<<

Introduction to

Lecture slides

Challenge the future 1 Introduction to Aerospace Engineering AE1-102 Dept. Space Engineering Astrodynamics & Space Missions (AS) • Prof. ir. B.A.C. Ambrosius • Ir. R. Noomen

Delft University of Technology Challenge thefuture

Part of the lecture material for this chapter originates from B.A.C. Ambrosius, R.J. Hamann, R. Scharroo, P.N.A.M. Visser and K.F. Wakker. References to “”Introduction to Flight” by J.D. Anderson will be given in footnotes where relevant. 5 - 6 : satellite (1)

AE1102Introduction toAerospace Engineering 2 |

This topic is (to a large extent) covered by Chapter 8 of “Introduction to Flight” by Anderson, although notations (see next sheet) and approach can be quite different. General remarks

TwoaspectsareimportanttonotewhenworkingwithAnderson’s “IntroductiontoFlight” andtheselecturenotes:

• Thederivationsinthesesheetsaredoneperunitofmass,whereasin thetextbook(p.603andfurther)thisisnotthecase. • Someparameterconventionsaredifferent(seetablebelow).

parameter notationin customary “IntroductiontoFlight” notation gravitationalparameter k2 GM,or angularmomentum h H

AE1102Introduction toAerospace Engineering 3 | Overview

• Fundamentals(equationsofmotion) • Elliptical • Circularorbit • Parabolicorbit • Hyperbolicorbit

AE1102Introduction toAerospace Engineering 4 |

The field overlaps with lectures 27 and 28 (”space environment”) of the course ae1-101, but is repeated for the relevant part here since it forms the basis of orbital dynamics. Learning goals

Thestudentshouldbeableto: • classifysatelliteorbitsanddescribethemwithKepler elements • describeandexplaintheplanetarylawsofKepler • describeandexplainthelawsofNewton • computerelevantparameters(direction,range,velocity, energy,time)forthevarioustypesofKepler orbits

Lecturematerial: • theseslides(incl.footnotes)

AE1102Introduction toAerospace Engineering 5 |

Anderson’s “Introduction to Flight” (at least the chapters on orbital mechanics) is NOT part of the material to be studied for the exam; it is “just” reference material, for further reading. Introduction

Why orbital mechanics ?

• Becausetheofasatelliteis(primarily)determinedby itsinitialpositionandvelocityafterlaunch • Becauseitisnecessarytoknowtheposition(andvelocity)ofa satelliteatanyinstantoftime • Becausethesatelliteorbitanditsmissionareintimatelyrelated

AE1102Introduction toAerospace Engineering 6 |

Satellites can perform remote-sensing (”observing from a distance”), with unparalleled coverage characteristics, and measure specific phenomena “in-situ”. If possible, the measurements have to be benchmarked/calibrated with “ground truth” observations. LEO: typically at an altitude between 200 and 2000 km. GEO: at an altitude of about 36600 km, in equatorial plane. Introduction (cnt’d)

Which questions can be addressed through orbital mechanics?

• Whataretheparameterswithwhichonecandescribeasatellite orbit? • WhataretypicalvaluesforaLowOrbit? • Inwhatsensedotheydifferfromthoseofanescapeorbit? • WhataretherequirementsonaGeostationaryEarthOrbit,andwhat aretheconsequencesfortheorbitalparameters? • WhatarethemaindifferencesbetweenaLEOandaGEO,bothfrom anorbitpointofviewandfortheinstrument? • Whereismysatelliteataspecificmomentintime? • WhencanIdownloadmeasurementsfrommysatellitetomyground station? • HowmuchtimedoIhaveavailableforthis? • ……….

AE1102Introduction toAerospace Engineering 7 |

Some examples of relevant questions that you should be able to answer after having mastered the topics of these lectures. Fundamentals

[Scienceweb,2009]

Kepler’s LawsofPlanetaryMotion: 1. Theorbitsoftheplanetsare,withtheSunat onefocusofthe. 2. ThelinejoiningaplanettotheSunsweepsoutequal areasinequaltimesastheplanettravelsaroundthe ellipse. 3. Theratioofthesquaresoftherevolutionaryperiods fortwoplanetsisequaltotheratioofthecubesof theirsemimajoraxes.

