Page 1 of 9 BIOL 325 – Plant Systematics Name

Total Page:16

File Type:pdf, Size:1020Kb

Page 1 of 9 BIOL 325 – Plant Systematics Name BIOL 325 – Plant Systematics Name: ___________________________ Sample Topics & Questions for Exam 1 This document and questions are the copyright of CRHardy, 2016 onwards. Topic 01 – Introduction, Sample Topics & Questions: 1. What major topics to Rhoads and Block (2007) discuss in the introduction to their book? 2. What are the reasons that Prather et al. (2004) list for continued herbarium collecting even in places like North America the flora is thought to be well known? 3. What method(s) does Dirig (2005) discuss for mounting pressed specimens to herbarium sheets? 4. What methods does Dirig (2005) discuss for collecting plant specimens for later pressing? 5. What do the graphs used by Prather et al. (2004) show about herbarium plant collecting in the US? 6. How does one define plant systematics? Name at least one synonym for plant systematics? 7. What are practitioners of plant systematics called and what are some of their important products? 8. Be able to explain how each of these products are important to people and other scientists outside the field of systematics. 9. What is a phylogeny? 10. What is a herbarium? 11. Name the important components of a herbarium specimen. 12. What are herbarium specimens used for? 13. Although taxonomy and systematics are often treated as synonyms by many, they are not actually the same thing. Which of the two is a broader term and how so? 14. The far majority of plant species are described from studies in ... a. botanical gardens b. herbaria c. the field d. plant nurseries e. zoological museums Page 1 of 9 15. The excerpt below from an economic botany study depicts the most important step of any scientific study in which the identity of the species investigated is crucial. That is the… a. ... washing of the leaves with water. b. … identification of the plant family. c. … identity and location of the voucher specimen. Topic 02 – The PA Flora from Macroevolutionary and Physiogeographical Perspectives, Sample Topics & Questions: 1. From Moyer and Hardy (2016) order the major groups of plants in Pennsylvania (Angiosperms, Bryophytes, Ferns and Horsetails, Gymnosperms, and Lycopods) in order of their appearance in evolutionary time. 2. From Moyer and Hardy (2016): Which major group of plants would have been dominant during the early Devonian? 3. From Moyer and Hardy (2016): Which major group of plants would have been dominant between 250-200 Ma? 4. Why were these plants (Question 3) dominant during this period of time and not others of the major groups? 5. From Rhoads and Block (2007), Introduction, draw a map of Pennsylvania showing the geographic extent and position of the 4 main physiogeographic provinces. 6. Order the 3 major orogenies in the Appalachian uplift in order from oldest to most recent. When did each occur? 7. Which orogeny resulted in the formation of Pangea? Page 2 of 9 Topic 03 – The Code, Sample Topics & Questions: 1. Which reading assignment provides a real, published example of publishing new species descriptions, names and new combinations? a. Be able to describe how this assignment follows the steps for valid publication of new taxonomic names. 2. Which reading assignment discusses the important changes between the current Code and the Vienna Code? What are some of those changes as it relates to 1) the Codes formal name, 2) the language to be used for formal taxonomic descriptions or diagnoses, and 3) effective publication. 3. Which reading assignment provides the Preamble and Principles for the current Code of botanical nomenclature? What does the Preamble state? What are those principles? 4. The Virginia creeper, Parthenocissus quinquefolia (L.) Planch., has an interesting nomenclatural history. Which history below is most likely? a. The species was originally described as Hedera quinquefolia by Jules Planchon, then was transferred to the genus Parthenocissus by Carolus Linnaeus. b. The species was originally described as Hedera quinquefolia by Jules Planch, then was transferred to the genus Parthenocissus by Carolus Linnaeus. c. The species was originally described through a collaborative effort between Linnaeus and Planch. d. The species was originally described as Hedera quinquefolia by Linnaeus, then was transferred by Jules Planch to Parthenocissus. e. The species was originally described as Hedera quinquefolia by Linnaeus, then was transferred to Parthenocissus by Jules Planchon. 5. Halodromeda rubra (L.) L.: Provide a logical explanation for the nomenclatural history of this taxon. Questions 6-11, answer the following questions regarding this excerpt from Liede & Meve (1996) 6. Does this represent the description of a new species or merely the transfer of a species to a new (different) genus? Page 3 of 9 7. Who is(are) the author(s) that originally described the species? 