Significant Alterations in Soil Fungal Communities Along a Chronosequence of Spartina Alterniflora Invasion in a Chinese Yellow

Total Page:16

File Type:pdf, Size:1020Kb

Significant Alterations in Soil Fungal Communities Along a Chronosequence of Spartina Alterniflora Invasion in a Chinese Yellow Science of the Total Environment 693 (2019) 133548 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Significant alterations in soil fungal communities along a chronosequence of Spartina alterniflora invasion in a Chinese Yellow Sea coastal wetland Wen Yang a,⁎,DiZhanga,XinwenCaia,LuXiab,YiqiLuoc,XiaoliChengd,⁎⁎, Shuqing An b a College of Life Sciences, Shaanxi Normal University, Xi'an 710119, PR China b School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing 210023, PR China c Center for Ecosystem Science and Society (Ecoss), Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA d Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China HIGHLIGHTS GRAPHICAL ABSTRACT • S. alterniflora invasion altered soil fungal abundance, diversity and composition. • The fungal abundance and diversity were highest in 9-year-old S. alterniflora soil. • Basidiomycota was gradually replaced by Ascomycetes along S. alterniflora in- vasion. • S. alterniflora invasion greatly shifted fungal trophic modes and functional groups. • Soil fungal communities were driven by plant and soil properties, nutrient substrate. article info abstract Article history: Plant invasion typically alters the microbial communities of soils, which affects ecosystem carbon (C) and nitro- Received 3 May 2019 gen (N) cycles. The responses of the soil fungal communities to plant invasion along its chronosequence remain Received in revised form 22 July 2019 poorly understood. For this study, we investigated variations in soil fungal communities through Illumina MiSeq Accepted 22 July 2019 sequencing analyses of the fungal internal transcribed spacer (ITS) region, and quantitative polymerase chain re- Available online 23 July 2019 action (qPCR), along a chronosequence (i.e., 9-, 13-, 20- and 23-year-old) of invasive Spartina alterniflora.We fl Editor: Sergi Sabater compared these variations with those of bare at in a Chinese Yellow Sea coastal wetland. Our results highlighted that the abundance of soil fungi, the number of operational taxonomic units (OTUs), species richness, and Shan- Keywords: non diversity indices for soil fungal communities were highest in 9-year-old S. alterniflora soil, which gradually Carbon sequestration declined along the invasion chronosequence. The relative abundance of copiotrophic Basidiomycota revealed sig- Coastal salt marshes nificant decreasing trend, while the relative abundance of oligotrophic Ascomycota gradually increased along the Exotic plants S. alterniflora invasion chronosequence. The relative abundance of soil saprotrophic fungi (e.g., undefined Fungal functional guilds saprotrophs) was gradually reduced while symbiotic fungi (e.g., ectomycorrhizal fungi) and pathotrophic fungi Fungal trophic modes (e.g., plant and animal pathogens) progressively increased along the S. alterniflora invasion chronosequence. Soil fungal community composition Abbreviations: ACE, Abundance-based coverage estimator; AMF, Arbuscular mycorrhizal fungi; ANOVA, Analysis of variance; C, Carbon; C:N ratio, Carbon: Nitrogen ratio; Chao1, Chao's species richness estimator; ECM, Ectomycorrhizal; ITS, Internal transcribed spacer; N, Nitrogen; NMDS, Non-metric multidimensional scaling; OTUs, Operational taxonomic units; PCoA, Principal coordinates analysis; QIIME, Quantitative insights into microbial ecology; qPCR, Quantitative polymerase chain reaction; RDA, Redundancy analysis; RDP, Ribosomal database project; Shannon, Shannon's diversity index; SOC, Soil organic carbon; SOM, Soil organic matter; SON, Soil organic nitrogen; WSOC, Water-soluble organic carbon. ⁎ Correspondence to: W. Yang, College of Life Sciences, Shaanxi Normal University, No. 620 West Chang'an St., Chang'an Dist., Xi'an 710119, Shaanxi, PRChina. ⁎⁎ Correspondence to: X. Cheng, Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan 430074, PR China. E-mail addresses: [email protected] (W. Yang), [email protected] (X. Cheng). https://doi.org/10.1016/j.scitotenv.2019.07.354 0048-9697/© 2019 Elsevier B.V. All rights reserved. 