AE1102Introduction toAerospace Engineering 8 |

The German Johannes Kepler (1571-1630) derived these empirical relations based on observations done by Tycho Brahe, a Danish astronomer. The mathematical foundation/explanation of these 3 laws were given by Sir Isaac Newton (next sheet). Fundamentals (cnt’d)

Newton’sLawsofMotion: 1. Intheabsenceofaforce,abodyeitherisatrestor movesinastraightlinewithconstant. 2. Abodyexperiencingaforce F experiencesan acceleration a relatedto F by F =m×a,wheremis themassofthebody.Alternatively,theforceis proportionaltothetimederivativeofmomentum. 3. Wheneverafirstbodyexertsaforce F onasecond body,thesecondbodyexertsaforce−F onthefirst body. F and−F areequalinmagnitudeandopposite

indirection. AE1102Introduction toAerospace Engineering 9 |

Sir Isaac Newton (1643-1727), England. Note: force F and acceleration a are written in bold, i.e. they are vectors (magnitude + direction). Fundamentals (cnt’d)

Newton’s Law of Universal Gravitation: Everypointmassattractseverysingleotherpointmass byaforcepointingalongthelineconnectingbothpoints. Theforceisdirectlyproportionaltotheproductofthe twomassesandinverselyproportionaltothesquareof thedistancebetweenthepointmasses: m m F= G 1 2 r2

AE1102Introduction toAerospace Engineering 10 |

Note 1: so, F has a magnitude and a direction it should be written, treated as a vector. Note 2: parameter “G” represents the universal gravitational constant; G = 6.6732 × 10 -20 km 3/kg/s 2. Fundamentals (cnt’d)

3D coordinate system:

• Partialoverlapwith“space environment” (checkthose sheetsforconversions) • Coordinates:systemsand parameters

90° ≤ δ ≤ +90° 0° ≤ λ ≤ 360°

AE1102Introduction toAerospace Engineering 11 |

Selecting a proper reference system and a set of parameters that describe a position in 3 dimensions is crucial to quantify of the phenomena treated in this chapter, and to determine what a satellite mission will experience. Option 1: cartesian coordinates, with components x, y and z. Option 2: coordinates, with components r (radius, measured w.r.t. the center-of-mass of the central object; not to be confused with the altitude over its surface), δ (latitude) and λ (longitude). Fundamentals (cnt’d)

Gravitational attraction:

Gmρ dv Elementaryforce: dF = sat i r2

Totalacceleration GM duetosymmetrical ɺɺr = − earth Earth: r2

AE1102Introduction toAerospace Engineering 12 |

Parameter “G” is the universal gravitational constant (6.67259×10 -11 m3/kg/s 2),

“msat ” represents the mass of the satellite, “r” is the distance between the satellite and a mass element of the Earth (1 st equation) or between the satellite and the center-of-mass of the Earth (2 nd equation), “ρ” is the mass density of an element 3 24 “dv” of the Earth [kg/m ], “Mearth ” is the total mass of the Earth (5.9737×10 kg). The product of G and Mearth is commonly denoted as “” , which is called the 9 3 2 gravitational parameter of the Earth (=G×Mearth =398600.44×10 m /s ). Gravitational acceleration for different “planets”

“planet” mass radius radialacceleration [kg] [km] [m/s 2] atsurface ath=1000km Sun 1.99× 10 30 695990 274.15 273.36 3.33× 10 23 2432 3.76 3.47 4.87× 10 24 6052 8.87 6.53 Earth 5.98× 10 24 6378 9.80 7.33 Moon 7.35× 10 22 1738 1.62 0.65 6.42× 10 23 3402 3.70 2.21 1.90× 10 27 70850 25.26 24.56 5.69× 10 26 60000 10.54 10.20 8.74× 10 25 25400 9.04 8.37

Neptune 1.03× 10 26 25100AE1102Introduction10.91 toAerospace Engineering10.09 13 |

G = 6.6732 × 10 -20 km 3/kg/s 2. Accelerations listed here are due to the central ( i.e. main) term of the gravity field only. Numerical example acceleration

Question:

ConsidertheEarth.Whatistheradialacceleration?

1. atseasurface 2. foranearthobservationsatelliteat800kmaltitude 3. foraGPSsatelliteat20200kmaltitude 4. forageostationarysatelliteat35800kmaltitude

Answers:seefootnotesbelow (BUT TRY YOURSELF FIRST!)

AE1102Introduction toAerospace Engineering 14 |

Answers (DID YOU TRY?): 1. 9.80 m/s 2 2. 7.74 m/s 2 3. 0.56 m/s 2 4. 0.22 m/s 2 Numerical example acceleration Question:

1. ConsiderthesituationoftheEarth,theSunandasatellite somewhereonthelineconnectingthetwomainbodies.Where isthepointwheretheattractingforcesoftheEarthandtheSun, actingonthesatellite,areinequilibrium? 3 2 11 Data:Earth =398600.4415km /s ,Sun =1.327178×10 km 3/s 2,1AU(averagedistanceEarthSun)=149.6×10 6 km. Hint:trialanderror. 2. TheMoonorbitstheEarthatadistancew.r.t.thecenterof massoftheEarthofabout384000km.Still,theSundoesnot pullitawayfromtheEarth.Why?

