OLIGOMERIZATION of PENTENES by ACID ZEOLITES By

Total Page:16

File Type:pdf, Size:1020Kb

OLIGOMERIZATION of PENTENES by ACID ZEOLITES By OLIGOMERIZATION OF PENTENES BY ACID ZEOLITES by ATISH KULKARNI A thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Master of Science Graduate Program in Chemical and Biochemical Engineering Written under the direction of Dr. Fuat E. Celik, And approved by _________________________________________________ _________________________________________________ ________________________________________________ New Brunswick, New Jersey January, 2015 ABSTRACT OF THESIS Oligomerization of Pentenes by Acid Zeolites By ATISH KULKARNI Thesis Director: Dr. Fuat E. Celik Crude oil refining produces numerous light hydrocarbons (alkanes and alkenes). Of these, C2-C4 hydrocarbons are commercially important precursors for synthetic rubber, polymers and other chemical products. C5 hydrocarbons are unwanted by-products; they are not suitable as liquid or gaseous fuels, leading to difficulty regarding storage and handling. The present work is based on an idea to convert C5 hydrocarbons to fuels via dehydrogenation of C5 alkanes, oligomerization of C5 olefins to C10 and C15 alkenes, and further hydrogenation to fuel-grade medium molecular weight hydrocarbons. We have devised a synthesis strategy to transform the light olefins to more valuable decenes (C10 olefins), which can be used as gasoline alternatives. This transformation is termed as the oligomerization of pentene by the catalysts acid-form zeolites. Zeolites are popular catalysts for a variety of heterogeneous catalytic reactions in research as well as in the industry. The oligomerization of pentene was investigated over ZSM-5 (MFI), Beta (BEA*), Mordenite (MOR), Ferrierite (FER) and Faujasite (FAU). The primary aim is to ii achieve high activity and selectivity for oligomerization over cracking of pentenes and decenes. The effect of zeolite pretreatment, substrate concentration, reaction temperature on yield and selectivity of decenes was studied. FAU showed a promising high selectivity, so the Si/Al ratio of FAU samples was varied and a Si/Al ratio of 6 showed the greatest yield. Being acid-catalyzed, the products of the reaction are highly branched, implying higher octane ratings and therefore suitability for gasoline blending. iii ACKNOWLEDGEMENTS I would first like to thank my thesis advisor, Prof. Fuat Celik, for giving me the opportunity to work with the Celik Catalysis Group. He has shown immense support, guidance and enthusiasm throughout the course of my thesis. I would also like to thank Prof. Alan Goldman, of the Chemistry and Chemical Biology Department at Rutgers, who introduced me to the project and encouraged me to devote my thesis to it. Dr. Akshai Kumar has been with me throughout my thesis, his direction and motivation essential for every step of this project. I would like to express my sincere appreciation toward his efforts and awareness to my work. My heartfelt thanks to the other members of my thesis committee: Prof. Rohit Ramachandran and Prof. Meenakshi Dutt. I would also like to thank my colleagues in both the research groups that I have worked with for their help that was integral toward the completion of my research work. I must notably mention Longfei Chao, Yiming Yin, Deniz Dindi, Alec Hook and Ashley Pennington toward their contribution in setting up the preparatory experiments and in helping me prepare my thesis and presentation. They have been there to help and guide me at every time that I have needed them. I would like to thank a number of graduate students and friends at Rutgers, who, be it through friendship, counsel or supportive guidance have made my stay at Rutgers more wonderful and one to remember. Finally, I