Department of the Interior Fish and Wildlife Service
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Summary of 2016 Reef Fish Surveys Around Kahoolawe Island 1
doi:10.7289/V5/DR-PIFSC-17-011 Summary of 2016 Reef Fish Surveys around Kahoolawe Island 1 Results and information presented here summarize data gathered by the Coral Reef Ecosystem Program (CREP) of NOAA’s Pacific Islands Fisheries Science Center and partners during 2 days of reef fish and habitat surveys around Kahoolawe Island in July/August 2016. Surveys were conducted as part of the NOAA National Coral Reef Monitoring Program. Surveys were conducted using a standard sampling design and method implemented by NOAA’s Pacific Reef Assessment and Monitoring Program (Pacific RAMP) since 2009. In brief, pairs of divers record numbers, sizes, and species of fishes inside adjacent 15m-diameter ‘point- count’ cylinders and estimate benthic cover by functional groups (e.g. ‘coral’, ‘sand’). Because it is unpopulated and protected, Kahoolawe is an important reference location in in the main Hawaiian Islands and may also be a significant source of larvae and fish recruits for other parts of Maui-nui and perhaps beyond. Therefore, CREP hopes to routinely survey Kahoolawe reefs during future monitoring efforts. However, as 2016 was the first year for Kahoolawe surveys, we have a relatively small sample size there - 24 sites - in comparison to other Main Hawaiian Islands (MHI: between 107 and 257 survey sites per island). Main conclusions and observations: • Reef fish biomass was high at most sites we visited in Kahoolawe, with mean island-wide biomass higher than at any other of the MHI, although only marginally higher than at Niihau. Biomass tended to be slightly higher at sites along the southern section of the island. -
Demartini NWHI Overview for CRSAW (Feb 1
NOWRAMP Overview Ed DeMartini NOAA Fisheries, PIFSC • Objectives • Design & Status of Surveys • Major Patterns Northwestern Hawaiian Islands 99 9 9 99 9 9 9 9 NWHI Survey Objectives • Qualitative reconnaissance of ichthyofauna; describe relative abundance, assemblage structure • Initial quantitative assessment of both economic and ecologically interacting resources (corals, algae, macrobenthos as well as fishes); to provide baseline characterization of biota • Subsequent monitoring of target taxa at select representative stations; to enable detection of major changes over decadal time frame Summary of Design Elements • Develop sampling and analysis designs; standardize data collection protocols – size- and species/taxon- specific tallies per unit area • graded bins: by cm (< 5 cm), by 5 cm (6-50 cm), …by 25 cm (> 100 cm TL) – station(=dive): 3, 25-m long x 4- or 8- m wide belt transects, plus 4, 10- m radius (5-min) SPCs, apportioned among 3 divers • belts: total 600 m2 area for “large” (> 20 cm Total Length, TL) fishes • belts: total 300 m2 area for “small” (< 20 cm TL) fishes • SPCs: total @ 1257 m2 area (fish > 25 cm TL only) – followed by @ 3,000 m2 Roving Diver Survey • Analysis Design – abundance (N, biomass) for baseline assessment – density for monitoring temporal change – stratified by major habitat within reef (eg, fore-, back-reef, lagoonal patch at atolls) Sampling & Analysis Design Summary (cont’d) – at least 50% hard substrate – number of stations proportional to reef-area (and variance of stratum) – all sampleable reef quadrants (emphasis on leeward for monitoring) – distribute among-observer bias (< 15%) across stations and tasks – control for seasonality (eg, in recruitment) by design • differs among NWHI and other reef-systems NOWRAMP Cruise-Effort • 5-cruise baseline assessment • 25-mo period from Sep 00 to Oct 02 – Sep-Oct 00: NOAA’s Townsend Cromwell (TC00-10) & R/V Rapture – Sep 01: Cromwell (TC01-11); FFS, Maro Reef – Sep-Oct 02: Cromwell (TC02-07) & Rapture • Single monitoring cruise thus far – Jul-Aug 03: Oscar E. -
Geology of Hawaii Reefs