8. What is the original name for this species? 9. Where was the type specimen(s) collected and by whom? 10. Where does the holotype reside (abbreviation is fine)? 11. How many name changes has this species undergone? 12. Name a new cultivar of the red maple, Acer rubrum, after the unusually large leaves that the new cultivar has. Provide the name of the species and cultivar, correctly written, below. ********************************************************************************** 13. Pretend you are a taxonomist and transfer Antirrhinum spurium L. into the related genus Linaria Mill. Linaria is the toadflax genus, and includes many species, such as the alpine toadflax, Linaria alpina. Provide the correct and complete name of this transferred species formerly known as Antirrhinum spurium below. 14. The peach belongs to the species Prunus persica (L.) Stokes, and is a decidedly cool fruit. Which of the following is its most likely nomenclatural history? a. The peach was originally described by Jonathan Stokesia as Amygdalus persica, but was transferred to Prunus by Carolus Linnaeus. b. The peach was originally described by Jonathan Stokes as Amygdalus persica, but was transferred to Prunus by Carolus Linnaeus. c. The peach was originally described by Carolus Linnaeus as Amygdalus persica, but was transferred to Prunus by Jonathan Stokesia. d. The peach was originally described by Carolus Linnaeus as Amygdalus persica, but was transferred to Prunus by Jonathan Stokes. 15. The suffix for the rank of family is.. a. –opsida b. –aceae c. –ophyta d. –idea e. –ales Page 4 of 9 16. If Aesculus L. (published in 1753), Pavia Mill. (published in 1754), Macrothyrsus Spach (published in 1834), and Calothyrsus Spach (published in 1834) are formally lumped into a single genus, what is the correct name of this more broadly defined genus? 17. Name and rank the principal taxonomic ranks in order from most inclusive to least inclusive. 18. Provide the formula for a hybrid between Lupinus grandifolius L. and Lupinus peruvianus Aulestia. Be sure the name(s) you write below is(are) complete. 19. Instead, pretend that you are a taxonomist and give an actual formal, binomial name to a hybrid between Lupinus grandifolius L. and Lupinus peruvianus Aulestia. Be sure the name you write below is complete. 20. Pretend you are a taxonomist and you name a species of oak (Quercus) after Abraham Lincoln (1809 – 1865), using his last name. Provide this name below and be sure it is complete and correctly written according to current custom. 21. Ted Nugent decides to split the Magnoliaceae Juss. Into two families. Which of the following 4 scenarios is valid under the Code? Page 5 of 9 22. You split Plowmanianthus into 3 genera, keeping in mind that the type for Plowmanianthus is Plowmanianthus perforans. Be sure to include authorship on all taxa Old Classification for 5 species Your New Classificdation for the same 5 species. 23. Distinguish between the different types of types. No how to apply these distinctions in real examples. Page 6 of 9 Topic 00 – Taxonomic (family, higher group) Knowledge, Sample Questions 1. Which plant group has spicy, aromatic ethereal oil cells? A. Asterids B. Rosids C. Magnoliids D. Monocots E. Nymphaeids 2. Which plant group consists of aquatic herbs with showy flowers and numerous, spirally arranged floral parts? A. Asterids B. Rosids C. Magnoliids D. Monocots E. Nymphaeids 3. Which plant family has squarish stems and opposite, fragrant leaves? A. Asteraceae B. Rosaceae C. Lauraceae D. Araceae E. Lamiaceae 4. Which plant family has a single cotyledon and a spathe and spadix? A. Asteraceae B. Rosaceae C. Lauraceae D. Araceae E. Lamiaceae 5. Which plant family has aromatic bark, simple alternate leaves and small flowers with whorled tepals and valvate anthers? A. Asteraceae B. Leguminosae C. Lauraceae D. Ericaceae E. Lamiaceae Page 7 of 9 6. Which plant family generally has compound leaves, pulvini, 5-merous flowers, and a fruit that dries and splits along two sutures at maturity? A. Asteraceae B. Fabaceae C. Lauraceae D. Ericaceae E. Rosaceae 7. Which plant family generally has evergreen, entire leaves with 5 fused petals in an urceolate corolla and 10 poricidally dehiscent anthers? A. Asteraceae B. Leguminosae C. Lauraceae D. Ericaceae E. Lamiaceae 8. To which family do apples, pears, and cherries belong? A. Asteraceae B. Leguminosae C. Lauraceae D. Ericaceae E. Rosaceae 9. SHORT ANSWER: Fill in the missing group in the cladogram below 10. SHORT ANSWER: The cladogram above implies that the monocots are more closely related to who? Provide a single word answer. 11. SHORT ANSWER: Which group in the cladogram above is totally aquatic? Page 8 of 9 12. SHORT ANSWER: Which group(s) in the cladogram above comprise the “Basal Angiosperm Grade”? 13. SHORT ANSWER: The following picture is from which family? Page 9 of 9 .
