Bee Fauna of the Mcnary National Wildlife Refuge, Walla Walla County, Washington

Total Page:16

File Type:pdf, Size:1020Kb

Bee Fauna of the Mcnary National Wildlife Refuge, Walla Walla County, Washington Bee Fauna of the McNary National Wildlife Refuge, Walla Walla County, Washington Prepared by: Joseph D. Engler, Regional Refuge Biologist (retired), U.S. Fish and Wildlife Service Erin Stockenberg, Region 1 Inventory and Monitoring Data Manager, U.S. Fish and Wildlife Service Jason Romine, Wildlife Biologist, Mid-Columbia River NWR Complex, U.S. Fish and Wildlife Service Heidi Newsome, Supervisory Wildlife Biologist, Mid-Columbia River NWR Complex, U.S. Fish and Wildlife Service Disclaimer: ‘‘The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the U.S. Fish and Wildlife Service.’’ 1 16 February 2018 Introduction The Pacific Region (Region 1) of the U.S. Fish and Wildlife Service (Service) initiated a bee inventory program to document the bee fauna at National Wildlife Refuges (NWR) in Washington, Oregon, and Idaho from 2010-2016. Sixteen NWRs and one Bureau of Land Management site was sampled during this time frame. Refuges inventoried include: Deer Flat NWR, Minidoka NWR, Kootenai NWR in Idaho; Little Pend Oreille NWR, Turnbull NWR, Hanford National Monument, McNary NWR, Conboy Lake NWR, Pierce NWR, Steigerwald Lake NWR, Ridgefield NWR, Julia Butler Hansen Refuge for Columbia White-tailed Deer, Lewis and Clark NWR, Willapa NWR, Protection Island NWR in Washington; and Malheur NWR in Oregon. Appendix 1 and 2 show the location of each NWR and the corresponding Bailey’s Ecoregion Province and Section inventoried from 2010-2016. In addition, the Bureau of Land Management’s Oregon Trail Interpretive Center was included as part of this inventory effort. The Wallula Unit of McNary National Wildlife Refuge (herein referred to as the Refuge) was selected for bee sampling as part of a 4 site project to collect information on bee diversity along a north-south gradient within shrub-steppe habitats in Oregon and Washington. The additional three sites included Turnbull National Wildlife Refuge, Oregon Trail Interpretive Center (BLM), and Malheur National Wildlife Refuge. This refuge-specific report is one of a series that provides the results of this bee inventory effort in the Pacific Northwest. Study Site The Wallula Unit of the McNary NWR is located in Walla Walla County, Washington southeast of Pasco (Map 1). The sampling array was established at Lat/Long: 46.069, -118.8985 at an elevation of approximately 400’ and was used during both years of the project. The array was located within a narrow strip of shrub-steppe habitat, lying within the Intermountain Semi-Desert Province (Bailey 1995). The site is further delineated as Perennial Graminoid Steppe (Landfire 2008). The array was situated about ½ mile east of the Columbia River, bordered on the north by agricultural land (vineyards), and on the south by Smith Harbor on the Walla Walla River. Areas south of the Walla Walla River are dominated by expansive grain fields punctuated by remnant rolling hills of the Columbia Basin. Map 2 depicts the Landfire habitat classes of the array and surrounding area. 2 16 February 2018 Map 1. Location of Bee Sampling Array on McNary National Wildlife Refuge Map 2. Habitat Classes for Array and Surrounding Area 3 16 February 2018 Methods The McNary NWR’s Wallula Unit was sampled using a nine-cup propylene glycol array. This sampling protocol is now established within the Service’s National Protocol Framework for the Inventory and Monitoring of Bees (Droege et al 2016) as an option for monitoring changes in bee fauna over time. This protocol uses a nine-cup (12 ounce stadium cup) circular array which is deployed early in the season and remains open into the autumn. Cups were placed in a PVC (polyvinyl chloride) holder to keep them upright and slightly off of the ground. Cups were arranged in a circular pattern with one cup in the middle and the remaining eight cups arranged along the circle perimeter; each cup was placed approximately five meters apart. Cups were painted in three colors – fluorescent blue, fluorescent yellow, and white, with color placements alternating around the circle. Weep holes were drilled near the top of each cup to avoid cups spilling contents during rain events. Each cup is filled ½ to ¾ full of non-toxic recreational grade propylene glycol. In preparing the propylene glycol, a small amount of bleach is added to one gallon of propylene glycol to remove any color (which is often pink), and a squirt of unscented Dawn dish detergent is added to break the surface tension. The value of using propylene glycol is that it evaporates slowly, slows specimen deterioration compared to water, and generally is not palatable to wildlife. These qualities extend the amount of time that traps can be deployed without emptying the contents. The primary bee activity season in the Pacific Northwest occurs from early April through October, though