Answers:seefootnotesbelow (BUT TRY YOURSELF FIRST!)

AE1102Introduction toAerospace Engineering 15 |

Answers (DID YOU TRY?): 1. at a distance of 258811 km form the center of the Earth 2. two reasons: the Sun not only attracts the satellite in between, but also the Earth itself, so one needs to take the difference between the two; also, the centrifugal acceleration needs to be taken into account. Fundamentals (cnt’d)

Gravitationalattractionbetween2pointmassesor between2homogeneousspheres(withmassesMand m): m M F= G = Ma = ma r2 M m

RelativeaccelerationbetweenmassmandmassM: m+ M ɺɺr=− aa − =− G M m r2 Or,withm<<M(planetvs.Sun,orsatellitevs.Earth): M µ ɺɺr=− G =− r2 r 2

AE1102Introduction toAerospace Engineering 16 |

Note 1: m << M holds for most relevant combinations of bodies (sat-Earth, sat-Sun, planet-Sun), except for the Moon w.r.t. Earth. Note 2: the parameter “” is called the gravitational parameter (of a specific body). 3 2 Example: Earth = 398600.4415 km /s (relevant for the motion of satellites around 11 3 2 the Earth), and Sun = 1.328 × 10 km /s (relevant for motions of planets around the Sun, or spacecraft in heliocentric orbits). Fundamentals (cnt’d)

Radial acceleration: Scalarnotation: µ ɺɺr = − r2

Vectornotation: ɺɺx  x µ µ  ɺɺr=− r or ɺɺy =− y 3 3  r r  ɺɺz  z equationofmotionforsatellitesandplanets

AE1102Introduction toAerospace Engineering 17 |

Note: the vector r can easily be decomposed into its cartesian components x, y and z; the same can be done for the radial acceleration. Equation of motion for (1) satellites orbiting around the Earth, (2) satellites orbiting around the Sun, and (3) planets orbiting around the Sun. Fundamentals: conservation of

1) Vectorial productofequationofmotionwith r: µ rr×ɺɺ =− rr × = 0 r3 so d (rr×ɺ ) =rrrr ɺ ×+× ɺ ɺɺ = 0 dt and rrrV×=×=ɺ constant = H

• Themotionisinoneplane

2 • H=rV φ =r (dφ/dt)=constant • Arealaw( secondLawofKepler ):dA/dt =½rr(dφ/dt)=½ H

AE1102Introduction toAerospace Engineering 18 |

Note: all parameters in bold represent vectors, all parameters in plain notation are scalars. Fundamentals: conservation of energy

2) Scalarproductofequationofmotionwithdr/dt: µ rrɺ⋅+ ɺɺrr ɺ ⋅ = 0 r3 or 1d 1µ d 11 d µ d ()rrɺ⋅+ ɺ () rr ⋅= ()V2 + ()0 r 2 = 2dt 2 rdt3 22 dt rdt3 µ or d 1 2  V −  = 0 dt2 r 

Integration: V 2 µ − =constant = E 2 r  potentialenergy kineticenergy (incl.minussign!)

AE1102Introduction toAerospace Engineering 19 |

Note: the step from (1/2) ( /r 3) d(r 2)/dt to d(–/r)/dt is not a trivial one (if only for the change of sign….) Fundamentals:

3) Scalarproductofequationofmotionwith r: µ rr⋅+ɺɺ rr ⋅ = 0 r3 Therefore: d µ ()()rr⋅−⋅+ɺrr ɺ ɺ = 0 dt r ⋅=⋅= ⋅=⋅= 2 Notethat rrɺ rVrVr and rr ɺ ɺ VV V so: µ rrɺɺ+− r ɺ 2 V 2 + = 0 r

2= 22 + =ɺ 2 + ϕɺ 2 Substitutionof V VVr ϕ rr( ) µ yields: ɺɺr− r ϕɺ 2 = − r2

AE1102Introduction toAerospace Engineering 20 |

Note 1: we managed to get rid of the vector notations, and are left with scalar parameters only.

