Cp147888.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lyonia 7(1) 2004 - Conservation of Biological and Cultural Diversity in the Andes and the Amazon Basin - Flora and Vegetation
Lyonia 7(1) 2004 - Conservation of Biological and Cultural Diversity in the Andes and the Amazon Basin - Flora and Vegetation Volume 7(1) December 2004 ISSN: 0888-9619 odd-right: 2 Introduction Scientists widely agree that species extinction has heavily accelerated in the last decades. The majority of the worlds species are found in tropical forests, covering a mere ten percent of the planets surface. A grave problem for the conservation of diversity is the still very fragmentary knowledge of the ecology of most species. The Andes and the Amazon Basin represent one of the most important Biodiversity-Hotspots on Earth. Attempts of sustainable management and conservation must integrate local communities and their traditional knowledge. Management decisions need to include the high importance of natural resources in providing building materials, food and medicines for rural as well as urbanized communities. The traditional use of forest resources, particularly of non-timber products like medicinal plants, has deep roots not only in indigenous communities, but is practiced in a wide section of society. The use of medicinal herbs is often an economically inevitable alternative to expensive western medicine. The base knowledge of this traditional use is passed from one generation to the next. Especially the medical use represents a highly dynamic, always evolving process, where new knowledge is constantly being obtained, and linked to traditional practices. An increased emphasis is being placed en possible economic benefits especially of the medicinal use of tropical forest products instead of pure timber harvesting, an approach particularly appealing to countries with difficult economic conditions. Most research efforts, due to lack of manpower, time end resources, focus only on either biodiversity assessments or ethnobotanical inventories, or try to implement management and use measures without having a sound scientific base to do so. -
Phylogeny and Biogeography of Ceiba Mill. (Malvaceae, Bombacoideae)
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.10.196238; this version posted July 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 TITLE PAGE 2 3 Pezzini et al. Evolutionary History of Tropical Dry Forest 4 5 Research article: Phylogeny and biogeography of Ceiba Mill. (Malvaceae, Bombacoideae) 6 7 Flávia Fonseca Pezzini1,2,8, Kyle G. Dexter3, Jefferson G. de Carvalho-Sobrinho4, Catherine A. Kidner1,2, 8 James A. Nicholls5, Luciano P. de Queiroz6, R. Toby Pennington1,7 9 10 1 Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom 11 2 School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom 12 3 School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom. 13 4 Colegiado de Ciências Biológicas, Universidade Federal do Vale do São Francisco, Petrolina, Brazil 14 5 Australian National Insect Collection, CSIRO, Acton, Australia 15 6 Herbario, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil 16 7 Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom 17 8 Corresponding author: [email protected] | 20a Inverleith Row Edinburgh, EH3 5LR, UK 18 19 ABSTRACT 20 The Neotropics is the most species-rich area in the world and the mechanisms that generated and 21 maintain its biodiversity are still debated. This paper contributes to the debate by investigating 22 the evolutionary and biogeographic history of the genus Ceiba Mill. -
Assessment of Threatened Medicinal Plants in Selected Locations in South-Western Nigeria *1Lawal I