2 W. Yang et al. / Science of the Total Environment 693 (2019) 133548 Our results suggested that S. alterniflora invasion significantly altered soil fungal abundance and diversity, com- munity composition, trophic modes, and functional groups along a chronosequence, via substantially reduced soil litter inputs, and gradually decreased soil pH, moisture, and soil nutrient substrates along the invasion chronosequence, from 9 to 23 years. These changes in soil fungal communities, particularly their trophic modes and functional groups along the S. alterniflora invasion chronosequence could well impact the decompo- sition and accumulation of soil C and N, while potentially altering ecosystem C and N sinks in a Chinese Yellow Sea coastal wetland. © 2019 Elsevier B.V. All rights reserved. 1. Introduction is added to the soil (Bachelot et al., 2016). The physicochemical proper- ties of soils (e.g., soil pH, and moisture) have been implicated as one of Plant invasion is an emerging driver of global change (Craig et al., the essential driving factors in soil fungal communities (Leff et al., 2015), which threatens natural habitats (Bazzichetto et al., 2018), alters 2015). For instance, soil pH is considered to be one of the most vital in- species compositions (Carboni et al., 2018), ecosystem processes, and fluential predictors of soil fungal communities (Geml et al., 2014; Hu their functions (Craig et al., 2015; Stefanowicz et al., 2016; Carboni et al., 2017). Maestre et al. (2015) observed that the abundance and di- et al., 2018). These shifts in plant communities, induced by plant inva- versity of soil fungi decrease with a decreasing soil pH. Further, the qual- sion, may considerably alter net primary production (Stefanowicz ity and quantity of soil nutrient substrates have been reported to modify et al., 2016), soil nutrient inputs (e.g., invasive plant litter and exudates) soil fungal communities (Lauber et al., 2008; Peay et al., 2013), as most and decomposition (Liao et al., 2007), as well as soil characteristics soil fungi are saprophytes (Zimudzi et al., 2018). Geml et al. (2014) re- (Stefanowicz et al., 2016). These changes further modify nutrient fluxes vealed that the soil fungal communities were closely associated with and biogeochemical cycles (Turpin-Jelfs et al., 2019), particularly eco- soil organic carbon (SOC), N content, and C:N ratio. Previous studies re- system carbon (C) and nitrogen (N) cycles (Craig et al., 2015; Lee vealed that invasive plant species greatly modified the characteristics of et al., 2018). Meanwhile, soil microbes play a critical role in the regula- plant litter (Liao et al., 2007), soil physicochemical properties (Yang tion of ecosystem C and N cycles through the decomposition of various et al., 2016, 2019), and soil organic C and N sequestration (Wolkovich organic detritus, while controlling soil organic matter (SOM) turnover et al., 2010; Lee et al., 2018). The identification of biotic and abiotic fac- and formation (Morris and Blackwood, 2015; Yang et al., 2016). Al- tors that drive variations in soil fungal communities will help better un- though the impacts of plant invasion on ecosystem C and N cycles derstand the influential mechanisms of invasive plants on the have been extensively reported (Liao et al., 2008; Wolkovich et al., abundance of soil fungi, as well as their diversity, community composi- 2010; Lee et al., 