Note 2: Vr is the magnitude of the radial velocity, V φ is that of the tangential velocity (together forming the total velocity (vector) V). Fundamentals: orbit equation (cnt’d) µ Combiningequationsandr2 ϕɺ = H ɺɺr− r ϕɺ 2 = − r2

givestheequationforaconicalsection( 1st LawofKepler ): p r = 1+ e cos(θ ) where

• θ =φ – φ0 =trueanomaly

• φ0 =arbitraryangle • e=eccentricity • p=H 2/ =semilatus rectum

AE1102Introduction toAerospace Engineering 21 | Elliptical orbit

p p2 p 2 2arr=+=θ= θ = π + = ⇒ pae=(1 − ) Orbitalequation: 0 1+e 1 − e 1 − e 2

a(1− e 2 ) So: r = Q 1+ e cos(θ ) satellite b a r θ Otherexpressions: A major axis P apocentre F' C F pericentre pericenter distancer =a(1 e) • p ae latus rectum • apocenter distancera =a(1+e) minor axis

• semimajoraxisa=(ra +rp )/2 a a

• eccentricitye=(ra rp )/(ra +rp )

• locationoffocalcenterCF=a– rp =ae

AE1102Introduction toAerospace Engineering 22 |

The wording “pericenter” and “apocenter” is for a general central body. For orbits around Earth, we can also use “perigee” and “apogee”, and for orbits around the Sun we use “perihelion” and “apohelion”. Elliptical orbit (cnt’d)

Example:

Satelliteinorbitwithpericenter at200kmaltitudeand apocenter at2000km:

• rp =R e +h p =6578km

• ra =R e +h a =8378km

• a=(ra +rp )/2=7478km

• e=(ra rp )/(ra +rp )=0.1204

AE1102Introduction toAerospace Engineering 23 |

Note: the eccentricity can also be computed from the combination of pericenter radius and semi-major axis: rp=a(1-e) (or, for that matter, the combination of apocenter radius and semi-major axis: ra=a(1+e) ). Note the difference between “radius” and “altitude” or “height” !!! Elliptical orbit (cnt’d)

Example:

Satelliteinorbitwithsemimajoraxisof7500kmand eccentricityof0.01,0.1or0.3:

e = 0.01 e=0.1 e=0.3 Rearth

10000

9000

8000

7000 radius [km] radius 6000

5000 0 90 180 270 360 [deg] AE1102Introduction toAerospace Engineering 24 |

Note: the variation in radial distance becomes larger for larger values of the eccentricity. For e=0.3 the pericenter value dips below the Earth radius physically impossible orbit. Note the difference between “radius” and “altitude” or “height” !!! Elliptical orbit: velocity and energy

conservation of angular momentum: r = = = p HrVppaa rV⇒ VV a p ra conservation of energy: µ µ =12 −= 1 2 − E Vp V a 2rp 2 r a

substituting rp , r a , V a yields: µ +  2 = 1 e Vp   a1− e  and µ −  2 = 1 e Va   a1+ e 

AE1102Introduction toAerospace Engineering 25 |

Straightforward derivation of simple relations for the velocity at pericenter and apocenter. Elliptical orbit: velocity and energy (cnt’d)

conservation of energy: µ µ =1 2 − =− = E V p constant 2rp 2 a

more general:

1 µ µ V 2 − = − 2r 2 a so 2 1  V 2 =µ  −  r a  the "vis-viva" equation

AE1102Introduction toAerospace Engineering 26 |

The “vis-viva” equation gives an easy and direct relation between velocity and position (and semi-major axis). It does not say anything about the direction of the velocity. In turn, a satellite position and velocity (magnitude) determine the total amount of energy of the satellite, but can result in a zillion different orbits (with the same value for the semi-major axis, though). Elliptical orbit: velocity and energy (cnt’d)

Example: satelliteinanorbitwithsemimajoraxisof7500kmand eccentricityof0.01,0.1and0.03:

e = 0.01 e=0.1 e=0.3

11

10

9

8

7 velocity [km/s] velocity 6

5 0 90 180 270 360 true anomaly [deg]

AE1102Introduction toAerospace Engineering 27 |

Note: the orbit with a very low eccentricity hardly shows any variation in velocity, whereas for the orbit with highest velocity (e=0.3) the variation is almost a factor 2. Elliptical orbit:

Arealaw(Kepler’s 2nd equation):

dA1T dA 1 =H = constant ⇒ A=∫ dtHTab = = π dt20 dt 2

Also: bae=−12 and H =µ p and pae =− (12 )

3 Leadsto Kepler’s 3rd law : a T = 2π µ

AE1102Introduction toAerospace Engineering 28 |

Important conclusion: the orbital period in an elliptical orbit “T” is fully determined by the value of the semi-major axis “a” and the gravitational parameter “”; the shape of the orbit (as indicated by the eccentricity “e”) does not play a role here! Fundamentals (summary)