Recommended publications
  • Plant Classification, Evolution and Reproduction
    Plant Classification, Evolution, and Reproduction Plant classification, evolution and reproduction! Traditional plant classification! ! A phylogenetic perspective on classification! ! Milestones of land plant evolution! ! Overview of land plant diversity! ! Life cycle of land plants! Classification “the ordering of diversity into a meaningful hierarchical pattern” (i.e., grouping)! The Taxonomic Hierarchy! Classification of Ayahuasca, Banisteriopsis caapi! Kingdom !Plantae! Phylum !Magnoliophyta Class ! !Magnoliopsida! Order !Malpighiales! Family !Malpighiaceae Genus ! !Banisteriopsis! Species !caapi! Ranks above genus have standard endings.! Higher categories are more inclusive.! Botanical nomenclature Carolus Linnaeus (1707–1778)! Species Plantarum! published 1753! 7,300 species! Botanical nomenclature Polynomials versus binomials! Know the organism “The Molesting Salvinia” Salvinia auriculata (S. molesta)! hp://dnr.state.il.us/stewardship/cd/biocontrol/2floangfern.html " Taxonomy vs. classification! Assigning a name! A system ! ! ! Placement in a category! Often predictive ! because it is based on Replicable, reliable relationships! results! ! Relationships centered on genealogy ! ! ! ! Edward Hitchcock, Elementary Geology, 1940! Classification Phylogeny: Reflect hypothesized evolution. relationships! Charles Darwin, Origin of Species, 1859! Ernst Haeckel, Generelle Morphologie der Organismen, 1866! Branching tree-like diagrams representing relationships! Magnolia 1me 2 Zi m merman (1930) Lineage branching (cladogenesis or speciation) Modified
    [Show full text]
  • Learn About Plant Diversity, with Focus on the Angiosperm Flora of Washington State
    Biol 317: Plant Classification & Identification Spring 2014 Instructor: Dr. Pat Lu-Irving Office: 408 Hitchcock Office hours: Tue & Wed, 10-11am (or by appointment) Email: [email protected] Grad TA: John Chau Peer TAs: Adrienne Cohen Sam Frankel Kate Nowell Veanna Willard Class website: http://courses.washington.edu/bot113/ Course objectives Learn about plant diversity, with focus on the angiosperm flora of Washington state. Most land plants are flowering plants Incl. grasses, roses, lilies, daisies; producing both flowers and fruits WA natives There are approximately 300,000 species of angiosperms, with 3,000 occurring in WA Compare with mammals: only 5,500 on Earth Course objectives Understand the principles and philosophy of plant classification. In modern classification, our goal is to recognize monophyletic groups Monocots Eudicots Knowledge of phylogeny is vital to plant classification Course objectives Identify 40 important plant families by sight. Key unknown plants to species using published floras. Orchidaceae Araceae Knowledge of morphology is vital to plant identification sepal corolla Corallorhiza maculata Lysichiton americanus stem Ericaceae Boraginaceae stamen leaf ovary Elliottia pyroliflora Myosotis sylvatica Course objectives Gain a greater appreciation for nature, and your connection Triticum aestivum with it. Hevea brasiliensis Wheat flour Natural rubber Coffea arabica Erythroxylum coca Coffee Course objectives Gain a greater appreciation for nature, and your connection with it. Today’s lecture Nomenclature and classification
    [Show full text]
  • The Exotic World of Carolus Clusius 1526-1609 and a Reconstruction of the Clusius Garden