would like to thank my family who has been supportive and available for me throughout the course of my student life. iv TABLE OF CONTENTS Abstract ii Acknowledgements iv Table of Contents v List of Tables vi List of Illustrations vii Chapter 1 – Introduction 1.1 C5 hydrocarbons: By-Products of the Petroleum Industry 1 1.2 C10 hydrocarbons: Commercially Important Products 2 1.3 Zeolites 3 1.4 Oligomerization of Olefins 8 Chapter 2 – Experiments 2.1 Preparation of Experimental Set-up 15 2.2 Gas Chromatography Analysis and Calibration 17 2.3 Oligomerization Reaction 20 2.4 Sodium Exchange Experiment 22 Chapter 3 - Results and Discussions 3.1 Effect of Zeolite Size And Structure 25 3.2 Effect of Si/Al of FAU on Acid Strength and Acid Site Proximity 42 3.3 Catalytic Effect of Brønsted Acid Sites within the Zeolites 52 3.4 Effect of Reaction Conditions 58 Chapter 4 - Summary and Future Scope 4.1 Summary 68 4.2 Future Work 70 References 72 v LIST OF TABLES Table 1 – 1 Information for structure of zeolites 6 Table 2 – 1 Comparison of different samples of zeolites 22 Table 3 – 1 Product distribution for pentene oligomerization catalyzed by 27 MFI (Si/Al = 15) zeolite Table 3 – 2 Product distribution for pentene oligomerization catalyzed by 30 BEA* (Si/Al = 12.5) zeolite Table 3 – 3 Product distribution for pentene oligomerization catalyzed by 32 MOR (Si/Al = 10) zeolite Table 3 – 4 Product distribution for pentene oligomerization catalyzed by 34 FAU (Si/Al = 15) zeolite Table 3 – 5 Product distribution for pentene oligomerization catalyzed by 37 FER (Si/Al = 10) zeolite Table 3 – 6 Product distribution for pentene oligomerization catalyzed by 43 FAU (Si/Al = 2.6) zeolite Table 3 – 7 Product distribution for pentene oligomerization catalyzed by 45 FAU (Si/Al = 6) zeolite Table 3 – 8 Product distribution for pentene oligomerization catalyzed by 47 FAU (Si/Al = 40) zeolite Table 3 – 9 Product distribution for pentene oligomerization catalyzed by 52 Na/H-FAU (Si/Al = 6) (single exchange) Table 3 – 10 Product distribution for pentene oligomerization catalyzed by 53 Na/H-FAU (Si/Al = 6) (double exchange) Table 3 – 11 Product distribution for pentene oligomerization catalyzed by 56 fully substituted zeolite Na-FAU (Si/Al = 6) Table 3 – 12 Analysis of products for silicalite (MFI – Si/Al = 1000) and Na- 58 MFI Table 3 – 13 Product distribution for pentene oligomerization catalyzed by 59 FAU (Si/Al = 6) with varying temperature Table 3 – 14 Product distribution for pentene oligomerization catalyzed by 61 FAU (Si/Al = 6) at room temperature Table 3 – 15 Product distribution for pentene oligomerization catalyzed by 63 FAU (Si/Al = 6) with varying pentene concentration Table 3 – 16 Analysis of products for Zeolyst MFI (Si/Al = 15) and Clariant 65 MFI (Si/Al = 13.5) as catalysts as a function of time vi LIST OF ILLUSTRATIONS Figure 1 – 1 Isomers of pentene 1 Figure 1 – 2 Isomers of decene 3 Figure 1 – 3 MFI (ZSM – 5) 4 Figure 1 – 4 BEA* (Beta*) 4 Figure 1 – 5 MOR (Mordenite) 5 Figure 1 – 6 FER (Ferrierite) 5 Figure 1 – 7 FAU (Faujasite) 5 Figure 1 – 8 Reactions occur at H+ acid site 7 Figure 1 – 9 Representation of MFS framework topology 11 Figure 2 – 1 Kontes vial 20 Figure 3 – 1 Pentene oligomerization and side reactions 26 Figure 3 – 2 Effect of heating time on concentration of olefins for the reaction 28 over MFI (Si/Al = 15) Figure 3 – 3 Effect of heating time on concentration of olefins for the reaction 31 over BEA* (Si/Al = 12.5) Figure 3 – 4 Effect of heating time on concentration of olefins for the reaction 33 over MOR (Si/Al = 10) Figure 3 – 5 Effect of heating time on concentration of olefins for the reaction 35 over FAU (Si/Al = 15) Figure 3 – 6 Effect of heating time on concentration of olefins for the reaction 38 over FER (Si/Al = 