Journal of Forestry Research and Management. Vol. 16(3).12-26; 2019, ISSN 0189-8418 www.jfrm.org.ng Assessment of Threatened Medicinal Plants in Selected Locations in South-Western Nigeria *1Lawal I. O., 1Rafiu B. O 2Falana A.R,. and 1Adam, A. A. 1Biomedicinal Research Centre, Forestry Research Institute of Nigeria, P.M.B. 5054, Ibadan. 2Federal College of Forestry, Ibadan, Nigeria. *Corresponding author: [email protected]; Tel: +2348035059095 ABSTRACT Plant as a biotic factor plays a significant role in the well-being of man. The relationship between man and plants has been very cordial since time immemorial. The burgeoning world population and the concomitant increase in anthropogenic activities led to the rapid erosion of natural ecosystems. This study was designed to assess the categories and the ethno-medicinal information of endangered medicinal plant species in Igbo-Nla, Odeda Local Government Area of Ogun state and International Institute of Tropical Agriculture (IITA), Akinyele Local Government Area of Oyo state, Nigeria for proper referencing. The land area of 5 acres were marked out from the locations and divided into 4 compartments of 1.25 acres. The plant species found were identified, enumerated and recorded accordingly. Ethno-botanical information such as the local names, parts used and ailments which they can be used to treat were captured. Frequency of occurrence, species abundance/richness and others were used to analyze the information obtained. It was revealed that 33 species belonging to 12 angiosperm families were recorded in IITA while 40 species belonging to 25 plant families were recorded in Igbo-Nla with species in Fabaceae family having the highest frequency of occurrence at both study areas. -
Fatty Acid Composition of Seed Oil from Pachira Aquatica Grown in Nigeria
Journal of Agriculture and Ecology Research International 18(4): 1-9, 2019; Article no.JAERI.49305 ISSN: 2394-1073 Fatty Acid Composition of Seed Oil from Pachira aquatica Grown in Nigeria Afolayan S. Sunday1*, Igbum O. Gillian2 and Igoli O. John3 1Nigerian Stored Products Research Institute, Km 3, Asa Dam Road P.M.B. 1489, Ilorin Kwara State, Nigeria. 2Department of Chemistry, Benue State University, Makurdi, Nigeria. 3Department of Chemistry, University of Agriculture, PMB 2373, Makurdi, Nigeria. Authors’ contributions This work was carried out in collaboration among all authors. Author ASS designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors IOG and IOJ managed the analyses of the study. Author IOJ managed the literature searches. All authors read and approved the final manuscript. Article Information DOI: 10.9734/JAERI/2019/v18i430065 Editor(s): (1) Dr. Daniele De Wrachien, Department of Agricultural and Environmental Sciences, State University of Milan, Italy. Reviewers: (1) Daniela Benedec, Iuliu Hatieganu University of Medicine and Pharmacy, Romania. (2) J. A. Boutin, France. (3) Yongchun Zhu, Shenyang Normal University,China. Complete Peer review History: http://www.sdiarticle3.com/review-history/49305 Received 10 March 2019 Accepted 25 May2019 Original Research Article Published 01 June 2019 ABSTRACT The relative composition of the fatty acids in Pachira aquatica seed oil were determined using GC- MS and 1H NMR. The results obtained from GC-MS and 1H NMR show that the oil contained saturated fatty acids (>67%), oleic acid (>18%), linoleic (>3%) and linolenic acid (≤0.01%). 1H NMR gave more reliable and reproducible results. -
Substrate, Moisture, Temperature and Seed Germination of the Threatened Endemic Tree Eriotheca Vargasii (Malvaceae)
Substrate, moisture, temperature and seed germination of the threatened endemic tree Eriotheca vargasii (Malvaceae) Godofredo Mamani1, Héctor Chuquillanqui Soto2, Susana L. Chumbiauca Mateo3, Catherine T. Sahley2, Alfonso Alonso2 & Reynaldo Linares-Palomino2* 1. Grandes Montañas y Consultores SAC, Lima, Perú. 2. Center for Conservation Education and Sustainability, Smithsonian Conservation Biology Institute, Calle Almirante Lord Cochrane 121, Dpto 9, San Isidro, 15073, Peru; [email protected] 3. Programa Especial de la Autoridad en Semillas, Instituto Nacional de Innovación Agraria, Lima, Perú. * Correspondence Received 20-III-2017. Corrected 31-V-2018. Accepted 02-VII-2018. Abstract: We studied the germination of Eriotheca vargasii (Malvaceae), a poorly known endemic Peruvian Andean tree species characteristic of the dry forests of the Torobamba river valley, Peru. We determined seed characteristics, embryo