11 Geology of Hawaii Reefs Charles H. Fletcher, Chris Bochicchio, Chris L. Conger, Mary S. Engels, Eden J. Feirstein, Neil Frazer, Craig R. Glenn, Richard W. Grigg, Eric E. Grossman, Jodi N. Harney, Ebitari Isoun, Colin V. Murray-Wallace, John J. Rooney, Ken H. Rubin, Clark E. Sherman, and Sean Vitousek 11.1 Geologic Framework The eight main islands in the state: Hawaii, Maui, Kahoolawe , Lanai , Molokai , Oahu , Kauai , of the Hawaii Islands and Niihau , make up 99% of the land area of the Hawaii Archipelago. The remainder comprises 11.1.1 Introduction 124 small volcanic and carbonate islets offshore The Hawaii hot spot lies in the mantle under, or of the main islands, and to the northwest. Each just to the south of, the Big Island of Hawaii. Two main island is the top of one or more massive active subaerial volcanoes and one active submarine shield volcanoes (named after their long low pro- volcano reveal its productivity. Centrally located on file like a warriors shield) extending thousands of the Pacific Plate, the hot spot is the source of the meters to the seafloor below. Mauna Kea , on the Hawaii Island Archipelago and its northern arm, the island of Hawaii, stands 4,200 m above sea level Emperor Seamount Chain (Fig. 11.1). and 9,450 m from seafloor to summit, taller than This system of high volcanic islands and asso- any other mountain on Earth from base to peak. ciated reefs, banks, atolls, sandy shoals, and Mauna Loa , the “long” mountain, is the most seamounts spans over 30° of latitude across the massive single topographic feature on the planet. -
Conservation Triage Or Injurious Neglect in Endangered Species Recovery
Conservation triage or injurious neglect in endangered species recovery Leah R. Gerbera,1 aCenter for Biodiversity Outcomes and School of Life Sciences, Arizona State University, Tempe, AZ 85287 Edited by James A. Estes, University of California, Santa Cruz, CA, and approved February 11, 2016 (received for review December 23, 2015) Listing endangered and threatened species under the US Endan- the ESA is presumed to offer a defense against extinction and a gered Species Act is presumed to offer a defense against extinction solution to achieve the recovery of imperiled populations (1), but and a solution to achieve recovery of imperiled populations, but only if effective conservation action ensues after listing occurs. only if effective conservation action ensues after listing occurs. The The amount of government funding available for species amount of government funding available for species protection protection and recovery is one of the best predictors of successful and recovery is one of the best predictors of successful recovery; recovery (2–7); however, government spending is both in- however, government spending is both insufficient and highly sufficient and highly disproportionate among groups of species disproportionate among groups of species, and there is significant (8). Most species recovery plans include cost estimates—a pro- discrepancy between proposed and actualized budgets across spe- posed budget for meeting recovery goals. Previous work has cies. In light of an increasing list of imperiled species requiring demonstrated a significant discrepancy between proposed and evaluation and protection, an explicit approach to allocating recovery actualized budgets across species (9). Furthermore, the literature fundsisurgentlyneeded. Here I provide a formal decision-theoretic on formal decision theory and endangered species conservation approach focusing on return on investment as an objective and a suggests that the most efficient allocation of resources to con- transparent mechanism to achieve the desired recovery goals. -
RESTORATION Summary