10) Figure 3 – 7 Percent yield of C10 olefins as a function of heating time for 39 different samples of zeolite (Si/Al = 10-15) Figure 3 – 8 Percent selectivity toward C10 olefins as a function of heating time 40 for different zeolite samples (Si/Al = 10-15). Figure 3 – 9 Percent selectivity toward C10 olefins at around 40% conversion 41 of C5 olefins Figure 3 – 10 Effect of heating time on concentration of olefins for the reaction 44 over FAU (Si/Al = 2.6) Figure 3 – 11 Effect of heating time on concentration of olefins for the reaction 46 over FAU (Si/Al = 6) Figure 3 – 12 Effect of heating time on concentration of olefins for the reaction 48 over FAU (Si/Al = 40) Figure 3 – 13 Percent yield of C10 olefins as a function of heating time over a 50 wide range of Si/Al ratios of FAU Figure 3 – 14 Percent selectivity toward C10 olefins as a function of heating time 51 for varying Si/Al ratios for FAU vii Figure 3 – 15 Percent yield of C10 olefins as a function of heating time for H- 54 FAU and Na-exchanged FAU (Si/Al = 6). Figure 3 – 16 Percent selectivity toward C10 olefins as a function of heating time 55 for H-FAU and Na-exchanged FAU (Si/Al =6) Figure 3 – 17 Comparison of concentration of olefins observed in the products 60 as a function of temperature, after 40 minutes of heating Figure 3 – 18 Comparison of concentration of olefins observed as a function of 62 time for the reaction at room temperature over FAU (Si/Al = 6) Figure 3 – 19 Comparison of concentration of olefins observed as a function of 64 initial pentene concentration in the stock solution for the reaction over FAU (Si/Al = 6) Figure 3 – 20 Comparison of yield of olefins as a function of heating time for 66 reaction over MFI zeolite from two manufacturers – Zeolyst (Si/Al = 15) and Clariant (Si/Al = 13.5) viii 1 Chapter 1: Introduction 1.1 C5 hydrocarbons : By-products of the Petroleum Industry C5 hydrocarbons include pentanes (alkanes) and pentenes (olefins); C5 olefins are predominantly of interest for the purpose of this project.
Recommended publications
  • Part I: Carbonyl-Olefin Metathesis of Norbornene
    Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 1 © 2016 Zara Maxine Seibel All Rights Reserved 2 ABSTRACT Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel This thesis details progress towards the development of an organocatalytic carbonyl- olefin metathesis of norbornene. This transformation has not previously been done catalytically and has not been done in practical manner with stepwise or stoichiometric processes. Building on the previous work of the Lambert lab on the metathesis of cyclopropene and an aldehyde using a hydrazine catalyst, this work discusses efforts to expand to the less stained norbornene. Computational and experimental studies on the catalytic cycle are discussed, including detailed experimental work on how various factors affect the difficult cycloreversion step. The second portion of this thesis details the use of chiral cyclopropenimine bases as catalysts for asymmetric Michael reactions. The Lambert lab has previously developed chiral cyclopropenimine bases for glycine imine nucleophiles. The scope of these catalysts was expanded to include glycine imine derivatives in which the nitrogen atom was replaced with a carbon atom, and to include imines derived from other amino acids. i Table of Contents List of Abbreviations…………………………………………………………………………..iv Part I: Carbonyl-Olefin Metathesis…………………………………………………………… 1 Chapter 1 – Metathesis Reactions of Double Bonds………………………………………….. 1 Introduction………………………………………………………………………………. 1 Olefin Metathesis………………………………………………………………………… 2 Wittig Reaction…………………………………………………………………………... 6 Tebbe Olefination………………………………………………………………………... 9 Carbonyl-Olefin Metathesis…………………………………………………………….