morphology, viability, and assessed the influence of substrate (natural soil and com- mercially prepared media), temperature (controlled at 25 ºC and at ambient temperature between 18-22 ºC), and moisture (25 % and 50 % field capacity) on seed germination. Most seeds were ovoid in shape and although they contained well-developed embryos, only 46 % of them were viable. Substrate moisture levels had no influence on germination capacity or rate. In contrast, temperature and substrate type showed strong effects on germina- tion. We observed the highest proportion of germinated seeds in prepared media at both temperatures tested (> 61 %). Furthermore, substrate types also influenced germination rates, with lower values in natural soil. The strongest effect on germination rates was by temperature, enhancing the difference in responses in substrate types (up to 90 % in commercially prepared media at 25 ºC). -
Tropical Forests
1740 TROPICAL FORESTS / Bombacaceae in turn cause wild swings in the ecology and these Birks JS and Barnes RD (1990) Provenance Variation in swings themselves can sometimes prove to be beyond Pinus caribaea, P. oocarpa and P. patula ssp. tecunuma- control through management. In the exotic environ- nii. Tropical Forestry Papers no. 21. Oxford, UK: Oxford ments, it is impossible to predict or even conceive of Forestry Institute. the events that may occur and to know their Critchfield WB and Little EL (1966) Geographic Distribu- consequences. Introduction of diversity in the forest tion of the Pines of the World. Washington, DC: USDA Miscellaneous Publications. through mixed ages, mixed species, rotation of Duffield JW (1952) Relationships and species hybridization species, silvicultural treatment, and genetic variation in the genus Pinus. Zeitschrift fu¨r Forstgenetik und may make ecology and management more complex Forstpflanzenzuchtung 1: 93–100. but it will render the crop ecosystem much more Farjon A and Styles BT (1997) Pinus (Pinaceae). Flora stable, robust, and self-perpetuating and provide Neotropica Monograph no. 75. New York: New York buffers against disasters. The forester must treat crop Botanical Garden. protection as part of silvicultural planning. Ivory MH (1980) Ectomycorrhizal fungi of lowland tropical pines in natural forests and exotic plantations. See also: Pathology: Diseases affecting Exotic Planta- In: Mikola P (ed.) Tropical Mycorrhiza Research, tion Species; Diseases of Forest Trees. Temperate and pp. 110–117. Oxford, UK: Oxford University Press. Mediterranean Forests: Northern Coniferous Forests; Ivory MH (1987) Diseases and Disorders of Pines in the Southern Coniferous Forests. Temperate Ecosystems: Tropics. Overseas Research Publication no. -
The Relationship Between Ecosystem Services and Urban Phytodiversity Is Be- G.M
Open Journal of Ecology, 2020, 10, 788-821 https://www.scirp.org/journal/oje ISSN Online: 2162-1993 ISSN Print: 2162-1985 Relationship between Urban Floristic Diversity and Ecosystem Services in the Moukonzi-Ngouaka Neighbourhood in Brazzaville, Congo Victor Kimpouni1,2* , Josérald Chaîph Mamboueni2, Ghislain Bileri-Bakala2, Charmes Maïdet Massamba-Makanda2, Guy Médard Koussibila-Dibansa1, Denis Makaya1 1École Normale Supérieure, Université Marien Ngouabi, Brazzaville, Congo 2Institut National de Recherche Forestière, Brazzaville, Congo How to cite this paper: Kimpouni, V., Abstract Mamboueni, J.C., Bileri-Bakala, G., Mas- samba-Makanda, C.M., Koussibila-Dibansa, The relationship between ecosystem services and urban phytodiversity is be- G.M. and Makaya, D. (2020) Relationship ing studied in the Moukonzi-Ngouaka district of Brazzaville. Urban forestry, between Urban Floristic Diversity and Eco- a source of well-being for the inhabitants, is associated with socio-cultural system Services in the Moukonzi-Ngouaka Neighbourhood in Brazzaville, Congo. Open foundations. The surveys concern flora, ethnobotany, socio-economics and Journal of Ecology, 10, 788-821. personal interviews. The 60.30% naturalized flora is heterogeneous and https://doi.org/10.4236/oje.2020.1012049 closely correlated with traditional knowledge. The Guineo-Congolese en- demic element groups are 39.27% of the taxa, of which 3.27% are native to Received: September 16, 2020 Accepted: December 7, 2020 Brazzaville. Ethnobotany recognizes 48.36% ornamental taxa; 28.36% food Published: December 10, 2020 taxa; and 35.27% medicinal taxa. Some multiple-use plants are involved in more than one field. The supply service, a food and phytotherapeutic source, Copyright © 2020 by author(s) and provides the vegetative and generative organs. -
