Effects of Spatial Patch Characteristics and Landscape Context on Plant Phylogenetic Diversity in a Naturally Fragmented Forest

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Spatial Patch Characteristics and Landscape Context on Plant Phylogenetic Diversity in a Naturally Fragmented Forest Research Article Tropical Conservation Science Volume 10: 1–11 Effects of Spatial Patch Characteristics and ! The Author(s) 2017 Reprints and permissions: Landscape Context on Plant Phylogenetic sagepub.com/journalsPermissions.nav DOI: 10.1177/1940082917717050 Diversity in a Naturally Fragmented Forest journals.sagepub.com/home/trc Amaranta Arellano-Rivas1,2, Miguel A. Munguı´a-Rosas2, J. Arturo De-Nova1,3, and Salvador Montiel2 Abstract Phylogenetic diversity is a reliable predictor of taxonomic and functional diversity and of biodiversity option value. During forest fragmentation, forest patches that vary in size, degree of isolation, and shape are formed. Identifying the spatial characteristics of forest remnants that maximize phylogenetic diversity could be useful to conservationists when prioritizing areas to be protected if resources are limited. In this study, we assessed whether spatial patch characteristics (size, edge density, and shape) and the context of the patch in the surrounding landscape (i.e., isolation degree) affect plant phylogenetic diversity in 19 naturally shaped forest patches. Owing to the age of the forest patches, the study system allowed us to assess the long-term effects of spatial variables on phylogenetic diversity. We found that patch size has a positive effect on phylo- genetic diversity, presumably because environmental heterogeneity and niche opportunities are greater in bigger patches. Also, phylogenetic diversity was positively affected by edge density. The convergent evolution of traits which confer tolerance to prevailing edge conditions in phylogenetically distant species may explain this result. We suggest that patch size is a reliable predictor of plant phylogenetic diversity and could be used as a prioritization criterion in conservation strategies, at least in the study area. Keywords edge effect, forest fragmentation, habitat loss, phylogenetic diversity, plants Introduction for conservationists; for example, it may help identify land areas with a longer evolutionary history, those Biodiversity conservation is particularly urgent in the tro- with the most prolific lineages or the taxa most prone pics where a highly diverse biota exists in the context of to extinction (Brooks, Mayden, & McLennan, 1992; massive rates of habitat loss (Achard et al., 2002). The Faith, 1992; Faith et al., 2010). Despite the relevance assessment of biodiversity and how human-driven dis- phylogenetic diversity may have in fundamental and turbances affect it have mostly focused on taxonomic applied fields of ecology, it was not until recently that diversity (e.g., species richness; Fahrig, 2003). However, ecologists started looking at the effects of human-driven taxonomic diversity assumes that species are homoge- neous entities and neglects the evolutionary history of 1 species. Phylogenetic diversity, understood as the evolu- Instituto de Investigacio´n de Zonas Dese´rticas, Universidad Auto´noma de San Luı´s Potosı´,Me´xico tionary history contained in a biotic community (Faith, 2Departamento de Ecologı´a Humana, Centro de Investigacio´n y Estudios 1992), may be a more informative metric of biodiversity Avanzados del Instituto Polite´cnico Nacional, Me´rida, Me´xico because it is a reliable predictor of the main ecological 3Facultad de Agronomı´a, Universidad Auto´noma de San Luı´s Potosı´,Me´xico processes that structure biotic communities (Cadotte, Received 22 March 2017; Accepted 3 June 2017 Cardinale, & Oakley, 2008; Faith et al., 2010; Flynn, Corresponding Author: Mirotchnick, Jain, Palmer, & Naeem, 2011), and of Miguel A. Munguı´a-Rosas, Laboratorio de Ecologı´a Terrestre, Cinvestav- biodiversity option value (Faith et al., 2010). Me´rida, KM 6 Antigua carretera a Progreso, C.P. 97203 Me´rida, Me´xico. Phylogenetic diversity may also provide a useful tool Email: [email protected] Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). 