    The Netherlandish humanist Carolus Clusius (Arras 1526- Leiden 1609) is one of the most important European the exotic botanists of the sixteenth century. He is the author of innovative, internationally famous botanical publications, the exotic worldof he introduced exotic plants such as the tulip and potato world of in the Low Countries, and he was advisor of princes and aristocrats in various European countries, professor and director of the Hortus botanicus in Leiden, and central figure in a vast European network of exchanges. Carolus On 4 April 2009 Leiden University, Leiden University Library, The Hortus botanicus and the Scaliger Institute 1526-1609 commemorate the quatercentenary of Clusius’ death with an exhibition The Exotic World of Carolus Clusius 1526-1609 and a reconstruction of the Clusius Garden. Clusius carolus clusius scaliger instituut clusius all3.indd 1 16-03-2009 10:38:21 binnenwerk.qxp 16-3-2009 11:11 Pagina 1 Kleine publicaties van de Leidse Universiteitsbibliotheek Nr. 80 binnenwerk.qxp 16-3-2009 11:12 Pagina 2 binnenwerk.qxp 16-3-2009 11:12 Pagina 3 The Exotic World of Carolus Clusius (1526-1609) Catalogue of an exhibition on the quatercentenary of Clusius’ death, 4 April 2009 Edited by Kasper van Ommen With an introductory essay by Florike Egmond LEIDEN UNIVERSITY LIBRARY LEIDEN 2009 binnenwerk.qxp 16-3-2009 11:12 Pagina 4 ISSN 0921-9293, volume 80 This publication was made possible through generous grants from the Clusiusstichting, Clusius Project, Hortus botanicus and The Scaliger Institute, Leiden. Web version: https://disc.leidenuniv.nl/view/exh.jsp?id=exhubl002 Cover: Jacob de Monte (attributed), Portrait of Carolus Clusius at the age of 59.
    [Show full text]
  • Plant Identification Presentation
    Today’s Agenda ◦ History of Plant Taxonomy ◦ Plant Classification ◦ Scientific Names ◦ Leaf and Flower Characteristics ◦ Dichotomous Keys Plant Identification Heather Stoven What do you gain Looking at plants more closely from identifying plants? Why is it ◦ How do plants relate to each other? How are they important? grouped? • Common disease and insect problems • Cultural requirements • Plant habit • Propagation methods • Use for food and medicine Plant Classification Plant Classification Group each plant into a specific category Group each plant into a specific category Maple Spiraea Viburnum Crabapple Maple Spiraea Apple tree Ash Viburnum Crabapple Daylily Geranium Apple tree Ash Tomato Poinsettia Daylily Geranium TREES Oak Pepper Tomato Poinsettia Weeping willow Mint Oak Pepper Petunia Euonymus Weeping willow Mint Petunia Euonymus OS-Plant ID.ppt, page 1 Plant Classification Plant Classification Group each plant into a specific category Group each plant into a specific category Maple Spiraea Maple Spiraea Viburnum Crabapple Viburnum Crabapple Apple tree Ash Ornamental Apple tree Ash Edible Daylily Geranium Flowering Daylily Geranium Tomato Poinsettia Plants Tomato Poinsettia Crops Oak Pepper Oak Pepper Weeping willow Mint Weeping willow Mint Petunia Euonymus Petunia Euonymus Carolus Linnaeus Plant Taxonomy The Father of Taxonomy ◦ Identifying, classifying and assigning ◦ Swedish botanist scientific names to plants ◦ Developed binomial ◦ Historical botanists trace the start of nomenclature taxonomy to one of Aristotle’s students, Theophrastus (372-287 B.C.), but he didn’t ◦ Cataloged plants based on create a scientific system natural relationships—primarily flower structures (male and ◦ He relied on the common groupings of female sexual organs) folklore combined with growth: tree, shrub, undershrub or herb ◦ Published Species Naturae in ◦ Detected the process of germination and 1735 and Species Plantarum in realized the importance of climate and soil 1753 to plants ◦ Then, along came Linnaeus….