some bee activity may occur almost year-round, especially west of the Cascades. Traps were deployed during this timeframe, though exact start and end dates depended on available staffing. Arrays captured bees continuously through the sampling period and contents were checked and emptied every one to two weeks to limit decomposition of the specimens. It is believed, based on expert opinion, that the adults of some bee species may persist for only two to three weeks, therefore it is essential to empty traps within that timeframe to capture the appropriate active season (phenology) of each species. For the array, trap-hours were calculated on the entire array, the contents of nine cups combined, during each timeframe (generally 1-2 weeks) from deployment to when samples were collected. Trap-hours were reduced for night time hours based on sunrise and sunset schedules through the season. Calculated trap-hours were then converted to trap-days. It was assumed that few if any bees were active during the night, however, this assumption remains speculative as some bee species are known to be crepuscular and a few nocturnal, though the presence of the latter on this refuge is not expected. Samples were collected by pouring each cup into a fine mesh brine shrimp aquarium net and rinsing with water to remove the soap residue; all soap solutions were retained and reused. All nine cups in an array were combined to create a single, composite sample for the bi-weekly period. Samples were placed in whirl-pak bags and 70% alcohol (either isopropyl or ethyl) was added to completely cover specimens. Samples were then sent to the USFWS’s Branch of 4 16 February 2018 Refuge Biology (BRB), Vancouver, WA for processing and preliminary identification to genus and species. BRB’s processing included washing, drying, pinning, positioning, and labeling each specimen. Specimens that were not identified by BRB to species or required verification were sent to species experts for final determinations. Identifications were conducted by Joseph Engler (USFWS BRB), Dr. Robbin Thorp (University of California-Davis), and the USDA ARS Bee Biology and Systematics Laboratory (BBSL) in Logan, Utah. Results Sampling at the site occurred from 9 June to 1 November 2011 and from 2 April to 1 October 2012. In 2011, sampling did not commence until June due to the time needed to setup the array and have available staff prepared to collect samples. Despite the seasonal differences in array operation, the number of trap-days was consistent between years. The sampling array was deployed and samples were collected by U.S. Fish and Wildlife Service (Service) staff. The number of genera captured was consistent between sampling years, with 18 and 19 genera tallied in 2011 and 2012, respectively. However, the number of identified species rose from 25 in 2011 to 42 in 2012 (Table 1 and Table 2). The number of bees captured in 2011 was only 31% of that captured in 2012, and the number of bees collected in 2011 accounting for only 24% of the total number of bees captured. Due to the large numbers of bees sampled during this study and the difficulty and expense in identifying all bees to a species level, some specimens remain unidentified beyond the genus taxonomic level. Table 1. Sampling Data for McNary NWR, Wallula Unit, 2011-2012 2011 2012 Total # Samples Collected 8 12 20 # Trap-days 145 182 327 # Genera identified 18 19 22 # Species identified 26 43 50 # Pending species ID 1 19 30 49 # Total Bees collected 1808 5793 7601 1 does not include Lasioglossum sensu lato which includes 4 difficult to identify subgenera (Dialictus, Evylaeus, Hemihalictus, Sphecodogastra); few specimens are expected to be identified beyond the genus/subgenus level. 5 16 February 2018 Table 2. Number of Species Captured per Genus at McNary NWR, 2011-2012 Family Name Genera Name # of Species Captured per Genus # Pending ID 2011 2012 Andrenidae Andrena 1 Andrenidae Perdita (1) 4 Apidae Anthophora 1 4 Apidae Apis 1 1 Apidae Bombus 3 4 Apidae Ceratina 1 Apidae Diadasia 1 1 Apidae Epeolus 1 Apidae Eucera 1 2 Apidae Melissodes 1 3 11 Apidae Nomada 1 1 Apidae Triepeolus (1) 1 1 Colletidae Colletes (1) 1 1 Halictidae Agapostemon 3 3 Halictidae Halictus 4 4 Halictidae Lasioglossum 1 4 (Lasioglossum) Halictidae Lasioglossum (1) (Dialictus) 1,2 Halictidae Lasioglossum 1 2 (Evylaeus) 1,2 Halictidae Lasioglossum 1 1 (Sphecodogastra) Halictidae Lasioglossum sensu (1) (1) 3589 lato 1,2 Halictidae Sphecodes 1 (1) (1) 29 Megachilidae Coelioxys 1 1 2 Megachilidae Dianthidium 2 1 Megachilidae Megachile 3 3 Megachilidae Osmia 3 Megachilidae Stelis (1) 1 1 Identification of this genus/subgenus to a species level is difficult; species # may not be reflective of the actual # of species captured or present at the site. 2 Taxonomic classifications of these subgenera are uncertain. Only identified species are included for subgenera Dialictus and Evylaeus, which may significantly underestimate the number of species present.