2 Tropical Conservation Science disturbance on phylogenetic diversity (e.g., Ribeiro et al., that of the habitat matrix, which is dominated by flood- 2016). Some studies have tested the prediction that tolerant species (Rico-Gray & Palacios-Rios, 1996). anthropogenic disturbance (e.g., agriculture [Dinnage, Because this forest has been fragmented for over a million 2009], chronic human disturbance [Ribeiro et al., 2016], years (CONANP-SEMARNAT, 2006), it offers an excel- and logging [Tamoya et al., 2015]) impoverish plant lent opportunity to study the long-term effects of spatial phylogenetic diversity, the underlying mechanism being patch variables on phylogenetic diversity (Montiel, identified as the phylogenetic conservation of functional Estrada, & Leo´ n 2006; Munguı´ a-Rosas & Montiel, 2014). traits associated with the vulnerability of plants to dis- Patch area is positively related to environmental het- turbance (e.g., shade tolerance, large seeds, and hard erogeneity, and smaller patches may represent a more wood; Laurance et al., 2006; Lopes, Gira˜o, Santos, restricted niche for a reduced number of potentially Peres, & Tabarelli, 2009; Silva & Tabarelli, 2000). As a more closely related species (Arellano-Rivas, De-Nova, result, plant communities in more disturbed habitats are & Munguı´ a-Rosas, 2017). Also, patch isolation may expected to be more phylogenetically related, a prediction filter plant species that have a long-distance dispersal frequently supported by data (Egorov et al., 2015; capacity, such as plants with zoochory, a phylogenetically Ribeiro et al., 2016; Tamoya et al., 2015). conserved trait (Rezende, Lavabre, Guimara˜es, Jordano, A major threat to biodiversity is habitat loss and frag- & Bascompte, 2007). Moreover, the amount of edge of a mentation, a process that encompasses several changes in patch increases with shape complexity, and edges have the spatial characteristics and configuration of habitat harsher environmental conditions (Murcia, 1995) where remnants at the patch and landscape levels (Fahrig, mostly pioneer-like, closely related plant species can sur- 2003). Although several studies have shown that habitat vive (Letcher, 2010; Tabarelli, Lopes, & Peres, 2009). loss at the patch level has a particularly strong negative And finally, because of the chronic flooding that prevails effect on taxonomic diversity (Bender, Contreras, & in the habitat matrix, patches with a lower elevation are Fahrig, 1998; Mazerolle & Villard, 1999; Valde´ s et al., at a higher risk of flooding; thus, a larger proportion of 2015), the few studies available have not found any flood-tolerant plants (a phylogenetically conserved trait effect of patch size, isolation, or shape on phylogenetic [Tanentzap & Lee, 2017]) is expected in these patches. It diversity in tropical plant communities (Arroyo- is not unreasonable to expect that plant communities in Rodrı´ guez et al., 2012; Santos, Arroyo-Rodrı´ guez, habitat patches with spatial variables associated with Moreno, & Tabarelli, 2010). Instead, previous studies harsher environmental conditions (reduced area, high iso- have found that phylogenetic diversity is influenced by lation degree, convoluted shape, and low elevation) the age of forest patches (Santos et al., 2010, 2014), sug- would have lower phylogenetic diversity. gesting that elapsed time since the fragmentation process began (from decades to just a few hundred years) was possibly not long enough to reveal any effect on phylo- Methods genetic diversity (Santos et al., 2010, 2014). Therefore, Study Area forest which has been fragmented for longer periods of time, such as naturally fragmented forests, are ideal The study area was the Petenes-Celestu´ n-El Palmar model systems for assessing the long-term effects of spa- Biological Corridor (19 530–21 110 N, 90 280–90 170 tial variables on phylogenetic diversity (Munguı´ a-Rosas W), located along the northwestern coast of the Yucatan et al., 2014). This information may both improve our Peninsula (Figure 1). The climate is tropical subhumid understanding of how spatial patch variables affect with summer rains. Precipitation ranges from 1,000 to phylogenetic diversity and help identify which spatial 1,200 mm yÀ1 and temperature from 26.1C to 27.8C attributes of habitat remnants would maximize the (Dura´ n, 1987). The study was conducted on patches of long-term conservation of phylogenetic diversity. semievergreen tropical forest locally known as petenes In this study, we evaluated whether the spatial charac- (singular: peten; Figure 1). These forest patches are teristics of forest patches (size, shape, and edge density) surrounded by a flooded matrix of shorter, less diverse and their context in the landscape (distance to the con- vegetation that is tolerant to flooding and dominated tinuous forest and distance to the nearest patch) predict by sedges and short mangroves (Rico-Gray, 1982; plant phylogenetic diversity in a naturally fragmented Rico-Gray & Palacios-Rios, 1996). The forest becomes tropical forest of the Yucatan. This forest is composed continuous as one moves inland. In our sample, patch of natural vegetation patches that vary naturally in size, size ranges from 1.6 to 320 ha, and shape index