Volatile Constituents from the Leaves of Pachira Aquatica Aubl Grown in Nigeria
International Research Journal of Pure & Applied Chemistry 7(2): 49-53, 2015, Article no.IRJPAC.2015.054 ISSN: 2231-3443 SCIENCEDOMAIN international www.sciencedomain.org Volatile Constituents from the Leaves of Pachira aquatica Aubl Grown in Nigeria Oladipupo A. Lawal1*, Isiaka A. Ogunwande1 and Andy R. Opoku2 1Department of Chemistry, Natural Products Research Unit, Faculty of Science, Lagos State University, PMB 0001 LASU Post Office, Ojo, Lagos, Nigeria. 2Department of Biochemistry and Microbiology, University of Zululand, Kwa Dlangezwa 3886, South Africa. Authors’ contributions This work was carried out in collaboration between all authors. Author OAL designed the study, isolation of the oils and wrote part of the manuscript. Author IAO managed the literature searches and wrote the final draft of the manuscript. Author ARO managed the analyses of the GC and GC/MS. All authors read and approved the final manuscript. Article Information DOI: 10.9734/IRJPAC/2015/16319 Editor(s): (1) Ha, Chang-Sik, Dept. of Polymer Science and Engineering, Pusan National University, Busan, Korea. Reviewers: (1) Anonymous, Italy. (2) Anonymous, Brazil. (3) Anonymous, Tunisia. Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=960&id=7&aid=8349 Received 25th January 2015 th Original Research Article Accepted 18 February 2015 Published 4th March 2015 ABSTRACT The hydrodistilled essential oil obtained from the leaves of Pachira aquatica Aubl. growing in Nigeria was analyzed by gas chromatography-flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). Six constituents representing 99.8% of the oil were identified from the GC/MS spectra. The major components of the oil were 9-octadecenamide (35.1%), phytol (31.2%) and methyl palmilate (19.1%). -
Bombacoideae, Malvaceae) No Sudeste Do Brasil: Resultados Preliminares
64º Congresso Nacional de Botânica Belo Horizonte, 10-15 de Novembro de 2013 O CLADO PACHIRA (BOMBACOIDEAE, MALVACEAE) NO SUDESTE DO BRASIL: RESULTADOS PRELIMINARES Thaís M. Macedo 1,*, Marília C. Duarte 1 1 Universidade de Mogi das Cruzes, Laboratório de Sistemática Vegetal - LSV, São Paulo, Brasil; *[email protected] (K. Schum.) A. Robyns, E. parvifolia (Mart & Zucc.) A. Introdução Robyns, E. pentaphylla (Vell. emend. K. Schum.) A. Robyns, E. pubescens (Mart. & Zucc.) Schott & Endl, e E. saxicola Carv.-Sobr. A taxonomia das espécies está Malvaceae s.l. compreende nove subfamílias, sendo sendo baseada principalmente nos caracteres dos caracterizada pela presença de um nectário constituído de folíolos, tubo estaminal, cálice e indumento. Pachira Aubl. tricomas glandulares, localizado internamente na base do apresenta distribuição neotropical e possui 26 espécies. cálice ou menos comumente nas pétalas ou no Pode ser reconhecida por apresentar folíolos com androginóforo [1]. Bombacoideae, uma das nove articulações, pétalas planas e numerosos estames subfamílias de Malvaceae, inclui cerca de 18 gêneros e agrupados em 10 falanges a partir do tubo estaminal. Até 187 espécies, com distribuição predominantemente o momento foram encontradas cinco espécies para o neotropical e caracterizada pela presença de folhas Sudeste, Pachira aquatica Aubl., P. calophylla (K. palmadas compostas [2]. No Brasil, ocorrem 13 gêneros e Schum.) Fern. Alonso, P. glabra Pasq., P. retusa (Mart. & 80 espécies distribuídas em todas as regiões, sendo os Zucc.) Fern. Alonso, e P. stenopetala Casar. centros de diversidade as regiões Norte e Nordeste [3]. Um recente estudo realizado através da análise molecular baseado em sequências de DNA nuclear e plastidial, Conclusões mostrou que os gêneros Eriotheca e Pachira formam um clado denominado Pachira s.l., cuja sinapomorfia morfológica são as sementes estriadas [4]. -