2018), the elucidation of soil microbial communities re- tion, trophic modes, and functional groups. sponses to plant invasion remains limited (Lazzaro et al., 2018). Spartina alterniflora (a perennial grass), which is native to North Plant invasion has been demonstrated to alter the abundance and di- America, was introduced to China in 1979 to accelerate sedimentation versity of plant and animal communities (Stefanowicz et al., 2019), as and the stabilization of tidal flat lands. Subsequently, S. alterniflora rap- well as soil nutrient substrates (Yang et al., 2016). Further, it eventually idly expanded across the eastern coast of China, from Tianjin (in the modifies the biomass, composition, and structures of soil microbial north) to Beihai (in the south), by invading bare flat and/or by replacing communities (Stefanowicz et al., 2019). Recently, the responses of soil native plants (e.g., Suaeda salsa, Phragmites australis,andScirpus bacterial communities to plant invasion have been extensively docu- mariqueter)(Liao et al., 2007; Yang et al., 2016). It has since become mented (Piper et al., 2015; Rodríguez-Caballero et al., 2017; Xiang one of the dominant plants in China's coastal wetlands (Yang et al., et al., 2018). In contrast, the impacts of plant invasion on soil fungal 2017). The Jiangsu coast has the greatest S. alterniflora distribution communities have not been well addressed (Li et al., 2017; Phillips area in China (Yang et al., 2015). S. alterniflora has been demonstrated et al., 2019). Soil fungi are among the most abundant and diverse taxo- to have unique ecophysiological properties relative to native plants, nomic groups on the earth (Egidi et al., 2019), and comprise diverse such as higher growth rate, greater net primary production, and higher groups of eukaryotic microorganisms that form essential component salt tolerance (Liao et al., 2007). Moreover,
Recommended publications
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
    M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists.
    [Show full text]
  • Genome and Transcriptome Sequencing of the Halophilic Fungus Wallemia Ichthyophaga: Haloadaptations Present and Absent Zajc Et Al
    Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent Zajc et al. Zajc et al. BMC Genomics 2013, 14:617 http://www.biomedcentral.com/1471-2164/14/617 Zajc et al. BMC Genomics 2013, 14:617 http://www.biomedcentral.com/1471-2164/14/617 RESEARCH ARTICLE Open Access Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent Janja Zajc1†, Yongfeng Liu2†, Wenkui Dai2, Zhenyu Yang2, Jingzhi Hu2, Cene Gostinčar1*† and Nina Gunde-Cimerman1,3† Abstract Background: The basidomycete Wallemia ichthyophaga from the phylogenetically distinct class Wallemiomycetes is the most halophilic fungus known to date. It requires at least 10% NaCl and thrives in saturated salt solution. To investigate the genomic basis of this exceptional phenotype, we obtained a de-novo genome sequence of the species type-strain and analysed its transcriptomic response to conditions close to the limits of its lower and upper salinity range. Results: The unusually compact genome is 9.6 Mb large and contains 1.67% repetitive sequences. Only 4884 predicted protein coding genes cover almost three quarters of the sequence. Of 639 differentially expressed genes, two thirds are more expressed at lower salinity. Phylogenomic analysis based on the largest dataset used to date (whole proteomes) positions Wallemiomycetes as a 250-million-year-old sister group of Agaricomycotina. Contrary to the closely related species Wallemia sebi, W. ichthyophaga appears to have lost the ability for sexual reproduction. Several protein families are significantly expanded or contracted in the genome. Among these, there are the P-type ATPase cation transporters, but not the sodium/ hydrogen exchanger family.