Kahoʻolawe Island Reserve Commission 1. RESTORATION Summary DOH Restoration Project Status Update (July 1 to Sept 30, 2019) In July 2019 the Kamehameha School teachers came out to island to outplant the last 1609 plants for a total of 10,000 in the project site. They constructed the last wattles and installed irrigation. Kamehameha School Teachers installing a wattle with native plants and irrigation. The finished wattle product with native plants on irrigation in the project site Jamie also installed a pressure reducing valve on the 1” Sub Main to reduce the pressure buildup in the line from gravity. The map illustrates the end result of wattles, native plants and irrigation installed in the DOH Project Site. Wattles, native plants and irrigation installed in the DOH project site A pressure reducing valve on the 1” sub main to alleviate high pressure blow outs in the irrigation line. Jamie also captured the secondary drone images an altitude of 50’ to compare to the original images taken in 2018. Some of the comparisons showed the installation of wattles with vegetation. Drone Image #7 2018 Drone Image #7 2019 Drone Image #7 2019 shows the installation of a wattle on the hard pan. The 1 year DOH Project was completed on August 9, 2019 and 200 volunteers put in 10,000 native plants. Although the success rate was low due to a relatively dry year, the infrastructure has been installed for future potential maintenance. Jamie operating the DJI Phantom Drone in the DOH Project Site Below are examples of before and after photopoints (#7 East West and South) in the DOH Project Site showing the additions of the wattles made from burlap and native vegetation on irrigation. -
Photographing the Islands of Hawaii
Molokai Sea Cliffs - Molokai, Hawaii Photographing the Islands of Hawaii by E.J. Peiker Introduction to the Hawaiian Islands The Hawaiian Islands are an archipelago of eight primary islands and many atolls that extend for 1600 miles in the central Pacific Ocean. The larger and inhabited islands are what we commonly refer to as Hawaii, the 50 th State of the United States of America. The main islands, from east to west, are comprised of the Island of Hawaii (also known as the Big Island), Maui, Kahoolawe, Molokai, Lanai, Oahu, Kauai, and Niihau. Beyond Niihau to the west lie the atolls beginning with Kaula and extending to Kure Atoll in the west. Kure Atoll is the last place on Earth to change days and the last place on Earth to ring in the new year. The islands of Oahu, Maui, Kauai and Hawaii (Big Island) are the most visited and developed with infrastructure equivalent to much of the civilized world. Molokai and Lanai have very limited accommodation options and infrastructure and have far fewer people. All six of these islands offer an abundance of photographic possibilities. Kahoolawe and Niihau are essentially off-limits. Kahoolawe was a Navy bombing range until recent years and has lots of unexploded ordinance. It is possible to go there as part of a restoration mission but one cannot go there as a photo destination. Niihau is reserved for the very few people of 100% Hawaiian origin and cannot be visited for photography if at all. Neither have any infrastructure. Kahoolawe is photographable from a distance from the southern shores of Maui and Niihau can be seen from the southwestern part of Kauai. -
Recovery Plan for Tyoj5llllt . I-Bland Plants
Recovery Plan for tYOJ5llllt. i-bland Plants RECOVERY PLAN FOR MULTI-ISLAND PLANTS Published by U.S. Fish and Wildlife Service Portland, Oregon Approved: Date: / / As the Nation’s principal conservation agency, the Department of the Interior has responsibility for most ofour nationally owned public lands and natural resources. This includes fostering the wisest use ofour land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values ofour national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests ofall our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island Territories under U.S. administration. DISCLAIMER PAGE Recovery plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance ofrecovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Costs indicated for task implementation and/or time for achievement ofrecovery are only estimates and are subject to change. Recovery plans do not necessarily represent the views nor the official positions or approval ofany individuals or agencies involved in the plan formulation, otherthan the U.S. Fish and Wildlife Service. They represent the official position ofthe U.S. -