Kepler’s LawsofPlanetaryMotionrevisited, nowinmathematicalformulation:

a(1− e 2 ) 1. r = 1+ e cos(θ ) [Scienceweb,2009]

dA 1 1 2. =H =r × V dt 2 2

a3 3. T = 2π µ

AE1102Introduction toAerospace Engineering 29 |

See earlier sheet on Kepler. Elliptical orbit: example

Numericalexample1:

OrbitaroundEarth,h p =300km,h a =10000km

Questions:a?e?Vp?Va?T? Answers:seefootnotesbelow (TRY FIRST !)

AE1102Introduction toAerospace Engineering 30 |

Answers: (DID YOU TRY?)

•rp = Rearth + h p = 300 = 6678 km

•ra = Rearth + h a = 16378 km

•a = (r p+r a)/2 = 11528 km

•e = (ra-rp)/(r a+r p) = 0.421

•Vp = 9.209 km/s

•Va = 3.755 km/s •T = 2 π√ (a 3/) = 12318.0 s = 205.3 min

Characteristics: • e=0

• rmin =rmax =r • a=r

• V=Vc =√ (/a) • T=2π √ (a 3/)

• Etot = /2a<0

[Aerospaceweb,2009]

AE1102Introduction toAerospace Engineering 31 |

Some characteristics of circular orbits. The expressions can be easily verified by substituting e=0 in the general equations derived for an ellipse (with 0

AE1102Introduction toAerospace Engineering 32 |

The orbital velocity at low altitudes is 7-7.9 km/s, but at higher altitudes it reduces quickly (notice log scale for altitude). The reverse happens with the orbital period. In the case of a circular orbit, the orbital period T and the velocity V are related to each other by the equation T*V = 2 πr = 2 πa. Do not confuse altitude (i.e. w.r.t. surface of central body) and radius (i.e. w.r.t. center of mass of central body). Circular orbit (cnt’d)

energy at 800 km at GEO at Moon

0,0 3 4 5 6 7 8

-10,0

-20,0 total energy [km2/s2] total energy

-30,0 log semi-major axis [km]

AE1102Introduction toAerospace Engineering 33 |

The energy required to get into a particular orbit initially quickly increases with the value of the semi-major axis, but then levels off. The step to go from 800 km altitude to geostationary altitude is much more difficult (energy-wise) that the step from the GEO to the (let alone into parabolic/hyperbolic/escape orbit).

Requirements:

• Stationary( i.e. nonmoving)w.r.t.Earthsurface [Sque,2009]: • orbitalperiod=23hour,56minand4sec • movesinequatorialplane • movesineastwarddirection • So:orbitalelements: • e=0 • a=42164.14km • i=0° • And:

• h=a– Re =35786km

• Vc =3.075km/s • E= 4.727km 2/s 2

AE1102Introduction toAerospace Engineering 34 |

“geo” “stationary” as in “Earth” “fixed”. The orbital period is related to the revolution of the Earth w.r.t. an inertial system, i.e. the stars -> use 23 h56 m4s instead of our everyday-life 86400 s. The value of ”a” is derived from the expression for the orbital period. In reality, the effect of J 2 needs to be added, which causes the real altitude of the GEO to be some AAAA km higher. Geostationary orbit (cnt’d)

Questions:

ConsideranobsoleteGEOsatellitewhichisputintoa:300kmabovethestandardGEOaltitude.

1. Whatistheorbitalperiodofthisgraveyardorbit? 2. Ifthisgraveyardorbitweretodevelopfromperfectlycircularto eccentric,whatwouldbethemaximumvalueofthiseccentricity whenthepericenter ofthisorbitweretotouchtherealGEO? Assumethattheapocenter ofthisdeformedgraveyardorbit remainsatGEO+300km.

Answers:seefootnotesbelow BUT TRY FIRST !!

AE1102Introduction toAerospace Engineering 35 |

Answers: 1) T = 24 uur, 11 minuten en 25.3 seconden. 2) e = 0.00354 Elliptical orbit: position vs. time

• Whereisthesatelliteataspecificmomentintime? • Whenisthesatelliteataspecificposition?

Why? • toaimtheantennaofagroundstation • toinitiateanengineburnattheproperpointintheorbit • toperformcertainmeasurementsatspecificlocations • totimetagmeasurements • tobeabletorendezvous • …….