Recommended publications
  • Las Abejas Del Género Agapostemon (Hymenoptera: Halictidae) Del Estado De Nuevo León, México
    Revista Mexicana de Biodiversidad 83: 63-72, 2012 Las abejas del género Agapostemon (Hymenoptera: Halictidae) del estado de Nuevo León, México Bees of the genus Agapostemon (Hymenoptera: Halictidae) of the state of Nuevo León, Mexico Liliana Ramírez-Freire1 , Glafiro José Alanís-Flores1, Ricardo Ayala-Barajas2, Humberto Quiroz -Martínez1 y Carlos GerardoVelazco-Macías3 1Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Cd. Universitaria. Apartado postal 134-F, 66450 San Nicolás de los Garza, Nuevo León, México. 2Estación de Biología Chamela (Sede Colima) Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 21, 48980 San Patricio, Jalisco, México. 3Parques y Vida Silvestre. Av. Alfonso Reyes norte s/n, interior del Parque Niños Héroes, lateral izquierda, acceso 3, 64290 Monterrey, Nuevo León, México. [email protected] Resumen. Se realizó un estudio faunístico de las abejas del género Agapostemon (Halictidae) en el estado de Nuevo León, México para conocer las especies presentes, su distribución, relación con la flora y tipos de vegetación del estado. La metodología se basó en la revisión de literatura y de bases de datos de colecciones entomológicas, y en muestreos en campo donde se utilizó red entomológica y platos trampa de colores amarillo, azul, rosa (tonos fluorescentes) y blanco. Sólo en 20 de los 35 muestreos que se realizaron se obtuvieron ejemplares del género. Se recolectaron 11 especies, 2 de las cuales son registros nuevos para el estado (A. nasutus y A. splendens). El 12.31% de los ejemplares se obtuvo mediante el uso de red y el 87.84% con los platos trampa; el color amarillo fue el preferido por las abejas.
    [Show full text]
  • Predicting Changes in Bee Assemblages Following State Transitions at North American Dryland Ecotones
    Utah State University DigitalCommons@USU All PIRU Publications Pollinating Insects Research Unit 1-20-2020 Predicting Changes in Bee Assemblages Following State Transitions at North American Dryland Ecotones Melanie R. Kazenel University of New Mexico Karen W. Wright Texas A&M University Julieta Bettinelli University of New Mexico Terry L. Griswold Utah State University Kenneth D. Whitney University of New Mexico Jennifer A. Rudgers University of New Mexico Follow this and additional works at: https://digitalcommons.usu.edu/piru_pubs Part of the Other Animal Sciences Commons Recommended Citation Kazenel, M.R., Wright, K.W., Bettinelli, J. et al. Predicting changes in bee assemblages following state transitions at North American dryland ecotones. Sci Rep 10, 708 (2020). https://doi.org/10.1038/ s41598-020-57553-2 This Article is brought to you for free and open access by the Pollinating Insects Research Unit at DigitalCommons@USU. It has been accepted for inclusion in All PIRU Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. www.nature.com/scientificreports OPEN Predicting changes in bee assemblages following state transitions at North American dryland ecotones Melanie R. Kazenel1,4*, Karen W. Wright1,2,4, Julieta Bettinelli1, Terry L. Griswold3, Kenneth D. Whitney1 & Jennifer A. Rudgers1 Drylands worldwide are experiencing ecosystem state transitions: the expansion of some ecosystem types at the expense of others. Bees in drylands are particularly abundant and diverse, with potential for large compositional diferences and seasonal turnover across ecotones. To better understand how future ecosystem state transitions may infuence bees, we compared bee assemblages and their seasonality among sites at the Sevilleta National Wildlife Refuge (NM, USA) that represent three dryland ecosystem types (and two ecotones) of the southwestern U.S.