Recommended publications
  • DISSERTAÇÃO Caroline Leal Rodrigues Soares.Pdf
    UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE BIOCIÊNCIAS PROGRAMA DE PÓS GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS CAROLINE LEAL RODRIGUES SOARES AVALIAÇÃO DA ATIVIDADE CICATRIZANTE IN VITRO E IN VIVO DO EXTRATO HIDROALCOÓLICO DE LAGUNCULARIA RACEMOSA (L) C.F. GAERTN Recife 2018 CAROLINE LEAL RODRIGUES SOARES AVALIAÇÃO DA ATIVIDADE CICATRIZANTE IN VITRO E IN VIVO DO EXTRATO HIDROALCOÓLICO DE LAGUNCULARIA RACEMOSA (L) C.F. GAERTN Dissertação apresentada ao Programa de Pós- Graduação em Ciências Biológicas da Universidade Federal de Pernambuco, como parte dos requisitos parciais para obtenção do título de mestre em Ciências Biológicas. Área de concentração: Biologia Química para a Saúde Orientadora: Profª. Drª. Teresinha Gonçalves da Silva Recife 2018 Dados Internacionais de Catalogação na Publicação (CIP) de acordo com ISBD Soares, Caroline Leal Rodrigues Avaliação da atividade cicatrizante in vitro e in vivo do extrato hidroalcoólico de Laguncularia racemosa (L) C.F. Gaertn / Caroline Leal Rodrigues Soares - 2018. 85 folhas: il., fig., tab. Orientadora: Teresinha Gonçalves da Silva Dissertação (Mestrado) – Universidade Federal de Pernambuco. Centro de Biociências. Programa de Pós-Graduação em Ciências Biológicas. Recife, 2018. Inclui referências e anexo 1. Plantas medicinais 2. Laguncularia racemosa 3. Cicatrização I. Silva, Teresinha Gonçalves da (orient.) II. Título 615.321 CDD (22.ed.) UFPE/CB-2018-452 Elaborado por Claudina Karla Queiroz Ribeiro CRB4/1752 CAROLINE LEAL RODRIGUES SOARES AVALIAÇÃO DA ATIVIDADE CICATRIZANTE IN VITRO E IN VIVO DO EXTRATO HIDROALCOÓLICO DE LAGUNCULARIA RACEMOSA (L) C.F. GAERTN Dissertação apresentada ao Programa de Pós- Graduação em Ciências Biológicas da Universidade Federal de Pernambuco, como parte dos requisitos parciais para obtenção do título de mestre em Ciências Biológicas.
    [Show full text]
  • What Is a Tree in the Mediterranean Basin Hotspot? a Critical Analysis
    Médail et al. Forest Ecosystems (2019) 6:17 https://doi.org/10.1186/s40663-019-0170-6 RESEARCH Open Access What is a tree in the Mediterranean Basin hotspot? A critical analysis Frédéric Médail1* , Anne-Christine Monnet1, Daniel Pavon1, Toni Nikolic2, Panayotis Dimopoulos3, Gianluigi Bacchetta4, Juan Arroyo5, Zoltán Barina6, Marwan Cheikh Albassatneh7, Gianniantonio Domina8, Bruno Fady9, Vlado Matevski10, Stephen Mifsud11 and Agathe Leriche1 Abstract Background: Tree species represent 20% of the vascular plant species worldwide and they play a crucial role in the global functioning of the biosphere. The Mediterranean Basin is one of the 36 world biodiversity hotspots, and it is estimated that forests covered 82% of the landscape before the first human impacts, thousands of years ago. However, the spatial distribution of the Mediterranean biodiversity is still imperfectly known, and a focus on tree species constitutes a key issue for understanding forest functioning and develop conservation strategies. Methods: We provide the first comprehensive checklist of all native tree taxa (species and subspecies) present in the Mediterranean-European region (from Portugal to Cyprus). We identified some cases of woody species difficult to categorize as trees that we further called “cryptic trees”. We collected the occurrences of tree taxa by “administrative regions”, i.e. country or large island, and by biogeographical provinces. We studied the species-area relationship, and evaluated the conservation issues for threatened taxa following IUCN criteria. Results: We identified 245 tree taxa that included 210 species and 35 subspecies, belonging to 33 families and 64 genera. It included 46 endemic tree taxa (30 species and 16 subspecies), mainly distributed within a single biogeographical unit.