AE1102Introduction toAerospace Engineering 36 | Elliptical orbit: position vs. time (cnt’d)

straightforward approach: dHθ r2 r 2 = ⇒ dt= dθ⇒ ∆ tdt = = d θ dtr2 H∫ ∫ H so θ p3 d θ ∆t = µ∫ + θ 2 0 (1e cos ) difficult relation → introduce new parameter E ("")

AE1102Introduction toAerospace Engineering 37 |

The straightforward approach is clear but leads to a difficult integral. Can be treated numerically, but then one might just as well give up the idea of using Kepler orbits and switch to numerical representations altogether. Do not confuse E (“eccentric anomaly”) with E (“energy”)!! Elliptical orbit: position vs. time (cnt’d)

rcosθ = a cos Eae − ellipse: GS b = =1 − e2 GS' a here: θ GS= r sin GS' a sin E or rsinθ = a 1 − eE2 sin combining: raEae2=(cos −+− ) 2 ( a 1 e 222 sin) Ea =− (1cos) E 2 or (r>0): ra=(1 − e cos E )

AE1102Introduction toAerospace Engineering 38 |

S’ and the eccentric anomaly E are related to a perfect circle with radius “a”. E and θ are related to each other. Elliptical orbit: position vs. time (cnt’d)

a(1− e 2 ) r= = aeE(1 − cos ) 1+ e cos θ from which θ 1+ e E tan= tan 2 1− e 2

360

270 e.g. e=0.6: 180

true anomaly [deg] anomaly true 90

0 0 90 180 270 360 eccentric anomaly [deg]

AE1102Introduction toAerospace Engineering 39 |

The relation between E and θ is unambiguous. The derivation of the relation between tan( θ/2) and tan(E/2) is tedious….. Elliptical orbit: position vs. time (cnt’d)

Somenumericalexamples,fore=0.4:

E[°] E/2[°] θ/2 [°] θ [°] 80 40 52.04 104.08 100 50 61.22 122.44 170 85 86.72 173.44 190 95 93.28 186.56 260 130 118.78 237.56 Verify! 280 140 127.96 255.92 350 175 172.39 344.78

AE1102Introduction toAerospace Engineering 40 |

Verify! Elliptical orbit: position vs. time (cnt’d)

a(1− e2 )µ e sin θ r=so rɺ = 1+ e cos θ µ a(1− e 2 ) and ra=(1 − e cos E ) so raeEɺ = ɺ sin E (all derivatives taken after time t)

r sin θ equating and using = 1- e2 asin E (continued on next page)

AE1102Introduction toAerospace Engineering 41 |

2nd step in derivation of required relation. Elliptical orbit: position vs. time (cnt’d)

µ 1 Eɺ = a3 1− e cos E or µ (1−e cos E ) E ɺ = a3 “Kepler’s Equation ”,where: integration: µ • t=currenttime[s] − = −=−= EeEsin3 ( ttp ) ntt ( p ) M a • tp =timeoflastpassagepericenter [s] or • n=meanmotion[rad/s] M= Ee − sin E • M=meananomaly[rad] • E=eccentricanomaly[rad] • θ =trueanomaly[rad]

AE1102Introduction toAerospace Engineering 42 |

Kepler’s equation gives the relation between time (t, in [s]) and position (M and/or E, in [rad]). It holds for an ellipse, but other formulations also exist for hyperbola and parabola. Elliptical orbit: position vs. time (cnt’d)

Exampleposition time: Question: • a=7000km • e=0.1 • =398600km 3/s 2 • θ =35°

• ttp ? Answer: • n=1.078007× 10 3 rad/s • θ =0.61087rad • E=0.55565rad • M=0.50290rad • tt =466.5s p verify!

AE1102Introduction toAerospace Engineering 43 |

Straightforward application of recipe. Elliptical orbit: position vs. time (cnt’d)

Exampletime position(12):

Question • a=7000km • e=0.1 • =398600km 3/s 2

• ttp =900s • θ ?

AE1102Introduction toAerospace Engineering 44 |

Straightforward application of recipe. Elliptical orbit: position vs. time (cnt’d)

Exampletime position(22): Answer • n=1.078007× 10 3 rad/s • M=0.9702rad

• E=1.0573rad (iterateE i+1 =M+esin(E i)

• θ =1.1468rad verify!

iteration E

0 0,970206

1 1,052707

2 1,057083

3 1,057299

4 1,057309

5 1,057310

6 1,057310

AE1102Introduction toAerospace Engineering 45 |

Straightforward application of recipe. Fundamentals (cnt’d)

“Conicalsections” Orbittypes: • circle • ellipse • parabola • hyperbola

[Cramer,2009]