    [Show full text]
  • FORTY YEARS of CHANGE in SOUTHWESTERN BEE ASSEMBLAGES Catherine Cumberland University of New Mexico - Main Campus
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations Summer 7-15-2019 FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES Catherine Cumberland University of New Mexico - Main Campus Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Part of the Biology Commons Recommended Citation Cumberland, Catherine. "FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES." (2019). https://digitalrepository.unm.edu/biol_etds/321 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Catherine Cumberland Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Kenneth Whitney, Ph.D., Chairperson Scott Collins, Ph.D. Paula Klientjes-Neff, Ph.D. Diane Marshall, Ph.D. Kelly Miller, Ph.D. i FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES by CATHERINE CUMBERLAND B.A., Biology, Sonoma State University 2005 B.A., Environmental Studies, Sonoma State University 2005 M.S., Ecology, Colorado State University 2014 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy BIOLOGY The University of New Mexico Albuquerque, New Mexico July, 2019 ii FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES by CATHERINE CUMBERLAND B.A., Biology B.A., Environmental Studies M.S., Ecology Ph.D., Biology ABSTRACT Changes in a regional bee assemblage were investigated by repeating a 1970s study from the U.S.
    [Show full text]
  • AGAPOSTEMON (Hymenoptera: Halictidae)
    i ©s Bees of Northwestern America: AGAPOSTEMON (Hymenoptera: Halictidae) `ti(f1 ZVV KniQ ?.. Wat193 N 'RocIL In_ VA 0 01 o-E%14'E 0 "/ Technical Bulletin 125 AGRICULTURAL EXPERIMENT STATION Oregon State University Corvallis, Oregon June 1973 Contents Introduction1 ----------- -------------------------------------- 1 1 Generic Diagnosis ...------------------------------ ------------ -- Key to Species of Agapostemon in the Northwest 4 Agapostemon angelicas Cockerell 5 Agapostemon coloradinus(Vachal) 7 Agapostemon femoratusCrawford- - -------- --------------------- -_----_---_----------------- 7 Agapostemon melliventrisCresson 9 Agapostemon texanus Cresson - -_----- ___---------------------- 10 Agapostemon virescens(Fabricius)--- -- - ---- ------- -- 12 Biology -------- -- - --------- ---- 16 Nest site--------------------- --------------------------------------- 16 Nest architecture 17 Life history_ - 20 Foraging 20 Parasites and predators 22 Intraspecific interaction 22 Literature Cited 23 AUTHOR: Radclyffe B. Roberts is a research associatein entomology, Departmentof Entomology, Oregon State University. Bees of Northwestern America: Agapostemon(Hymenoptera:Halictidae) RADCLYFFEB. ROBERTS ABSTRACT Diagnoses, synonymies, range maps, and an illustrated key are provided for the six species of Agapostemcn found in the Northwest: A. angelicus, A. coloradinus, A. femoratus, A. melliventris, A. texanus, and A. virescens. Adults of both sexes of A. virescens share a nest. Peculiar linearly paired male-female cells in nests of A. virescens link Agapostemon
    [Show full text]
  • An Inventory of Native Bees (Hymenoptera: Apiformes)
    An Inventory of Native Bees (Hymenoptera: Apiformes) in the Black Hills of South Dakota and Wyoming BY David J. Drons A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Plant Science South Dakota State University 2012 ii An Inventory of Native Bees (Hymenoptera: Apiformes) in the Black Hills of South Dakota and Wyoming This thesis is approved as a credible and independent investigation by a candidate for the Master of Plant Science degree and is acceptable for meeting the thesis requirements for this degree. Acceptance of this thesis does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. __________________________________ Dr. Paul J. Johnson Thesis Advisor Date __________________________________ Dr. Doug Malo Assistant Plant Date Science Department Head iii Acknowledgements I (the author) would like to thank my advisor, Dr. Paul J. Johnson and my committee members Dr. Carter Johnson and Dr. Alyssa Gallant for their guidance. I would also like to thank the South Dakota Game Fish and Parks department for funding this important project through the State Wildlife Grants program (grant #T2-6-R-1, Study #2447), and Custer State Park assisting with housing during the field seasons. A special thank you to taxonomists who helped with bee identifications: Dr. Terry Griswold, Jonathan Koch, and others from the USDA Logan bee lab; Karen Witherhill of the Sivelletta lab at the University of New Mexico; Dr. Laurence Packer, Shelia Dumesh, and Nicholai de Silva from York University; Rita Velez from South Dakota State University, and Jelle Devalez a visiting scientist at the US Geological Survey.