    [Show full text]
  • Wallemia Mellicola
    Acta Mycologica DOI: 10.5586/am.1104 ORIGINAL RESEARCH PAPER Publication history Received: 2017-11-12 Accepted: 2018-03-12 Halotolerance (ionic NaCl) and Published: 2018-06-04 chaotolerance (ionic MgCl2) of the human Handling editor Tomasz Leski, Institute of Dendrology, Polish Academy of pathogen Wallemia mellicola isolated, for Sciences, Poland the frst time, from indoor air in Poland Authors’ contributions AC: performing experiments, writing the manuscript; WS: 1 2 1 writing the manuscript; MS: Andrzej Chlebicki *, Wojciech Spisak , Marta Saługa sequencing of ITS region 1 W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Cracow, Poland 2 Research and Development Center “Alcor” Ltd, Kępska 12, 45-130 Opole, Poland Funding * Corresponding author. Email: [email protected] Financial support was provided by the W. Szafer Institute of Botany, Polish Academy of Sciences through its statutory Abstract funds. Financial support under Projects No. POIR.01.01.01-00- We isolated the human pathogen Wallemia mellicola from the class Wallemiomycetes 0004/15-00 and POIR.01.01.01- for the frst time in Poland. Te fungus was isolated from indoor dust in Cracow. 00-1254/15-00 was provided Te strain belonged to the genus Wallemia, as confrmed by molecular methods (i.e., by the Ministry of Science and ITS1-5.8S-ITS2 nrDNA sequencing). We compared the halotolerance and chaotoler- Higher Education (Poland). ance of W. mellicola to other those of halotolerant fungi (Talaromyces diversus and Competing interests Aureobasidium pullulans) isolated from an anchialine cave. Te W. mellicola strain No competing interests have tolerated up to 20% NaCl and up to 15% MgCl2.
    [Show full text]
  • A Comparative Pilot Study of Bacterial and Fungal Dysbiosis In
    microorganisms Article A Comparative Pilot Study of Bacterial and Fungal Dysbiosis in Neurodevelopmental Disorders and Gastrointestinal Disorders: Commonalities, Specificities and Correlations with Lifestyle Ibrahim Laswi 1 , Ameena Shafiq 1, Dana Al-Ali 1, Zain Burney 1, Krishnadev Pillai 1, Mohammad Salameh 1, Nada Mhaimeed 1, Dalia Zakaria 1, Ali Chaari 1 , Noha A. Yousri 2,3,† and Ghizlane Bendriss 1,*,† 1 Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; [email protected] (I.L.); [email protected] (A.S.); [email protected] (D.A.-A.); [email protected] (Z.B.); [email protected] (K.P.); [email protected] (M.S.); [email protected] (N.M.); [email protected] (D.Z.); [email protected] (A.C.) 2 Research Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; [email protected] 3 Computers and System Engineering, Alexandria University, Alexandria 21526, Egypt * Correspondence: [email protected] † Noha A. Yousri and Ghizlane Bendriss are equally contributing authors. Abstract: Gastrointestinal disorders (GIDs) are a common comorbidity in patients with neurode- Citation: Laswi, I.; Shafiq, A.; Al-Ali, velopmental disorders (NDDs), while anxiety-like behaviors are common among patients with D.; Burney, Z.; Pillai, K.; Salameh, M.; gastrointestinal diseases. It is still unclear as to which microbes differentiate these two groups. This Mhaimeed, N.; Zakaria, D.; Chaari, pilot study aims at proposing an answer by exploring both the bacteriome and the mycobiome in a A.; Yousri, N.A.; et al. A Comparative cohort of 55 volunteers with NDD, GID or controls, while accounting for additional variables that Pilot Study of Bacterial and Fungal are not commonly included such as probiotic intake and diet.
    [Show full text]
  • The Genus Wallemia—From Contamination of Food to Health Threat
    microorganisms Review The Genus Wallemia—From Contamination of Food to Health Threat Janja Zajc 1,2 and Nina Gunde-Cimerman 2,* 1 National Institute of Biology, Veˇcnapot 111, SI-1000 Ljubljana, Slovenia; [email protected] 2 Biology Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia * Correspondence: [email protected]; Tel: +386-1-3203400 Received: 11 April 2018; Accepted: 18 May 2018; Published: 21 May 2018 Abstract: The fungal genus Wallemia of the order Wallemiales (Wallemiomycotina, Basidiomycota) comprises the most xerotolerant, xerophilic and also halophilic species worldwide. Wallemia spp. are found in various osmotically challenged environments, such as dry, salted, or highly sugared foods, dry feed, hypersaline waters of solar salterns, salt crystals, indoor and outdoor air, and agriculture aerosols. Recently, eight species were recognized for the genus Wallemia, among which four are commonly associated with foods: W. sebi, W. mellicola, W. muriae and W. ichthyophaga. To date, only strains of W. sebi, W. mellicola and W. muriae have been reported to be related to human health problems, as either allergological conditions (e.g., farmer’s lung disease) or rare subcutaneous/cutaneous infections. Therefore, this allergological and infective potential, together with the toxins that the majority of Wallemia spp. produce even under saline conditions, defines these fungi as filamentous food-borne pathogenic fungi. Keywords: Wallemia; food; air; pathogen; xerophile; halophile; mycotoxin; farmer’s lung disease; subcutaneous infection 1. Introduction Low availability of water is one of the most life-limiting factors, and only specially adapted organisms can cope with such stress in their environment.