AE1102Introduction toAerospace Engineering 46 |

Summary of orbit types. See next page for summary of characteristics. Parabolic orbit

Characteristics: • e=1 p r = 1+ e cos(θ ) • rmin =rp ,rmax =∞ • a=∞ 2 1  V 2 =µ  −  • V =V =√ (2/r ) r a  rp esc,rp p

• Vmin =0

• Tpericenter inf =∞ µ E = − • Etot =0 2a

AE1102Introduction toAerospace Engineering 47 |

Some characteristics of parabolic orbits. This is an “open” orbit, so there is no orbital period. The maximum distance (i.e. ∞) is achieved for θ=180°. Hyperbolic orbit

Characteristics: • e>1 p r = • r =r ,r =∞ 1+ e cos(θ ) min p max • a<0

2 2 1  V =µ  −  • Vrp >Vesc,rp r a  2 2 2 • V =V esc +V ∞

• V∞ >0

• Tpericenter inf =∞ µ E = − 2a • Etot >0

AE1102Introduction toAerospace Engineering 48 |

Some characteristics of hyperbolic orbits. This is an “open” orbit, so there is no orbital period. The maximum distance (i.e. ∞) is achieved for a limiting value of θ, given by the zero crossing of the numerator of the equation for “r”: 1 + e cos(θlim ) = 0. Hyperbolic orbit (cnt’d)

AE1102Introduction toAerospace Engineering 49 |

2 2 2 Vcirc = √(/r) ; Vescape = √(2 /r) ; V hyperbola = V escape + V ∞ (so, at infinite distance Vhyperbola = V ∞ as should be). Hyperbola: position vs. time

in a similar fashion as for an elliptica l orbit:

3

2 introduce hyperbolic anomaly F: 1

r= a(1 − e cosh F ) 0 -150 -120 -90 -60 -30 0 30 60 90 120 150 without derivation: -1

hyperbolic anomaly F [-] F anomaly hyperbolic -2

θ e +1 F -3 tan = tanh true anomaly theta [deg] 2e − 1 2 relation between time and position: µ eFFsinh −=() tt −= M −a3 p

AE1102Introduction toAerospace Engineering 50 |

For a hyperbola, the same question arises. The time-position problem for the parabola is skipped because it too specific (e=1.000000000000000).

PLEASE NOTE: F is NOT an angle but a dimensionless parameter Hyperbola: position vs. time (cnt’d)

1 − sinh()x=−() eex x also : asinh() x =++ ln( xx 2 1 ) 2

1 − cosh()xee=+()x x acosh() xxx =+− ln()2 1 2 sinh()x 11 + x tanh()x = atanh()x = ln cosh()x 21 − x

sinh(x) cosh(x) tanh(x)

3

2

1

0 -3 -2 -1 0 1 2 3

function(x) -1

-2

-3 AE1102Introductionx toAerospace Engineering 51 |

General definitions of hyperbolic functions. Hyperbola: position vs. time (cnt’d)

Exampleposition time: Question: • a=7000km • e=2.1 • =398600km 3/s 2 • θ =35°

• ttp ? Answer: • n=1.078007× 10 3 rad/s after[Darling,2009] • F=0.38 • M=0.4375rad verify! • ttp =405.87s

AE1102Introduction toAerospace Engineering 52 |

Straightforward application of recipe. Hyperbola: position vs. time (cnt’d)

Exampletime position:

Question: • a=7000km • e=2.1 • =398600km 3/s 2

• ttp =900s • θ ? after[Darling,2009]

Continuedonnextslide

AE1102Introduction toAerospace Engineering 53 | Hyperbola: position vs. time (cnt’d)

Exampletime position(cnt’d): Answer: • n=1.078007× 10 3 rad/s • M=0.9702rad

• F=0.7461(iterateF k+1 =Fk (esinh(F k)– Fk – M)/(ecosh(F k)1)

Iteration (k) sinh(F) cosh(F) Fk

0 0 (first guess)

1 0 1 0,882006

2 1,000894 1,414846 0,755347

3 0,829252 1,299099 0,746161

4 0,817353 1,291536 0,746118

5 0,817297 1,291501 0,746118

• θ =1.0790rad (i.e. 61.8220°) verify!