    [Show full text]
  • Journal of the International Palm Society Vol. 58(4) Dec. 2014 the INTERNATIONAL PALM SOCIETY, INC
    Palms Journal of the International Palm Society Vol. 58(4) Dec. 2014 THE INTERNATIONAL PALM SOCIETY, INC. The International Palm Society Palms (formerly PRINCIPES) Journal of The International Palm Society Founder: Dent Smith The International Palm Society is a nonprofit corporation An illustrated, peer-reviewed quarterly devoted to engaged in the study of palms. The society is inter- information about palms and published in March, national in scope with worldwide membership, and the June, September and December by The International formation of regional or local chapters affiliated with the Palm Society Inc., 9300 Sandstone St., Austin, TX international society is encouraged. Please address all 78737-1135 USA. inquiries regarding membership or information about Editors: John Dransfield, Herbarium, Royal Botanic the society to The International Palm Society Inc., 9300 Gardens, Kew, Richmond, Surrey, TW9 3AE, United Sandstone St., Austin, TX 78737-1135 USA, or by e-mail Kingdom, e-mail [email protected], tel. 44-20- to [email protected], fax 512-607-6468. 8332-5225, Fax 44-20-8332-5278. OFFICERS: Scott Zona, Dept. of Biological Sciences (OE 167), Florida International University, 11200 SW 8 Street, President: Leland Lai, 21480 Colina Drive, Topanga, Miami, Florida 33199 USA, e-mail [email protected], tel. California 90290 USA, e-mail [email protected], 1-305-348-1247, Fax 1-305-348-1986. tel. 1-310-383-2607. Associate Editor: Natalie Uhl, 228 Plant Science, Vice-Presidents: Jeff Brusseau, 1030 Heather Drive, Cornell University, Ithaca, New York 14853 USA, e- Vista, California 92084 USA, e-mail mail [email protected], tel. 1-607-257-0885.
    [Show full text]
  • Last Frontiers-Belize
    Last Frontiers-Belize (I) Gales Point – Belize District - Belize Quick identification guide for some conspicuous or common native vegetation Photos © Jan Meerman, Belize Tropical Forest Studies, 2010 Typha dominguensis Bulbostylis sp. Rhynchospora barbata Fibristylis sp. Acrostychum aureum Typhaceae Cyperaceae Cyperaceae Cyperaceae Pteridophyta Reed: Wetland Sedge: Savanna Sedge: Savanna Sedge: Savanna Fern: Wetland Zamia prasina Zamia meermanii Acoelorraphe wrightii Attalea cohune Attalea cohune Zamiaceae Zamiaceae Arecaeae Arecaceae Arecaceae Cycad: Savanna/Forest Cycad: Steep Cliffs Palm: Wet areas Palm: Hills Palm: Hills Schippia concolor Bactris mexicana Bactris mexicana Brassavola nodosa Oeceoclades maculata Arecaceae Arecaceae Palm: Arecaceae Orchidaceae Orchidaceae Palm: Savanna scrub Wet forest Palm: Wet forest Orchid: Savanna Orchid: Hill forest Catasetum Vriesea heliconoides. Catopsis berteroana Najas wrightii Xyris ambigua integerrimum Bromeliaceae Bromeliaceae Najadaceae Xyridaceae Orchidaeceae Bromeliad: on Trees in Bromeliad: on trees Aquatic plant: Herb: Savanna Orchid: On Trees wet forest wetlands Last Frontiers-Belize (II) Gales Point – Belize District - Belize Quick identification guide for some conspicuous or common native vegetation Photos © Jan Meerman, Belize Tropical Forest Studies, 2010 Anisantherina hispidula Buchnera pusilla Dalechampia schippii Hypericum terra-firmae Polygala sp. Polygalaceae Scrophulariaceae. Herb: Scrophulariaceae Euphorbiaceae Vine: Clusiaceae Herb: Herb: Savanna Savanna Herb: Savanna Savanna
    [Show full text]
  • Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2021 TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE- DEPENDENT CO-OCCURRENCE Peter Jeffrey Williams Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Williams, Peter Jeffrey, "TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11777. https://scholarworks.umt.edu/etd/11777 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE By PETER JEFFREY WILLIAMS B.S., University of Minnesota, Minneapolis, MN, 2014 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology – Ecology and Evolution The University of Montana Missoula, MT May 2021 Approved by: Scott Whittenburg, Graduate School Dean Jedediah F. Brodie, Chair Division of Biological Sciences Wildlife Biology Program John L. Maron Division of Biological Sciences Joshua J. Millspaugh Wildlife Biology Program Kim R. McConkey School of Environmental and Geographical Sciences University of Nottingham Malaysia Williams, Peter, Ph.D., Spring 2021 Biology Tropical plant-animal interactions: linking defaunation with seed predation, and resource- dependent co-occurrence Chairperson: Jedediah F.
    [Show full text]
  • Redalyc.Photosynthetic Performance of Mangroves Rhizophora Mangle
    Revista Árvore ISSN: 0100-6762 [email protected] Universidade Federal de Viçosa Brasil Ralph Falqueto, Antelmo; Moura Silva, Diolina; Venturim Fontes, Renata Photosynthetic performance of mangroves Rhizophora mangle and Laguncularia racemosa under field conditions Revista Árvore, vol. 32, núm. 3, mayo-junio, 2008, pp. 577-582 Universidade Federal de Viçosa Viçosa, Brasil Available in: http://www.redalyc.org/articulo.oa?id=48813382018 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Photosynthetic performance of magroves … 577 PHOTOSYNTHETIC PERFORMANCE OF MANGROVES Rhizophora mangle AND Laguncularia racemosa UNDER FIELD CONDITIONS1 Antelmo Ralph Falqueto2, Diolina Moura Silva3, Renata Venturim Fontes4 ABSTRACT – In mature mangrove plants Rhizophora mangle L. and Laguncularia racemosa Gaerth. growing under field conditions, photosystem 2 (PS2) photochemical efficiency, determined by the ratio of variable to maximum fluorescence (Fv/Fm), increased during the day in response to salinity in the rainy seasons. During the dry season, fluorescence values ( Fo) were higher than those observed in rainy season. In addition, Fo decreased during the day in both season and species, except for R. mangle during the dry season. A positive correlation among Fv/Fm and salinity values was obtained for R. mangle and L. Racemosa during the dry and rainy seasons, showing that photosynthetic performance is maintained in both species under high salinities. Carotenoid content was higher in L. Racemosa in both seasons, which represents an additional mechanism against damage to the photosynthetic machinery.
    [Show full text]
  • Acanthaceae), An
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.08.373605; this version posted November 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 Molecular phylogenetics and character evolution in Haplanthodes (Acanthaceae), an 3 endemic genus from peninsular India. 4 5 Siddharthan Surveswaran1, Neha Tiwari2,3, Praveen K. Karanth2, Pradip V. Deshmukh4 and 6 Manoj M. Lekhak4 7 8 1 Department of Life Science, CHRIST (Deemed to be University), Hosur Road, Bangalore 9 560029, Karnataka, India 10 2 Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, 11 India 12 3 Suri Sehgal Centre for Biodiversity and Conservation, Ashoka Trust for Research in 13 Ecology and the Environment, Royal Enclave, Shrirampura, Jakkur, Bangalore 560064, 14 Karnataka, India 15 4 Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University, Kolhapur 16 416004, Maharashtra, India 17 18 19 Correspondence: Siddharthan Surveswaran, [email protected]; Manoj M. 20 Lekhak, [email protected] 21 22 23 Keywords: Acanthaceae, Andrographis, Haplanthodes, endemic genus, cladode 24 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.08.373605; this version posted November 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 26 Abstract 27 Haplanthodes (Acanthaceae) is an Indian endemic genus with four species. It is closely 28 related to Andrographis which is also mainly distributed in India. Haplanthodes differs 29 from Andrographis by the presence of cladodes in the inflorescences, sub actinomorphic 30 flowers, stamens included within the corolla tube, pouched stamens and oblate pollen 31 grains.