    [Show full text]
  • Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area
    Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part II Monocotyledons Stanwyn G. Shetler Sylvia Stone Orli Botany Section, Department of Systematic Biology National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 MAP OF THE CHECKLIST AREA Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part II Monocotyledons by Stanwyn G. Shetler and Sylvia Stone Orli Department of Systematic Biology Botany Section National Museum of Natural History 2002 Botany Section, Department of Systematic Biology National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 Cover illustration of Canada or nodding wild rye (Elymus canadensis L.) from Manual of the Grasses of the United States by A. S. Hitchcock, revised by Agnes Chase (1951). iii PREFACE The first part of our Annotated Checklist, covering the 2001 species of Ferns, Fern Allies, Gymnosperms, and Dicotyledons native or naturalized in the Washington-Baltimore Area, was published in March 2000. Part II covers the Monocotyledons and completes the preliminary edition of the Checklist, which we hope will prove useful not only in itself but also as a first step toward a new manual for the identification of the Area’s flora. Such a manual is needed to replace the long- outdated and out-of-print Flora of the District of Columbia and Vicinity of Hitchcock and Standley, published in 1919. In the preparation of this part, as with Part I, Shetler has been responsible for the taxonomy and nomenclature and Orli for the database. As with the first part, we are distributing this second part in preliminary form, so that it can be used, criticized, and updated while the two parts are being readied for publication as a single volume.
    [Show full text]
  • Diversity of Wisconsin Rosids
    Diversity of Wisconsin Rosids . mustards, mallows, maples . **Brassicaceae - mustard family Large, complex family of mustard oil producing species (broccoli, brussel sprouts, cauliflower, kale, cabbage) **Brassicaceae - mustard family CA 4 CO 4 A 4+2 G (2) • Flowers “cross-like” with 4 petals - “Cruciferae” or “cross-bearing” •Common name is “cress” • 6 stamens with 2 outer ones shorter Cardamine concatenata - cut leaf toothwort Wisconsin has 28 native or introduced genera - many are spring flowering Herbs with alternate, often dissected leaves Cardamine pratensis - cuckoo flower **Brassicaceae - mustard family CA 4 CO 4 A 4+2 G (2) • 2 fused carpels separated by thin membrane – septum • Capsule that peels off the two outer carpel walls exposing the septum attached to the persistent replum **Brassicaceae - mustard family CA 4 CO 4 A 4+2 G (2) siliques silicles Fruits are called siliques or silicles based on how the fruit is flattened relative to the septum **Brassicaceae - mustard family Cardamine concatenata - cut leaf toothwort Common spring flowering woodland herbs Cardamine douglasii - purple spring cress **Brassicaceae - mustard family Arabidopsis lyrata - rock or sand cress (old Arabis) Common spring flowering woodland herbs Boechera laevigata - smooth rock cress (old Arabis) **Brassicaceae - mustard family Nasturtium officinale - water cress edible aquatic native with a mustard zing **Brassicaceae - mustard family Introduced or spreading Hesperis matronalis - Dame’s Barbarea vulgaris - yellow rocket rocket, winter cress **Brassicaceae
    [Show full text]
  • Carolus Linnaeus' System for Classifying Organisms
    Carolus Linnaeus’ System for Classifying Organisms Unit 3 Lesson 2 Carolus Linnaeus’ System for Classifying Organisms Students will be able to: • Outline the main taxonomic groups and classification of selected organisms. • State the conventions for naming a species using binomial nomenclature. Key Vocabulary: Binomial name/nomenclature, Class, Classification, Common name, Domain, Family, Genus, Kingdom, Life process, Order, Phylum, Species, Taxonomy, Carolus Linnaeus’ System for Classifying Organisms Classification • Classification categorizes organisms into smaller groups. • In the same way that the books in a library are sorted according to their respective topics, science also has a way of categorizing the 1.5 million species that have been discovered so far. Carolus Linnaeus’ System for Classifying Organisms The Importance of Classification All living organisms are made up of cells and demonstrate each of the seven key life processes below: • movement • respiration These 7 life processes can be • sensitivity remembered using • growth the acronym: • reproduction MRS GREN • excretion • nutrition Carolus Linnaeus’ System for Classifying Organisms The Importance of Classification: • uses a hierarchy of levels based on the degree of similarity between species and how they carry out their life processes. • makes studying populations of organisms easier as they have many shared features. • newly identified can be placed into an appropriate group by observing how they carry out each life process. Carolus Linnaeus’ System for Classifying Organisms Comprehension Check: Can you... 1. List the 7 life processes used to classify organisms? 2. Explain why organisms need to be sorted? Carolus Linnaeus’ System for Classifying Organisms Comprehension Check: Answers Can you... 1. List the 7 life processes used to classify organisms? Movement, Respiration, Sensitivity, Growth, Respiration, Excretion, Nutrition 2.