    [Show full text]
  • A Worldwide List of Endophytic Fungi with Notes on Ecology and Diversity
    Mycosphere 10(1): 798–1079 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/19 A worldwide list of endophytic fungi with notes on ecology and diversity Rashmi M, Kushveer JS and Sarma VV* Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, Puducherry, India Rashmi M, Kushveer JS, Sarma VV 2019 – A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10(1), 798–1079, Doi 10.5943/mycosphere/10/1/19 Abstract Endophytic fungi are symptomless internal inhabits of plant tissues. They are implicated in the production of antibiotic and other compounds of therapeutic importance. Ecologically they provide several benefits to plants, including protection from plant pathogens. There have been numerous studies on the biodiversity and ecology of endophytic fungi. Some taxa dominate and occur frequently when compared to others due to adaptations or capabilities to produce different primary and secondary metabolites. It is therefore of interest to examine different fungal species and major taxonomic groups to which these fungi belong for bioactive compound production. In the present paper a list of endophytes based on the available literature is reported. More than 800 genera have been reported worldwide. Dominant genera are Alternaria, Aspergillus, Colletotrichum, Fusarium, Penicillium, and Phoma. Most endophyte studies have been on angiosperms followed by gymnosperms. Among the different substrates, leaf endophytes have been studied and analyzed in more detail when compared to other parts. Most investigations are from Asian countries such as China, India, European countries such as Germany, Spain and the UK in addition to major contributions from Brazil and the USA.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Supplementary Materials For
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019 Supplementary materials for: Fungal community analysis in the seawater of the Mariana Trench as estimated by Illumina HiSeq Zhi-Peng Wang b, †, Zeng-Zhi Liu c, †, Yi-Lin Wang d, Wang-Hua Bi c, Lu Liu c, Hai-Ying Wang b, Yuan Zheng b, Lin-Lin Zhang e, Shu-Gang Hu e, Shan-Shan Xu c, *, Peng Zhang a, * 1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China 2 Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China 3 School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China. 4 College of Science, China University of Petroleum, Qingdao, Shandong 266580, China. 5 College of Chemistry & Environmental Engineering, Shandong University of Science & Technology, Qingdao, 266510, China. a These authors contributed equally to this work *Authors to whom correspondence should be addressed Supplementary Table S1. Read counts of OTUs in different sampled sites. OTUs M1.1 M1.2 M1.3 M1.4 M3.1 M3.2 M3.4 M4.2 M4.3 M4.4 M7.1 M7.2 M7.3 Total number OTU1 13714 398 5405 671 11604 3286 3452 349 3560 2537 383 2629 3203 51204 OTU2 6477 2203 2188 1048 2225 1722 235 1270 2564 5258 7149 7131 3606 43089 OTU3 165 39 13084 37 81 7 11 11 2 176 289 4 2102 16021 OTU4 642 4347 439 514 638 191 170 179 0 1969 570 678 0 10348 OTU5 28 13 4806 7 44 151 10 620 3
    [Show full text]
  • Ecography ECOG-03086 Binkenstein, J., Klein, A.-M., Assmann, T., Buscot, F., Erfmeier, A., Ma, K., Pietsch, K
    Ecography ECOG-03086 Binkenstein, J., Klein, A.-M., Assmann, T., Buscot, F., Erfmeier, A., Ma, K., Pietsch, K. A., Schmidt, K., Scholten, T., Wubet, T., Bruelheide, H., Schuldt, A. and Staab, M. 2017. Multi-trophic guilds respond differently to changing elevation in a subtropical forest. – Ecography doi: 10.1111/ecog.03086 Supplementary material Appendix 1. Supplementary methods Species sampling In order to cover as many organism groups as possible, we used a diverse set of sampling methods and techniques on all 27 study plots (see also Schuldt et al. 2015, Schuldt et al. 2017). Species richness and individual number (i.e. abundance) of all woody plants was measured by a complete inventory of all trees and shrubs