    [Show full text]
  • Catalytic Pyrolysis of Plastic Wastes for the Production of Liquid Fuels for Engines
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019 Supporting information for: Catalytic pyrolysis of plastic wastes for the production of liquid fuels for engines Supattra Budsaereechaia, Andrew J. Huntb and Yuvarat Ngernyen*a aDepartment of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand. E-mail:[email protected] bMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand Fig. S1 The process for pelletization of catalyst PS PS+bentonite PP ) t e PP+bentonite s f f o % ( LDPE e c n a t t LDPE+bentonite s i m s n HDPE a r T HDPE+bentonite Gasohol 91 Diesel 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm-1) Fig. S2 FTIR spectra of oil from pyrolysis of plastic waste type. Table S1 Compounds in oils (%Area) from the pyrolysis of plastic wastes as detected by GCMS analysis PS PP LDPE HDPE Gasohol 91 Diesel Compound NC C Compound NC C Compound NC C Compound NC C 1- 0 0.15 Pentane 1.13 1.29 n-Hexane 0.71 0.73 n-Hexane 0.65 0.64 Butane, 2- Octane : 0.32 Tetradecene methyl- : 2.60 Toluene 7.93 7.56 Cyclohexane 2.28 2.51 1-Hexene 1.05 1.10 1-Hexene 1.15 1.16 Pentane : 1.95 Nonane : 0.83 Ethylbenzen 15.07 11.29 Heptane, 4- 1.81 1.68 Heptane 1.26 1.35 Heptane 1.22 1.23 Butane, 2,2- Decane : 1.34 e methyl- dimethyl- : 0.47 1-Tridecene 0 0.14 2,2-Dimethyl- 0.63 0 1-Heptene 1.37 1.46 1-Heptene 1.32 1.35 Pentane,
    [Show full text]
  • Title Crystallization of Stereospecific Olefin Copolymers (Special Issue on Physical Chemistry) Author(S) Sakaguchi, Fumio; Kita
    Crystallization of Stereospecific Olefin Copolymers (Special Title Issue on Physical Chemistry) Author(s) Sakaguchi, Fumio; Kitamaru, Ryozo; Tsuji, Waichiro Bulletin of the Institute for Chemical Research, Kyoto Citation University (1966), 44(4): 295-315 Issue Date 1966-10-31 URL http://hdl.handle.net/2433/76134 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Crystallization of Stereospecifie Olefin Copolymers Fumio SAKAGUCHI,Ryozo KITAMARU and Waichiro TSUJI* (Tsuji Laboratory) Received August 13, 1966 The stereoregularity of isotactic poly(4-methyl-1-pentene) was characterized and isomorphism phenomena were examined for the copolymeric systems of 4-methyl-1-pentene with several olefins in order to study the crystallization phenomena in these olefin copoly- mers polymerized with stereospecific catalysts. The structural heterogeneity or the fine crystalline structure of poly(4-methyl-1-pentene) could be correlated with its molecular structure by viewing this stereoregular homopolymer as if it were a copolymer. Cocrystallization or isomorphism phenomenon was recognized for the copolymeric systems of 4-methyl-1-pentene with butene-1, pentene-1, decene-1 and 3-methyl-1-butene, while no evidence of the phenomenon was obtained for the copolymeric systems with styrene and propylene. The degree of the isomorphism of those copolymers was discussed with the informations on the crystalline phases obtained from the X-ray study, on the constitution of the copolymeric chains in the amorphous phases obtained from the viscoelastic studies and on the other thermodynamical properties of these systems. INTRODUCTION Many works have been made with regard to the homopolymerization of olefins with stereospecific catalysts, i. e. complex catalysts composed of the combination of organometallic compound and transitional metallic compound.
    [Show full text]
  • Highly Efficient Olefin Isomerization Catalyzed by Metal Hydrides Derives from Dirhodium(Ii) Carboxylates and Catecholborane
    HIGHLY EFFICIENT OLEFIN ISOMERIZATION CATALYZED BY METAL HYDRIDES DERIVES FROM DIRHODIUM(II) CARBOXYLATES AND CATECHOLBORANE Gene A. Devora and Michael P. DoyleL' * Department of Chemistry, Trinity University, San Antonio, Texas 78212, USA Abstract. Dirhodium(ll) tetraacetate in combination with catecholborane catalyzes the iso- merization of alkenes and dienes. Effective isomerization occurs at 80-135°C with the use of only 0.1 mol % rhodium acetate. With 2-methyl-1,5-hexadiene the disubstituted double bond is prefer- entially isomerized. In addition, hydrogen transfer hydrogenation occurs with 1,4-cyclohexadienes. The mechanism of these reactions is proposed to involve organoborane addition across a Rh-0 bond which activates the catalyst for isomerization and hydrogenation. INTRODUCTION Catalytic isomerization of alkenes is a characteristic transformation of transition metal hy- drides that often accompanies hydrogenation1 and is one of the most thoroughly studied catalytic reactions.2"4 Compounds of cobalt, nickel, palladium, platinum, rhodium, and ruthenium are effective,2 but other transition metal compounds have also been employed for catalytic isomeriza- tions.2"4 Although the nature of this transformation is dependent on the catalyst, selectivity for alkene isomerization generally favors reactions with monosubstituted ethylenes over di- and tri-sub- stituted ethylenes. In the course of our investigations of the catalytic effectiveness of dirhodium(ll) tetrakis(carboxylates) we have uncovered a useful methodology for the generation of rhodium hydride species that, as we now report, are surprisingly effective for the isomerization of alkenes as well as for hydrogen transfer hydrogenation. MATERIALS AND METHODS Reactions were performed in a round bottom flask equipped with a screw cap that was fitted with a septum for convenient withdrawal of aliquots.