Appendix 1 Vernacular Names
Appendix 1 Vernacular Names The vernacular names listed below have been collected from the literature. Few have phonetic spellings. Spelling is not helped by the difficulties of transcribing unwritten languages into European syllables and Roman script. Some languages have several names for the same species. Further complications arise from the various dialects and corruptions within a language, and use of names borrowed from other languages. Where the people are bilingual the person recording the name may fail to check which language it comes from. For example, in northern Sahel where Arabic is the lingua franca, the recorded names, supposedly Arabic, include a number from local languages. Sometimes the same name may be used for several species. For example, kiri is the Susu name for both Adansonia digitata and Drypetes afzelii. There is nothing unusual about such complications. For example, Grigson (1955) cites 52 English synonyms for the common dandelion (Taraxacum officinale) in the British Isles, and also mentions several examples of the same vernacular name applying to different species. Even Theophrastus in c. 300 BC complained that there were three plants called strykhnos, which were edible, soporific or hallucinogenic (Hort 1916). Languages and history are linked and it is hoped that understanding how lan- guages spread will lead to the discovery of the historical origins of some of the vernacular names for the baobab. The classification followed here is that of Gordon (2005) updated and edited by Blench (2005, personal communication). Alternative family names are shown in square brackets, dialects in parenthesis. Superscript Arabic numbers refer to references to the vernacular names; Roman numbers refer to further information in Section 4. -
Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D. -
(PFNM) En El Corregimiento De Doña Josefa, Chocó, Colombia
102 Rev. Biodivers. Neotrop. 2012; 2 (2): 102-12 Caracterización etnobotánica de los productos forestales no maderables (PFNM) en el corregimiento de Doña Josefa, Chocó, Colombia Ethnobotany characterization of non-timber forest products (NTFP) in the community of Doña Josefa, Chocó, Colombia Angélica María Cogollo-Calderón1, Fabio García-Cossio2 Resumen En este estudio se identificaron 221 especies vegetales empleadas en diversos fines por los poblado- res del corregimiento Doña Josefa, comunidad ubicada en el municipio del Atrato, departamento del Chocó, Colombia. Se evaluaron nueve categorías de uso medicinal, alimenticia, artesanal, ornamen- tal, tóxica, mágico-religiosa, combustible, colorantes y plantas productoras de látex o exudados. La información se recopiló con base en el conocimiento tradicional que los habitantes tienen de estas plantas. Para ello se realizaron entrevistas semiestructuradas principalmente a las amas de casa, mineros y agricultores y luego se realizaron salidas de campo con pobladores de alto grado de com- prensión en el tema, donde se recolectaron los ejemplares botánicos que luego fueron determinados taxonómicamente hasta la menor categoría posible, para depositarlos en el Herbario [CHOCO]. Las categorías más representativas en cuanto a número de especies fueron medicinal (50,6%), alimenticia (22,6%), combustible (13,1%) y artesanal (10,4%) destacándose las familias Malvaceae, Arecaceae, Asteraceae, Lamiaceae, Rubiaceae, Fabaceae/Mimosoideae, Gesneriaceae, Sapotaceae, Moraceae y Piperaceae. Con esto se evidencia la importancia que los productos forestales no maderables (PFNM) tienen para la comunidad de Doña Josefa, en donde son fuente principalmente de alimentos, medici- nas, artesanías y de otros productos con grandes posibilidades de desarrollo económico, si se mane- jan apuntando hacia la gestión sostenible de los recursos naturales, la conservación de la biodiversidad y los servicios ecosistémicos que nos brindan.