taller than 1 m height when initially establishing the plots in 2008 (Bruelheide et al. 2011). Simultaneously, the species richness and abundance of all herbaceous plants (i.e. non woody individuals <1 m height) was assessed in the central 10 m × 10 m area of each plot (Both et al. 2011). To quantitatively sample arthropods, the by far most abundant and diverse group of macroorganisms in tropical and subtropical forests (e.g. Basset et al. 2012), several different techniques were used. Most sampling methods yielded many more taxonomic groups than the ones further identified by us. For reasons of logistics, feasibility and availability of taxonomic expertise, not all collected taxa could be included into this study. Per plot, 4 pitfall traps (diameter 8.5 cm, height 15 cm) were placed at the corners of the central 10 m × 10 m plot from March to September 2009.
    [Show full text]
  • 1 Spider Webs As Edna Tool for Biodiversity Assessment of Life's
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.18.209999; this version posted July 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Spider webs as eDNA tool for biodiversity assessment of life’s domains Matjaž Gregorič1*, Denis Kutnjak2, Katarina Bačnik2,3, Cene Gostinčar4,5, Anja Pecman2, Maja Ravnikar2, Matjaž Kuntner1,6,7,8 1Jovan Hadži Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Novi trg 2, 1000 Ljubljana, Slovenia 2Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia 3Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia 4Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia 5Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China 6Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia 7Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, NW, Washington, DC 20560-0105, USA 8Centre for Behavioural Ecology and Evolution, College of Life Sciences, Hubei University, 368 Youyi Road, Wuhan, Hubei 430062, China *Corresponding author: Matjaž Gregorič, [email protected], [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.18.209999; this version posted July 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Hidden Fungi: Combining Culture-Dependent and -Independent DNA Barcoding Reveals Inter-Plant Variation in Species Richness of Endophytic Root Fungi in Elymus Repens
    Journal of Fungi Article Hidden Fungi: Combining Culture-Dependent and -Independent DNA Barcoding Reveals Inter-Plant Variation in Species Richness of Endophytic Root Fungi in Elymus repens Anna K. Høyer and Trevor R. Hodkinson * Botany, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin D2, Ireland; [email protected] * Correspondence: [email protected] Abstract: The root endophyte community of the grass species Elymus repens was investigated using both a culture-dependent approach and a direct amplicon sequencing method across five sites and from individual plants. There was much heterogeneity across the five sites and among individual plants. Focusing on one site, 349 OTUs were identified by direct amplicon sequencing but only 66 OTUs were cultured. The two approaches shared ten OTUs and the majority of cultured endo- phytes do not overlap with the amplicon dataset. Media influenced the cultured species richness and without the inclusion of 2% MEA and full-strength MEA, approximately half of the unique OTUs would not have been isolated using only PDA. Combining both culture-dependent and -independent methods for the most accurate determination of root fungal species richness is therefore recom- mended. High inter-plant variation in fungal species richness was demonstrated, which highlights the need to rethink the scale at which we describe endophyte communities. Citation: Høyer, A.K.; Hodkinson, T.R. Hidden Fungi: Combining Culture-Dependent and -Independent Keywords: DNA barcoding; Elymus repens; fungal root endophytes; high-throughput amplicon DNA Barcoding Reveals Inter-Plant sequencing; MEA; PDA Variation in Species Richness of Endophytic Root Fungi in Elymus repens. J. Fungi 2021, 7, 466.
    [Show full text]