzer Academic and Career Advisor Technology Management and Innovation Industrial engineers determine the most effective ways to design, manage and improve systems —people, machines, materials, information, and energy—to make a product or provide a service Industrial Engineers earn salaries above the average and the market for our degree is expected to grow 8% - 10% over the coming decade in areas like change management, organizational transformation and systems optimization. Industrial Engineering Students come from a wide variety of backgrounds and an engineering degree is not required to join our program The skills that Industrial Engineers develop are valuable, and highly sought after across a wide range of industries. Industrial engineers work in consulting firms, financial services, health care, government, transportation, construction, social services, operations and supply chain management Industrial Engineering provides greater career flexibility The industrial engineering skill set we help you develop is broad, deep and focused on application. This opens a broader scope of job opportunities. The type of jobs* we prepare you for: o Industrial Engineer – ave. $75K o Business Process Analyst – ave. $73K o Change Management Consultant – ave. $110K o Lean Consultant – ave. $85K o Agile Consultant – ave. $86K o Process Improvement – ave. $76K o Supply Chain Analyst – ave. $72K o Project Manager – ave.
    [Show full text]
  • Supply Chain Engineering and Logistics Handbook Inventory and Production Control Evaluating the Impact of Sustainability And
    This article was downloaded by: 10.3.98.104 On: 02 Oct 2021 Access details: subscription number Publisher: CRC Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London SW1P 1WG, UK Supply Chain Engineering and Logistics Handbook Inventory and Production Control Erick C. Jones Evaluating the Impact of Sustainability and Pipeline Quality on the Global Crude Oil Supply Chain Publication details https://www.routledgehandbooks.com/doi/10.1201/9781315159096-3 Erick C. Jones, Sunny Paraskumar Jain Published online on: 05 Dec 2019 How to cite :- Erick C. Jones, Sunny Paraskumar Jain. 05 Dec 2019, Evaluating the Impact of Sustainability and Pipeline Quality on the Global Crude Oil Supply Chain from: Supply Chain Engineering and Logistics Handbook, Inventory and Production Control CRC Press Accessed on: 02 Oct 2021 https://www.routledgehandbooks.com/doi/10.1201/9781315159096-3 PLEASE SCROLL DOWN FOR DOCUMENT Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]