    [Show full text]
  • Biodiversity
    Founded in 1888 as the Marine Biological Laboratory Catalyst SPRING 2012 VOLUME 7, NUMBER 1 IN THIS ISSUE 4 All Species, Great and Small 8 Microbial Diversity, Leaf by Leaf 10 Life, Literature, and the Pursuit of Global Access BIODIVERSITY: Exploring Life on Earth Page 2 F R OM THE D ir ECTO R MBL Catalyst Dear Friends, SPRING 2012 VOLUME 7, NUMBER 1 In February, a group of MBL trustees, overseers, and friends took a memorable MBL Catalyst is published twice yearly by the Office of “eco-expedition” by safari through East Africa. For most of us, the most exciting Communications at the Marine Biological Laboratory aspect was seeing the megafauna – giraffes, zebras, lions, warthogs, wildebeests, (MBL) in Woods Hole, Massachusetts. The MBL is rhinoceroses—roaming wild in a pristine landscape. Except in tropical Asia, these dedicated to scientific discovery and improving the human condition through research and education large, charismatic animals aren’t found anywhere else on the planet—not in the in biology, biomedicine, and environmental science. Americas, Europe, Australia, or New Zealand. Founded in 1888, the MBL is an independent, nonprofit corporation. Why did they disappear? The reasons are debated, but there is good evidence Senior Advisors that overkill by prehistoric humans caused major losses. Unfortunately, the near- President and Director: Gary Borisy Chief Academic and extinction of these species 10,000 to 50,000 years ago is not the end of the story. Scientific Officer: Joshua Hamilton It is generally agreed that the Earth is facing another biodiversity crisis in this Director of External Relations: Pamela Clapp Hinkle century, with extinctions largely driven by destruction of habitat.
    [Show full text]
  • Topic 04 History of Plant Systematics & Classification
    11/1/2016 Topic 04 History of Plant Systematics & Classification I. Primer on Classification A. Definition ‐process of organizing thoughts and ideas about the world around us. I. Primer on Classification A. Definition ‐process of organizing thoughts and ideas about the world around us. B. Primary Operations 1. Grouping & Ranking 1 11/1/2016 Grouping results in a horizontal or coordinate arrangement of objects or organisms. AB B D D B A D A C C C D objects or organisms. B E A B E C D E Grouping results in a horizontal or coordinate arrangement of objects or organisms. AB B D D B A D A C C C D objects or B E organisms. A B E C D E Group A Group B Group C Group D Group E Groups of objects or organisms AB C D D E E B B D E A A A BB C C C DD E Grouping results in a horizontal or coordinate arrangement of objects or organisms. Group A Group B Group C Group D Group E AB C D D E E B B D E A A A B B C C C DD E groups have equal ranks or importance (e.g. species or genera, etc.) 2 11/1/2016 Ranking results in a vertical or hierarchical arrangement of those groups. Group A Group B Group C Group D Group E AB C D D E E B B D E A A A B B C C C DD E Genus 1 Genus 2 Genus 3 Family 1 Family 2 Order I.
    [Show full text]
  • Carolus Linnaeus (Carl Von Linné), 1707-1778: the Swede Who Named Almost Everything
    University of Kentucky UKnowledge Microbiology, Immunology, and Molecular Microbiology, Immunology, and Molecular Genetics Faculty Publications Genetics Spring 2010 Carolus Linnaeus (Carl von Linné), 1707-1778: The wedeS Who Named Almost Everything Charles T. Ambrose University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/microbio_facpub Part of the History of Science, Technology, and Medicine Commons, and the Medical Humanities Commons Repository Citation Ambrose, Charles T., "Carolus Linnaeus (Carl von Linné), 1707-1778: The wS ede Who Named Almost Everything" (2010). Microbiology, Immunology, and Molecular Genetics Faculty Publications. 34. https://uknowledge.uky.edu/microbio_facpub/34 This Article is brought to you for free and open access by the Microbiology, Immunology, and Molecular Genetics at UKnowledge. It has been accepted for inclusion in Microbiology, Immunology, and Molecular Genetics Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Carolus Linnaeus (Carl von Linné), 1707-1778: The Swede Who Named Almost Everything Notes/Citation Information Published in The Pharos of Alpha Omega Alpha-Honor Medical Society, v. 73, no. 2, p. 4-10. © 2010 by Alpha Omega Alpha Honor Medical Society. The opc yright holder has granted the permission for posting the article here. This article is available at UKnowledge: https://uknowledge.uky.edu/microbio_facpub/34 Carolus Linnaeus (Carl von Linné), 1707–1778 The Swede who named almost everything Charles T. Ambrose, MD 4 Books andThe fish Pharosprint in the/Spring library 2010 of Carl Linnaeus.