    [Show full text]
  • Syntheses and Eliminations of Cyclopentyl Derivatives David John Rausch Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1966 Syntheses and eliminations of cyclopentyl derivatives David John Rausch Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Rausch, David John, "Syntheses and eliminations of cyclopentyl derivatives " (1966). Retrospective Theses and Dissertations. 2875. https://lib.dr.iastate.edu/rtd/2875 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 66—6996 RAUSCH, David John, 1940- SYNTHESES AND ELIMINATIONS OF CYCLOPENTYL DERIVATIVES. Iowa State University of Science and Technology Ph.D., 1966 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan SYNTHESES AND ELIMINATIONS OF CYCLOPENTYL DERIVATIVES by David John Rausch A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved : Signature was redacted for privacy. Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1966 ii TABLE OF CONTENTS VITA INTRODUCTION HISTORICAL Conformation of Cyclopentanes Elimination Reactions RESULTS AND DISCUSSION Synthetic Elimination Reactions EXPERIMENTAL Preparation and Purification of Materials Procedures and Data for Beta Elimination Reactions SUMMARY LITERATURE CITED ACKNOWLEDGEMENTS iii VITA The author was born in Aurora, Illinois, on October 24, 1940, to Mr.
    [Show full text]
  • September 17, 2007
    Pre-Feasibility Report M/s. Neogen Chemicals Ltd. 1 1. Introduction M/s. Neogen Chemicals Ltd. is a new unit located at Plot No. Z/96/B SEZ Dahej, District: Bharuch, Gujarat. Now, the unit proposes to manufacture different type of synthetic organic dyes and pesticide products at above sited address. 2. Cost of Project Cost of existing project is 55 crore &, out of which 5 crore will be used for Environment Management System. 3. Production Capacity Production capacity is prescribe below: List of Products Sr. Name of Products Quantity No. (MT/Year) (MT/month) 1 Bromination and Chlorination of Alcohols 1.1. Ethyl Bromide 3500 291.67 1.2. n-Propyl Bromide 1.3. Iso Propyl Bromide 1.4. n-Butyl Bromide 1.5. Iso Butyl Bromide 1.6. Sec-Butyl Bromide 1.7. n-Hexyl Bromide 1.8. n-Heptyl Bromide 1.9. n-Octyl Bromide 1.10. n-Decyl Bromide 1.11. Lauryl Bromide 1.12. Cetyl Bromide 1.13. Myristyl Bromide 1.14. Stearyl Bromide 1.15. 1,2 Dibromo Ethane 1.16. 1,3 Dibromo Propane 1.17. 1,4 Dibromo Butane 1.18. 1,5 Dibromo pentane M/s. Neogen Chemicals Ltd. 2 Sr. Name of Products Quantity No. (MT/Year) (MT/month) 1.19. 1,6 Dibromo Hexane 1.20. 1 Chloro 2 Ethyl Hexane 1.21. 6 Chloro 1 Hexanol 1.22. 3 Chloro Propanol 1.23. 1,6 Dichloro Hexane 1.24. Cyclo Propyl Methyl Bromide 1.25. Cyclo Pentyl Bromide 1.26. Cyclo Pentyl Chloride 2. Bromination of Organic Acids and Esterification thereof 2.1.