    [Show full text]
  • Community Patterns and Plant Attractiveness to Pollinators in the Texas High Plains
    Scale-Dependent Bee (Hymenoptera: Anthophila) Community Patterns and Plant Attractiveness to Pollinators in the Texas High Plains by Samuel Discua, B.Sc., M.Sc. A Dissertation In Plant and Soil Science Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Scott Longing Chair of the Committee Nancy McIntyre Robin Verble Cynthia McKenney Joseph Young Mark Sheridan Dean of the Graduate School May, 2021 Copyright 2021, Samuel Discua Texas Tech University, Samuel Discua, May 2021 ACKNOWLEDGMENTS There are many who helped me along the way on this long and difficult journey. I want to take a moment to thank them. First, I wish to thank my dissertation committee. Without their guidance, I would not have made it. Dr. McIntytre, Dr. McKenney, Dr. Young and Dr. Verble served as wise committee members, and Dr. Longing, my committee chair, for sticking with me and helping me reach my goal. To the Longing Lab members, Roberto Miranda, Wilber Gutierrez, Torie Wisenant, Shelby Chandler, Bryan Guevara, Bianca Rendon, Christopher Jewett, thank you for all the hard work. To my family, my parents, my sisters, and Balentina and Bruno: you put up with me being distracted and missing many events. Finally, and most important, to my wife, Baleshka, your love and understanding helped me through the most difficult times. Without you believing in me, I never would have made it. It is time to celebrate; you earned this degree right along with me. I am forever grateful for your patience and understanding.
    [Show full text]
  • Nontarget Hymenoptera Collected in Pheromone- and Synthetic Floral Volatile-Baited Traps
    Exhibit 3b, #41 COMMUNITY AND ECOSYSTEM ECOLOGY Nontarget Hymenoptera Collected in Pheromone- and Synthetic Floral Volatile-Baited Traps ROBERT L. MEAGHER, JR. AND EVERETT R. MITCHELL Center for Medical, Agricultural and Veterinary Entomology, USDAÐARS, Gainesville, FL 32604 Environ. Entomol. 28(3): 367Ð371 (1999) ABSTRACT Monitoring traps baited with lepidopteran sex pheromones and synthetic ßoral vola- tiles were used to collect adult Hymenoptera in Þelds of cotton and corn. Species from Apoidea, Pompiloidea, Scolioidea, Sphecoidea, and Vespoidea were collected, including the genera Am- mophila, Apis, Bombus, Cerceris, Larra, Melissodes, Myzinum, and Tachytes. More Bombus spp. were collected from traps baited with Spodoptera frugiperda (J. E. Smith) sex pheromone than those baited with phenylacetaldehyde, whereas more Sphecoidea were collected in phenylacetaldehyde-baited traps. Trap design was also an important factor in capture of various species. More Sphecoidea and Tiphioidea were collected in fabric cone-shaped traps than plastic funnel traps. Efforts should be made to develop traps and lures that consistently capture the target pest but do not attract or easily capture aculeate Hymenoptera to preserve beneÞcial populations. KEY WORDS Bombus, Apis, Larra, Cerceris, nontarget insects VARIOUS TRAP DESIGNS, colors, and lures are used in dopteran pests, our objectives for this research were agricultural systems to monitor for adult lepidopteran to identify Hymenoptera that were collected in traps pests. Many of the traps also capture nontarget insects, and compare these captures among trap designs and such as Coleoptera, Diptera, and Hymenoptera, which lures that may be used for fall armyworm. include numerous beneÞcial insects (Gauthier et al. 1991). Some studies found trap design to be more Materials and Methods important than lure in capture of nontarget Hyme- noptera (Adams et al.