Nihoa Manawai Holoikauaua Pearl & Hermes Atoll Kapou Papa'āpoho Lisianski Island Kamole Kauō Laysan Island Kamokuokamohoali'i Ko'anako'a Maro Reef
175°E 180° 175°W 170°W 165°W 160°W 155°W 150°W 35°N 35°N North America Japan Map Area Photo by Dan Clark/USFWS Hawaiian Islands Photo by Na‘alehu Anthony P a c i f i c Seabird Refuge A Living Hawaiian Culture O c e a n The monument is home to over 14 million seabirds 30°N Hiryū USS Yorktown Equator representing 23 species. This includes the world's Traditional Hawaiian accounts describe largest colonies of Laysan and black-footed Papahānaumokuākea as a sacred area from which Rapa Sōryū albatross. Pictured above is the world's oldest life first emerged and to which spirits return after Nui Australia known bird in the wild – a Laysan albatross named 30°N death. Akagi Wisdom! Banded in 1956 when she was at least five Kaga years old, Wisdom may have hatched more than 36 New Zealand chicks in her lifetime. Hōlanikū Manawai Unnamed Holoikauaua Mokupāpapa Seamount Kure Atoll Pearl & Hermes Atoll 582,578 square miles, only six square miles of land Helsley Seamount Ladd Seamount Kamole Kauō ‘Ōnūnui, ‘Ōnūiki Photo by Mark Sullivan/NOAA Laysan Island Photo by NOAA/OER Endemic Sanctuary Pūhāhonu New Discoveries The monument is home to many species found Kuaihelani Gardner Pinnacles The majority of the seafloor in the Northwestern nowhere else on Earth and is a critically important Pihemanu Salmon Hawaiian Islands lies at depths below 10,000 feet nesting ground for green sea turtles and breeding Bank (3,000 meters). Using advanced technologies like ground for Hawaiian monk seals. -
A Landscape-Based Assessment of Climate Change Vulnerability for All Native Hawaiian Plants
Technical Report HCSU-044 A LANDscape-bASED ASSESSMENT OF CLIMatE CHANGE VULNEraBILITY FOR ALL NatIVE HAWAIIAN PLANts Lucas Fortini1,2, Jonathan Price3, James Jacobi2, Adam Vorsino4, Jeff Burgett1,4, Kevin Brinck5, Fred Amidon4, Steve Miller4, Sam `Ohukani`ohi`a Gon III6, Gregory Koob7, and Eben Paxton2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawai‘i at Hilo, Hilo, HI 96720 4 U.S. Fish & Wildlife Service —Ecological Services, Division of Climate Change and Strategic Habitat Management, Honolulu, HI 96850 5 Hawai‘i Cooperative Studies Unit, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI 96718 6 The Nature Conservancy, Hawai‘i Chapter, Honolulu, HI 96817 7 USDA Natural Resources Conservation Service, Hawaii/Pacific Islands Area State Office, Honolulu, HI 96850 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2013 This product was prepared under Cooperative Agreement CAG09AC00070 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-044 A LANDSCAPE-BASED ASSESSMENT OF CLIMATE CHANGE VULNERABILITY FOR ALL NATIVE HAWAIIAN PLANTS LUCAS FORTINI1,2, JONATHAN PRICE3, JAMES JACOBI2, ADAM VORSINO4, JEFF BURGETT1,4, KEVIN BRINCK5, FRED AMIDON4, STEVE MILLER4, SAM ʽOHUKANIʽOHIʽA GON III 6, GREGORY KOOB7, AND EBEN PAXTON2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaiʽi National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawaiʽi at Hilo, Hilo, HI 96720 4 U. -
Guidance Document Pohakuloa Training Area Plant Guide
GUIDANCE DOCUMENT Recovery of Native Plant Communities and Ecological Processes Following Removal of Non-native, Invasive Ungulates from Pacific Island Forests Pohakuloa Training Area Plant Guide SERDP Project RC-2433 JULY 2018 Creighton Litton Rebecca Cole University of Hawaii at Manoa Distribution Statement A Page Intentionally Left Blank This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Page Intentionally Left Blank 47 Page Intentionally Left Blank 1. Ferns & Fern Allies Order: Polypodiales Family: Aspleniaceae (Spleenworts) Asplenium peruvianum var. insulare – fragile fern (Endangered) Delicate ENDEMIC plants usually growing in cracks or caves; largest pinnae