    [Show full text]
  • Dermatitis Por Contacto a Metopium Brownei (Chechem). Observaciones Clínicas De 20 Casos En Quintana Roo, México Contact Dermatitis Caused by Metopium Brownei
    Artículos Originales DermatologíaCMQ2009;7(4):226-233 Dermatitis por contacto a Metopium brownei (Chechem). Observaciones clínicas de 20 casos en Quintana Roo, México Contact dermatitis caused by Metopium brownei. Report of 20 cases in Quintana Roo, Mexico Marco Romano Quintanilla*, Roberto Arenas** * Dermatólogo. Clínica Carranza. Venustiano Carranza 366. Chetumal Q. Roo , México [email protected] ** Jefe de la Sección de Micología. Departamento de Dermatología Hospital General Fecha de aceptación: Agosto 2009 Resumen NTECEDENTES: Las fitodermatitis son frecuentes en la práctica dermatológica. En la península de Yucatán observamos entre otras, la ocasionada por METOPIUM BROWNEI cuyo componente tóxico es el urushiol. No hay Acomunicaciones previas de esta dermatosis en la literatura revisada. OBJETIVO: Identificar las principales características clínicas de la dermatitis reaccional por METOPIUM BROWNEI. METODOLOGÍA: Estudio retrospectivo de 20 casos. Se registraron las siguientes variables: edad, sexo, ocupación, sitio de exposición, tiempo de aparición de las primeras manifestaciones, topografía, morfología y diagnóstico clínico. No se realizaron pruebas epicutáneas. RESULTADOS: 65% fueron de sexo masculino, con un promedio de edad de 25.1 años. No se documentó una ocupación predominante, la selva fue el sitio de encuentro con el árbol (90%) y el tiempo de inicio de las manifestaciones fue en promedio, de 2.5 días luego de la exposición. Las reacciones tipo eccema fueron las más comunes. En ausencia de pruebas de parche, se realizó el diagnóstico clínico probable de dermatitis por contacto alérgica en 9 de los 20 pacientes (45%), en 30% tanto irritativa como alérgica, en 1% fotosensibilidad y en 1% dermatitis por contacto aerotransportada. CONCLUSIONES: Las reacciones a METOPIUM BROWNEI corresponden principalmente a un probable proceso alérgico local, sistémico, con fotosensibilidad o aerotransportado.
    [Show full text]
  • Tourism and Forest Livelihoods: Linking Architecture with Tropical Forest Management
    TOURISM AND FOREST LIVELIHOODS: LINKING ARCHITECTURE WITH TROPICAL FOREST MANAGEMENT By JOSÉ ANTONIO SIERRA HUELSZ A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2016 © 2016 José Antonio Sierra Huelsz To Mane and Mateo, my sources of inspiration and love To my parents for their ever loving support ACKNOWLEDGMENTS I am deeply grateful to my exceptional advisor Dr. Karen A. Kainer for her generous mentoring, for being a great teacher, colleague and friend. My committee contributed substantially to the conception of this dissertation, pushing me to think in new directions. I am very thankful to Erick Keys, Francis “Jack” Putz, Patricia Negreros- Castillo and Salvador Gezan for their stimulating perspectives and feedback. In particular, I am in debt with Dr. Negreros-Castillo for inspiring me to work in Quintana Roo and facilitating my landing in the Zona Maya. I would like to thank Wendell P. Cropper for his kind support at the early stages of this journey. This dissertation was enriched by the time, knowledge, and creativity of Sebastián Palmas Pérez, Angélica Navarro Martinez, Pedro Antonio Macario Mendoza, and Mirna Valdez Hernández - all who kindly collaborated in this process. Santos Colli Balam has been an irreplaceable friend, bush colleague, and cultural ambassador. Without Angel David Cab Argüelles, Edgar Can Balam, and the ever supportive X-Pichil crew, my fieldwork plans would be just an unrealized dream. Tarín Toledo Aceves, Eddie A. Ellis and Horacio Paz Hernández kindly provided essential support for accessing funds that helped make this project possible; many thanks to you all.