    [Show full text]
  • Originis of Mexican Malpighiaceae
    Acta Botanica Mexicana 104: 107-156 (2013) ORIGINS OF MEXICAN MALPIGHIACEAE William R. andeRson University of Michigan Herbarium Ann Arbor, Michigan 48108, USA [email protected] ABSTRACT The approximately 42 lineages of Malpighiaceae currently known in Mexico are identified and briefly described and discussed. All the Mexican lineages have their ultimate roots in South America, although in some cases the connections are inferred only through phylogeny and several Mexican genera probably originated in Mexico. All the lineages have effective adaptations for dispersal except the genus Galphimia, but distributions outside Mexico and a phylogenetic tree suggest that while many Malpighiaceae reached Mexico through “stepping-stone” dispersal, some lineages probably arrived as the result of episodes of long-distance dispersal from South America. Key words: biogeography, Malpighiaceae, Mexico, phylogeny. RESUMEN Se identifican y se describen y discuten brevemente los aproximadamente 42 linajes de Malpighiaceae que se conocen hasta ahora para México. Todos los linajes mexicanos tienen sus últimas raíces en Sudamérica, aunque en algunos casos las conexiones se infieren únicamente mediante filogenia y algunos géneros mexicanos probablemente se originaron en México. Todos los linajes tienen adaptaciones efectivas para su dispersión excepto el género Galphimia, pero las distribuciones fuera de México y un árbol filogenético sugieren que aunque muchas Malpighiaceae llegaron a México mediante el modelo de dispersión de “piedras de paso”, algunos linajes probablemente arribaron desde Sudamérica mediante dispersión a larga distancia. Palabras clave: biogeografía, filogenia, Malpighiaceae, México. 107 Acta Botanica Mexicana 104: 107-156 (2013) INTRODUCTION In a recent review of the literature on the Mexican seasonally dry tropical flora, Pérez-García et al.
    [Show full text]
  • The Nuance and Wit of Carolus Linnaeus
    The Palmetto Quarterly Magazine of the Florida Native Plant Society · Vol. 13, No. 4 · Winter 1993 The Nuance and Wit of Carolus Linnaeus by Daniel F. Austin "What's the use of their having names," the Gnat said, "if they won't answer to them?" "No use to them," said Alice; "but it's useful to the people that name them, I suppose." Lewis Carroll, Alice in Wonderland Anyone having even the slightest example, has at least 245 local contact with biological names has common names in four European encountered Linnaeus, usually reduced to languages! the abbreviation of "L.". Carl von Linne, a An aspect of Linnaean names Swedish botanist who lived 1707-1778, rarely appreciated, however, is has been dubbed the "father of their sporadic underlying humor. taxonomy" because he was the first to The most obvious example of make consistent use of two words for Linnaeus' whimsey is his name scientific names, called binomial nomen- for our own species, Homo clature (or simply binomials). Carolus sapiens, (the wise one). However, Linnaeus, as he wrote his name in Latin, he was so egocentric that some was the first to use genus and species think that he con-sidered himself names for plants, animals, rocks, minerals, the best individual of our and even diseases (he was a licensed species. Some also think that his physician, though he went through name for our species was not a medical school in less than two weeks). wry comment on humans in As "foreign" as these Latin and Greek general, but a description of names may be to non-biologists, they are himself! still better than the long sentence names Perhaps it is the comparative (polynomials) in use before 1753.
    [Show full text]