    [Show full text]
  • ' United "States Patent Office
    Patented on. 20, 1.942 I . 2,299,411 ' UNITED "STATES PATENT OFFICE CATALYZED HYDROBROMINATION OF UN SATURATED ORGANIC COMPOUNDS Fredericlr Rust and William E. Vaughan, ' Berkeley, Calif., assignors. to Shell Develop ment Company, San Francisco, Calif., a corpo ration of Delaware No Drawing. 4 Application August 25, 1941, Serial No. 408,212 - 9'Claims. (01. 260-663) ' This invention relates to an improved process for the hydrobromination of unsaturated organic hydes and metal alkyls which tend to initiate I compounds, and more particularly to improve the reaction chains. v ments in the method of controlling the addition It is known that the presence of peroxide: orv of hydrogen bromide to unsymmetrical organic of peroxide-forming compounds in unsaturated compounds containing at least one ole?nic or organic compounds, e. g. unsaturated hydrocar acetylenic linkage to produce addition products bons, is undesirable. For example, organic per of a predetermined character. oxides, when present even in relatively small con It is known that hydrogen halides may be centrations, tend to catalyze the polymerization of a large number of unsaturated hydrocarbons, . added to unsaturated hydrocarbons and to var 10 ious unsaturated derivatives thereof. In fact, and particularly diole?ns. As to the “abnormal” in 1870 Markowniko? stated that “if an addition ofhydrogen bromide to unsaturates by metrical hydrocarbon combines with a halogen effecting the reaction under the deliberate in acid, the halogen adds to the carbon atom with ?uence, of light, and particularly of ultra-violet fewer hydrogen atoms, i. e. to the carbon atom radiations having wave-lengths of below about which is more'under the in?uence of other car' 2900 to 3000 Angstrom units, such processes ne bon atoms.” The same investigator further de cessitate the use of special equipment, such as termined that when a hydrogen halide is added reaction vessels provided with or containing to a halogenated unsaturated compound such as lamps made of quartz Or other suitable mate rials, e.
    [Show full text]
  • Chemical Compatibility Chart X
    Chemical Compatibility Chart Below is a chart adapted from the CRC Laboratory Handbook, which groups various chemicals in to 23 groups with examples and incompatible chemical groups. This chart is by no means complete but it will aid in making decisions about storage. For more complete information please refer to the MSDS for the specific chemical. Examples of each group can be found on the next pages. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Monomers Polymerizable Esters Alcohols, Glycols, Glycol Ether Amines and Alkanolamines Halogenated Compounds Aldehydes Acetaldehyde Saturated Hydrocar Aromatic Hydrocarbons Acid Anhydrides Alkylene Oxides Inorganic Acids Petrolium Oils Organic Acids Cyanohydrins Phosphorus Ammonia Group Halogens Ketones Caustics Phenols Nitriles Olefins Ethers Number/Chemical Esters Type bons Inorganic 1 x x x x x x x x x x x x x x x x x Acids 2 Organic Acids x x x x x x x x x x 3 Caustics x x x x x x x x x x x x x Amines and 4 x x x x x x x x x x x x Alkanolamines Halogenated 5 x x x x x x Compounds Alcohols, 6 Glycols, Glycol x x x x x x Ether Aldehydes 7 x x x x x x x x x x x x Acetaldehyde 8 Ketones x x x x x x Saturated 9 x Hydrocarbons Aromatic 10 x x Hydrocarbons 11 Olefins x x x 12 Petrolium Oils x 13 Esters x x x x x Monomers 14 Polymerizable x x x x x x x x x x x x Esters 15 Phenols x x x x x x x Alkylene 16 x x x x x x x x x x x x Oxides 17 Cyanohydrins x x x x x x x x x 18 Nitriles x x x x x x 19 Ammonia x x x x x x x x x x x 20 Halogens x x x x x x x x x x x x x x 21 Ethers x x x 22 Phosphorus x x x x Acid 23 x x x x x x x x x x Anhydrides X - Indicates chemicals that are incompatible and should not be stored together.