    [Show full text]
  • THESIS a SURVEY of the ARTHROPOD FAUNA ASSOCIATED with HEMP (CANNABIS SATIVA L.) GROWN in EASTERN COLORADO Submitted by Melissa
    THESIS A SURVEY OF THE ARTHROPOD FAUNA ASSOCIATED WITH HEMP (CANNABIS SATIVA L.) GROWN IN EASTERN COLORADO Submitted by Melissa Schreiner Department of Bioagricultural Sciences and Pest Management In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2019 Master’s Committee: Advisor: Whitney Cranshaw Frank Peairs Mark Uchanski Copyright by Melissa Schreiner 2019 All Rights Reserved ABSTRACT A SURVEY OF THE ARTHROPOD FAUNA ASSOCIATED WITH HEMP (CANNABIS SATIVA L.) GROWN IN EASTERN COLORADO Industrial hemp was found to support a diverse complex of arthropods in the surveys of hemp fields in eastern Colorado. Seventy-three families of arthropods were collected from hemp grown in eight counties in Colorado in 2016, 2017, and 2018. Other important groups found in collections were of the order Diptera, Coleoptera, and Hemiptera. The arthropods present in fields had a range of association with the crop and included herbivores, natural enemies, pollen feeders, and incidental species. Hemp cultivars grown for seed and fiber had higher insect species richness compared to hemp grown for cannabidiol (CBD). This observational field survey of hemp serves as the first checklist of arthropods associated with the crop in eastern Colorado. Emerging key pests of the crop that are described include: corn earworm (Helicoverpa zea (Boddie)), hemp russet mite (Aculops cannibicola (Farkas)), cannabis aphid (Phorodon cannabis (Passerini)), and Eurasian hemp borer (Grapholita delineana (Walker)). Local outbreaks of several species of grasshoppers were observed and produced significant crop injury, particularly twostriped grasshopper (Melanoplus bivittatus (Say)). Approximately half (46%) of the arthropods collected in sweep net samples during the three year sampling period were categorized as predators, natural enemies of arthropods.
    [Show full text]
  • Bee Communities on Managed Emergent Wetlands in the Lower Mississippi Alluvial Valley of Arkansas Phillip Lee Stephenson University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2017 Bee Communities on Managed Emergent Wetlands in the lower Mississippi Alluvial Valley of Arkansas Phillip Lee Stephenson University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Entomology Commons, and the Zoology Commons Recommended Citation Stephenson, Phillip Lee, "Bee Communities on Managed Emergent Wetlands in the lower Mississippi Alluvial Valley of Arkansas" (2017). Theses and Dissertations. 2427. http://scholarworks.uark.edu/etd/2427 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Bee Communities on Managed Emergent Wetlands in the lower Mississippi Alluvial Valley of Arkansas A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Biology by Phillip Lee Stephenson University of Tennessee - Knoxville Bachelors of Science in Wildlife and Fisheries Science, 2013 August 2017 University of Arkansas This thesis is approved for recommendation to the Graduate Council. ___________________________________ Dr. David G. Krementz Thesis Director ___________________________________ __________________________________ Dr. Ashley P. G. Dowling Dr. John D. Willson Committee Member Committee Member __________________________________ Dr. Johnnie L. Gentry Jr. Committee Member ABSTRACT Native bee communities that use emergent wetlands are among the least studied systems in bee research. Most native bee species are thought to be in decline based on the loss of usable habitat across the United States. I surveyed emergent wetlands in the lower Mississippi Alluvial Valley of Arkansas during the summers of 2015 and 2016 using pan traps, blue-vane traps, and sweep nets to determine the current status of bee communities in this system.