    [Show full text]
  • Scaevola Taccada (Gaertn.) Roxb
    BioInvasions Records (2021) Volume 10, Issue 2: 425–435 CORRECTED PROOF Rapid Communication First record of naturalization of Scaevola taccada (Gaertn.) Roxb. (Goodeniaceae) in southeastern Mexico Gonzalo Castillo-Campos1,*, José G. García-Franco2 and M. Luisa Martínez2 1Red de Biodiversidad y Sistemática, Instituto de Ecología, A.C., Xalapa, Veracruz, 91073, México 2Red de Ecología Funcional, Instituto de Ecología, A.C. Xalapa, Veracruz, 91073, México Author e-mails: [email protected] (GCC), [email protected] (JGGF), [email protected] (MLM) *Corresponding author Citation: Castillo-Campos G, García- Franco JG, Martínez ML (2021) First Abstract record of naturalization of Scaevola taccada (Gaertn.) Roxb. (Goodeniaceae) Scaevola taccada (Gaertn.) Roxb. is native of Asia and eastern Africa but has been in southeastern Mexico. BioInvasions introduced into the Americas as an ornamental urban plant. This paper reports, for Records 10(2): 425–435, https://doi.org/10. the first time, the presence of Scaevola taccada in natural environments from 3391/bir.2021.10.2.21 southeastern Mexico. Several populations of S. taccada were identified during a Received: 23 July 2020 botanical survey of the coastal dunes of the Cozumel Island Biosphere Reserve Accepted: 22 October 2020 (State of Quintana Roo, Mexico) aimed at recording the most common plant Published: 22 January 2021 species. Scaevola taccada is considered as an invasive species of coastal areas in this region. Evidence of its invasiveness is suggested by the fact that populations Handling editor: Oliver Pescott consisting of individuals of different size classes are found distributed throughout Thematic editor: Stelios Katsanevakis the island. Furthermore, they appear to belong to different generations since we Copyright: © Castillo-Campos et al.
    [Show full text]
  • Anatomía Y Usos De Las Hojas Maduras De Tres Especies De Sabal (Arecaceae) De La Península De Yucatán, México
    Rev. Biol. Trop. 51(2): 333-344, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Anatomía y usos de las hojas maduras de tres especies de Sabal (Arecaceae) de la Península de Yucatán, México Martha Pérez & Silvia Rebollar Departamento de Biología, Universidad Autónoma Metropolitana-Iztapalapa. A. P. 55-535. 09340, México, D. F. Fax: 58- 04-46-88; [email protected]; [email protected] Recibido 12-VI-2001. Corregido 06-III-2002. Aceptado 13-VI-2002. Abstract: This paper describes the leaf anatomy of Sabal mauritiiformis (Karst.) Griseb. & H. Wendl., Sabal mexicana Mart. and Sabal yapa Wright ex Becc., three of the four most representative species of the Yucatán Península, in Mexico. These species are locally used: in the roofing of traditional homes, as food (fruits and api- cal buds), and in the production of hats, brooms and handicrafts. Leaf samples were collected in secondary growth of lower montane rainforest in the state of Quintana Roo and in two home gardens in the state of Yuca- tán. Herbarium samples were obtained, and samples of blade and petiole were fixed in formaline-acetic acid-al- cohol. Cross incisions were made on the blade and petiole, and were dyed with safranin and toluidine blue O. The results show that S. mauritiiformis and S. yapa are morphologically alike: both are tall, slim palm trees; the leaf in S. mauritiiformis is a shorter palm-like structure compared with the other two species. The shape of the main nerve, as seen in cross section, is rectangular in the three species.
    [Show full text]
  • Lamiales – Synoptical Classification Vers
    Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA.
    [Show full text]