    [Show full text]
  • Properties and Synthesis. Elimination Reactions of Alkyl Halides
    P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU Printer: Bind Rite JWCL234-07 JWCL234-Solomons-v1 December 8, 2009 21:37 7 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS. ELIMINATION REACTIONS OF ALKYL HALIDES SOLUTIONS TO PROBLEMS 7.1 (a) ( E )-1-Bromo-1-chloro-1-pentene or ( E )-1-Bromo-1-chloropent-1-ene (b) ( E )-2-Bromo-1-chloro-1-iodo-1-butene or ( E )-2-Bromo-1-chloro-1-iodobut-1-ene (c) ( Z )-3,5-Dimethyl-2-hexene or ( Z )-3,5-Dimethylhex-2-ene (d) ( Z )-1-Chloro-1-iodo-2-methyl-1-butene or ( Z )-1-Chloro-1-iodo-2-methylbut-1-ene (e) ( Z,4 S )-3,4-Dimethyl-2-hexene or ( Z,4 S )-3,4-Dimethylhex-2-ene (f) ( Z,3 S )-1-Bromo-2-chloro-3-methyl-1-hexene or (Z,3 S )-1-Bromo-2-chloro-3-methylhex-1-ene 7.2 < < Order of increasing stability 7.3 (a), (b) H − 2 ∆ H° = − 119 kJ mol 1 Pt 2-Methyl-1-butene pressure (disubstituted) H2 − ∆ H° = − 127 kJ mol 1 Pt 3-Methyl-1-butene pressure (monosubstituted) H2 − ∆ H° = − 113 kJ mol 1 Pt 2-Methyl-2-butene pressure (trisubstituted) (c) Yes, because hydrogenation converts each alkene into the same product. 106 CONFIRMING PAGES P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU Printer: Bind Rite JWCL234-07 JWCL234-Solomons-v1 December 8, 2009 21:37 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS 107 H H (d) > > H H H (trisubstituted) (disubstituted) (monosubstituted) Notice that this predicted order of stability is confirmed by the heats of hydro- genation.
    [Show full text]
  • Reactions of Alkenes and Alkynes
    05 Reactions of Alkenes and Alkynes Polyethylene is the most widely used plastic, making up items such as packing foam, plastic bottles, and plastic utensils (top: © Jon Larson/iStockphoto; middle: GNL Media/Digital Vision/Getty Images, Inc.; bottom: © Lakhesis/iStockphoto). Inset: A model of ethylene. KEY QUESTIONS 5.1 What Are the Characteristic Reactions of Alkenes? 5.8 How Can Alkynes Be Reduced to Alkenes and 5.2 What Is a Reaction Mechanism? Alkanes? 5.3 What Are the Mechanisms of Electrophilic Additions HOW TO to Alkenes? 5.1 How to Draw Mechanisms 5.4 What Are Carbocation Rearrangements? 5.5 What Is Hydroboration–Oxidation of an Alkene? CHEMICAL CONNECTIONS 5.6 How Can an Alkene Be Reduced to an Alkane? 5A Catalytic Cracking and the Importance of Alkenes 5.7 How Can an Acetylide Anion Be Used to Create a New Carbon–Carbon Bond? IN THIS CHAPTER, we begin our systematic study of organic reactions and their mecha- nisms. Reaction mechanisms are step-by-step descriptions of how reactions proceed and are one of the most important unifying concepts in organic chemistry. We use the reactions of alkenes as the vehicle to introduce this concept. 129 130 CHAPTER 5 Reactions of Alkenes and Alkynes 5.1 What Are the Characteristic Reactions of Alkenes? The most characteristic reaction of alkenes is addition to the carbon–carbon double bond in such a way that the pi bond is broken and, in its place, sigma bonds are formed to two new atoms or groups of atoms. Several examples of reactions at the carbon–carbon double bond are shown in Table 5.1, along with the descriptive name(s) associated with each.