AE1102Introduction toAerospace Engineering 54 |

Straightforward application of recipe. The solution for the hyperbolic anomaly F is obtained by means of Newton-Raphson iteration (see formula); This is necessary because a direct iteration (like in the case of elliptical orbits) does not converge for an eccentricity greater than 1. Orbits: Summary

Orbittypes: • circle • ellipse • parabola • hyperbola

AE1102Introduction toAerospace Engineering 55 |

Summary of orbit types. See next page for summary of characteristics. Orbits: Summary (Cnt’d)

circle ellipse parabola hyperbola

e 0 0<e<1 1 >1

a >0 >0 ∞ <0

r a p/(1+ecos(θ)) p/(1+ecos(θ)) p/(1+ecos(θ))

rmin a a(1e) p/2 a(1e)

rmax a a(1+e) ∞ ∞

V √(/r) <√(2/r) √(2/r) >√(2/r)

Etot <0 <0 0 0

θ,E,F E=θ tan(E/2)= tanh(F/2)= √((1e)/(1+e))tan(θ/2) √((e1)/(e+1))tan(θ/2) M √(/a 3)(tτ) √(/a 3)(tτ) √(/p 3)(tτ) √(/a3)(tτ)

T M=E M=E esin(E) 2M=tan(θ/2)+ M=esinh(F)F AE1102Introduction((tan(θ/2)) toAerospace3)/3 Engineering 56 |

Summary of orbit characteristics. After K.F. Wakker, lecture notes ae4-878 Example elliptical orbit

Question: Considerasatelliteat800kmaltitudeabovetheEarth’ssurface,andvelocity (perpendiculartotheradius)of8km/s. 1. computethesemimajoraxis 2. computetheeccentricity 3. computethemaximumradiusofthisorbit 4. computethemaximumaltitude

Answers: 1. 0.5V 2 – /r= /2a a=8470km

2. rp =a(1e) e=0.153 Verify !! 3. ra =a(1+e) ra =9766km

4. h=rRe hmax =3388km

AE1102Introduction toAerospace Engineering 57 |

Straightforward application of recipe. R e = 6378.137 km, earth = 398600.4415 km 3/s 2. Example elliptical orbit

Question:

Considerasatelliteat800kmaltitudeabovetheEarth’ssurface,andvelocity (perpendiculartotheradius)of10km/s. 1. computethesemimajoraxis 2. computetheeccentricity 3. computethemaximumradiusofthisorbit 4. computethemaximumaltitude 5. whatwouldbetheminimumvelocityneededtoescapefromEarth?

Answers:seefootnotesbelow (BUT TRY YOURSELF FIRST!!)

AE1102Introduction toAerospace Engineering 58 |

Answers: (DID YOU TRY FIRST??) 1. a = 36041 km 2. e = 0.801

3. ra = 64910 km

4. hmax = 58532 km

5. Vesc = 10.538 km/s Example hyperbolic orbit

Question:

Considerasatelliteat800kmaltitudeabovetheEarth’ssurface,withitsvelocity perpendiculartotheradius. 1. computetheescapevelocity 2. ifthesatellitewouldhaveavelocity0.2km/slargerthantheescapevelocity,

whatwouldtheexcessvelocityV ∞ be?

3. idem,ifV=Vesc +0.4?

4. idem,ifV=Vesc +0.6?

5. idem,ifV=Vesc +0.8?

6. idem,ifV=Vesc +1.0? 7. whatconclusioncanyoudraw?

Answers:seefootnotesbelow (BUT TRY YOURSELF FIRST!!)

AE1102Introduction toAerospace Engineering 59 |

Answers: (DID YOU TRY FIRST??) 1. Vesc = 10.538 km/s

2. V∞ = 2.063 km/s

3. V∞ = 2.931 km/s

4. V∞ = 3.606 km/s

5. V∞ = 4.183 km/s

6. V∞ = 4.699 km/s 7. a small increase in velocity at 800 km altitude pays off in a large value for the excess velocity. Elliptical orbit: Summary

2dimensionalorbits:3Kepler elements: • a– semimajoraxis[m] • e– eccentricity[]

• tp , τ – timeofpericenter passage[s]

AE1102Introduction toAerospace Engineering 60 |

The time of passage of a well-defined point in the orbit (e.g. the pericenter) is indicated by “tp” or, equivalently, “τ” (the Greek symbol tau). Knowing this value, one can relate the position in the orbit to absolute time (cf. following sheets). Fundamentals (cnt’d)

3dimensionalorbits: another3Kepler elements: • i– inclination[deg] • rightascensionof ascendingnode[deg] • ω – argumentof pericenter [deg]

AE1102Introduction toAerospace Engineering 61 |

The inclination “i” is the angle between the orbital plane and a reference plane, such as the equatorial plane. It is measured at the ascending node, i.e. the location where the satellite transits from the Southern Hemisphere to the Northern Hemisphere, so by definition its value is between 0° and 180°. The parameters and ω can take any value between 0° and 360°.