    [Show full text]
  • Biodiversity, Community Dynamics, and Novel Foraging Behaviors of a Rich Native Bee Fauna Across Habitats at Pinnacles National Park, California
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2016 Biodiversity, Community Dynamics, and Novel Foraging Behaviors of a Rich Native Bee Fauna Across Habitats at Pinnacles National Park, California Joan M. Meiners Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biology Commons Recommended Citation Meiners, Joan M., "Biodiversity, Community Dynamics, and Novel Foraging Behaviors of a Rich Native Bee Fauna Across Habitats at Pinnacles National Park, California" (2016). All Graduate Theses and Dissertations. 4877. https://digitalcommons.usu.edu/etd/4877 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. BIODIVERSITY, COMMUNITY DYNAMICS, AND NOVEL FORAGING BEHAVIORS OF A RICH NATIVE BEE FAUNA ACROSS HABITATS AT PINNACLES NATIONAL PARK, CALIFORNIA by Joan M. Meiners A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Ecology Approved: ______________________ ____________________ Dr. Edward W. Evans Dr. Terry L. Griswold Major Professor Committee Member ______________________ ____________________ Dr.Eugene W. Schupp Dr. Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2016 ii Copyright © Joan M. Meiners 2016 All Rights Reserved iii ABSTRACT BIODIVERSITY, COMMUNITY DYNAMICS, AND NOVEL FORAGING BEHAVIORS OF A RICH NATIVE BEE FAUNA ACROSS HABITATS AT PINNACLES NATIONAL PARK, CALIFORNIA by Joan M.
    [Show full text]
  • Bee Fauna of Protection Island National Wildlife Refuge Jefferson County, Washington
    Bee Fauna of Protection Island National Wildlife Refuge Jefferson County, Washington Prepared by: Joseph Engler, Wildlife Biologist (retired), U.S. Fish and Wildlife Service, Portland, Oregon Erin Stockenberg, Region 1 Inventory & Monitoring Data Manager, U.S. Fish and Wildlife Service, Portland, Oregon Jason Romine, Fish and Wildlife Biologist, U.S. Fish and Wildlife Service, Burbank, Washington Sue Thomas, Wildlife Biologist, Washington Maritime NWR Complex, U.S. Fish and Wildlife Service Disclaimer: ‘‘The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the U.S. Fish and Wildlife Service.’’ 1 16 February 2018 Introduction The Pacific Region (Region 1) of the U.S. Fish and Wildlife Service (Service) initiated a bee inventory program to document the bee fauna at National Wildlife Refuges (NWR) in Washington, Oregon, and Idaho from 2010-2016. Sixteen NWRs and one Bureau of Land Management site was sampled during this time frame. Refuges inventoried include: Deer Flat NWR, Minidoka NWR, Kootenai NWR in Idaho; Little Pend Oreille NWR, Turnbull NWR, Hanford National Monument, McNary NWR, Conboy Lake NWR, Pierce NWR, Steigerwald Lake NWR, Ridgefield NWR, Julia Butler Hansen Refuge for Columbia White-tailed Deer, Lewis and Clark NWR, Willapa NWR, Protection Island NWR in Washington; and Malheur NWR in Oregon. Appendix 1 and 2 show the location of each NWR and the corresponding Bailey’s Ecoregion Province and Section inventoried from 2010-2016. In addition, the Bureau of Land Management’s Oregon Trail Interpretive Center was included as part of this inventory effort. Protection Island NWR (herein referred to as the Refuge) was sampled during the 2014 and 2015 seasons.
    [Show full text]
  • Reproductive Ecology of Astragalus Filipes, a Great Basin Restoration Legume
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2010 Reproductive Ecology of Astragalus filipes, a Great Basin Restoration Legume Kristal M. Watrous Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Botany Commons, Ecology and Evolutionary Biology Commons, and the Entomology Commons Recommended Citation Watrous, Kristal M., "Reproductive Ecology of Astragalus filipes, a Great Basin Restoration Legume" (2010). All Graduate Theses and Dissertations. 617. https://digitalcommons.usu.edu/etd/617 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. REPRODUCTIVE ECOLOGY OF ASTRAGALUS FILIPES, A GREAT BASIN RESTORATION LEGUME by Kristal M. Watrous A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biology Approved: ________________________ _______________________ James H. Cane Edward W. Evans Major Professor Committee Member ________________________ _______________________ Eugene W. Schupp Byron R. Burnham Committee Member Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2010 ii ABSTRACT Reproductive Ecology of Astragalus filipes, a Great Basin Restoration Legume by Kristal M. Watrous, Master of Science Utah State University, 2010 Major Professor: Dr. James H. Cane Department: Biology Astragalus filipes Torrey ex. A. Gray (Fabaceae) is being studied and propagated for use in rangeland restoration projects throughout the Great Basin. Restoration forbs often require sufficient pollination services for seed production and persistence in restoration sites.
    [Show full text]