    [Show full text]
  • Table S1. GC-MS Compounds Generated at 5 °C/Min
    Table S1. GC-MS compounds generated at 5 °C/min. 0 wt.% 10 wt.% 30 wt.% 50 wt.% GC GC GC GC Compounds Compounds Compounds Compounds Area (%) Area (%) Area (%) Area (%) Time (min.) (min.) Time Time (min.) (min.) Time (min.) Time (min.) Time Propene Propene Propene Propene 7.42 7.42 1.26 5.47 1.20 7.38 1.200 1.200 1.200 1.214 1.214 1-Propene, 2- 1-Propene, 2- methyl- 1-Propene, 2-methyl- 1-Propene, 2-methyl- 7.34 7.34 2.41 methyl- 1.245 1.245 1.245 1.259 1.259 10.54 1.246 14.90 Pentane Pentane Pentane Pentane 3.79 3.79 1.375 1.375 1.395 1.395 11.81 1.381 13.17 1.375 12.83 1-Pentene, 2- 2-Butene, 2- 2-Butene, 2-methyl- 2-Butene, 2-methyl- methyl- 7.25 0.93 methyl- 4.65 5.71 1.426 1.426 1.420 1.420 1.679 1.679 1H-Pyrazole, 4,5- Heptane, 4- 1H-Pyrazole, 4,5- 1-Pentene, 2-methyl- dihydro-5- methyl- 1.92 1.57 2.25 dihydro-5-methyl- 2.44 1.659 1.659 1.562 1.569 3.762 3.762 methyl- 2,4-Dimethyl-1- 1-Pentene, 2- heptene 2-Butene, 2,3-dimethyl- 1-Pentene, 2-methyl- 1.27 1.27 methyl- 3.08 2.33 1.653 1.653 1.653 5.671 5.671 34.57 1.750 Cyclohexane, 1,3,5-trimethyl-, 2-Pentene, 3- 2,4-Dimethyl-1-heptene 2-Pentene, 2-methyl- alpha.,3.alpha.,5.b 2.03 9.11 methyl-, €- 6.11 5.73 5.605 5.605 1.743 1.744 5.981 5.981 eta.)- 5-Aminoisoxazole 2-Pentene, 3- 2-Pentene, 3-methyl-, Spermine Ethanone, 1-cyclopentyl- 1.55 1.55 1.32 methyl-, (Z)- 1.59 €- 1.46 1.828 1.828 1.828 6.925 6.925 10.560 Ethanone, 1- 1R,2c,3t,4t-Tetramethyl- 1,3-Pentadiene, 1,4-Hexadiene, 5- cyclopentyl- 3.57 3.57 cyclohexan 0.97 2,3-dimethyl- 2.28 methyl- 2.31 2.584 2.584 2.585 10.613 10.613 10.638 N- Heptane, 2-methyl-3- Heptane, 4- Methylallylamine Toluene 2.49 2.49 methylene- 2.50 methyl- 2.97 4.31 3.697 3.697 3.697 14.047 14.047 10.684 10.684 2-Undecene, 4- Cyclopentane, (2- 2,4-Dimethyl-1- 2,4-Dimethyl-1- methyl- 7.81 7.81 methylbutyl)- 1.00 heptene heptene 5.605 5.605 22.29 22.29 5.605 12.95 14.086 14.086 14.163 Cyclohexane, Cyclohexane, 1,3,5- 2-Decene, 7- 1,3,5-trimethyl-, trimethyl- methyl-, (Z)- Hexane, 2,3,4-trimethyl- (1.
    [Show full text]
  • Linear Alpha-Olefins (681.5030)
    IHS Chemical Chemical Economics Handbook Linear alpha-Olefins (681.5030) by Elvira O. Camara Greiner with Yoshio Inoguchi Sample Report from 2010 November 2010 ihs.com/chemical November 2010 LINEAR ALPHA-OLEFINS Olefins 681.5030 B Page 2 The information provided in this publication has been obtained from a variety of sources which SRI Consulting believes to be reliable. SRI Consulting makes no warranties as to the accuracy completeness or correctness of the information in this publication. Consequently SRI Consulting will not be liable for any technical inaccuracies typographical errors or omissions contained in this publication. This publication is provided without warranties of any kind either express or implied including but not limited to implied warranties of merchantability fitness for a particular purpose or non-infringement. IN NO EVENT WILL SRI CONSULTING BE LIABLE FOR ANY INCIDENTAL CONSEQUENTIAL OR INDIRECT DAMAGES (INCLUDING BUT NOT LIMITED TO DAMAGES FOR LOSS OF PROFITS BUSINESS INTERRUPTION OR THE LIKE) ARISING OUT OF THE USE OF THIS PUBLICATION EVEN IF IT WAS NOTIFIED ABOUT THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES THE ABOVE LIMITATION MAY NOT APPLY TO YOU. IN SUCH STATES SRI CONSULTING’S LIABILITY IS LIMITED TO THE MAXIMUM EXTENT PERMITTED BY SUCH LAW. Certain statements in this publication are projections or other forward-looking statements. Any such statements contained herein are based upon SRI Consulting’s current knowledge and assumptions about future events including without limitation anticipated levels of global demand and supply expected costs trade patterns and general economic political and marketing conditions.
    [Show full text]