usually <6mm long, tips blunt, uniform in shape, shallowly lobed, 2-5 lobes on acroscopic side. Fewer than 5 sori per pinna. Fronds with distal stipes, proximal rachises ocassionally proliferous . d b a Asplenium trichomanes subsp. densum – ‘oāli’i; maidenhair spleenwort Plants small, commonly growing in full sunlight. Rhizomes short, erect, retaining many dark brown, shiny old stipe bases.. Stipes wiry, dark brown – black, up to 10cm, shiny, glabrous, adaxial surface flat, with 2 greenish ridges on either side. Pinnae 15-45 pairs, almost sessile, alternate, ovate to round, basal pinnae smaller and more widely spaced. -
Albatross Or Mōlī (Phoebastria Immutabilis) Black-Footed Albatross Or Ka’Upu (Phoebastria Nigripes) Short-Tailed Albatross (Phoebastria Albatrus)
Hawaiian Bird Conservation Action Plan Focal Species: Laysan Albatross or Mōlī (Phoebastria immutabilis) Black-footed Albatross or Ka’upu (Phoebastria nigripes) Short-tailed Albatross (Phoebastria albatrus) Synopsis: These three North Pacific albatrosses are demographically similar, share vast oceanic ranges, and face similar threats. Laysan and Black-footed Albatrosses nest primarily in the Northwestern Hawaiian Islands, while the Short-tailed Albatross nests mainly on islands near Japan but forages extensively in U.S. waters. The Short-tailed Albatross was once thought to be extinct but its population has been growing steadily since it was rediscovered in 1951 and now numbers over 3,000 birds. The Laysan is the most numerous albatross species in the world with a population over 1.5 million, but its trend has been hard to determine because of fluctuations in number of breeding pairs. The Black-footed Albatross is one-tenth as numerous as the Laysan and its trend also has been difficult to determine. Fisheries bycatch caused unsustainable mortality of adults in all three species but has been greatly reduced in the past 10-20 years. Climate change and sea level rise are perhaps the greatest long-term threat to Laysan and Black-footed Albatrosses because their largest colonies are on low-lying atolls. Protecting and creating colonies on higher islands and managing non-native predators and human conflicts may become keys to their survival. Laysan, Black-footed, and Short-tailed Albatrosses (left to right), Midway. Photos Eric VanderWerf Status -
Breeding Biology of the Brown Noddy on Tern Island, Hawaii
Wilson Bull., 108(2), 1996, pp. 317-334 BREEDING BIOLOGY OF THE BROWN NODDY ON TERN ISLAND, HAWAII JENNIFER L. MEGYESI’ AND CURTICE R. GRIFFINS ABSTRACT.-we observed Brown Noddy (Anous stolidus pileatus) breeding phenology and population trends on Tern Island, French Frigate Shoals, Hawaii, from 1982 to 1992. Peaks of laying ranged from the first week in January to the first week in November; however, most laying occurred between March and September each year. Incubation length was 34.8 days (N = 19, SD = 0.6, range = 29-37 days). There were no differences in breeding pairs between the measurements of the first egg laid and successive eggs laid within a season. The proportion of light- and dark-colored chicks was 26% and 74%, respectively (N = 221) and differed from other Brown Noddy colonies studied in Atlantic and Pacific oceans. The length of time between clutches depended on whether the previous outcome was a failed clutch or a successfully fledged chick. Hatching, fledging, and reproductive success were significantly different between years. The subspecies (A. s. pihtus) differs in many aspects of its breeding biology from other colonies in the Atlantic and Pacific oceans, in regard to year-round occurrence at the colony, frequent renesting attempts, large egg size, proportion of light and dark colored chicks, and low reproductive success caused by in- clement weather and predation by Great Frigatebirds (Fregata minor). Received 31 Mar., 1995, accepted 5 Dec. 1995. The Brown Noddy (Anous stolidus) is the largest and most widely distributed of the tropical and subtropical tern species (Cramp 1985).