Tracking the Expanding Distribution of Solidago ×Niederederi (Asteraceae) in Europe and First Records from Three Countries Within the Carpathian Region
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Micro-Moth Grading Guidelines (Scotland) Abhnumber Code
Micro-moth Grading Guidelines (Scotland) Scottish Adult Mine Case ABHNumber Code Species Vernacular List Grade Grade Grade Comment 1.001 1 Micropterix tunbergella 1 1.002 2 Micropterix mansuetella Yes 1 1.003 3 Micropterix aureatella Yes 1 1.004 4 Micropterix aruncella Yes 2 1.005 5 Micropterix calthella Yes 2 2.001 6 Dyseriocrania subpurpurella Yes 2 A Confusion with fly mines 2.002 7 Paracrania chrysolepidella 3 A 2.003 8 Eriocrania unimaculella Yes 2 R Easier if larva present 2.004 9 Eriocrania sparrmannella Yes 2 A 2.005 10 Eriocrania salopiella Yes 2 R Easier if larva present 2.006 11 Eriocrania cicatricella Yes 4 R Easier if larva present 2.007 13 Eriocrania semipurpurella Yes 4 R Easier if larva present 2.008 12 Eriocrania sangii Yes 4 R Easier if larva present 4.001 118 Enteucha acetosae 0 A 4.002 116 Stigmella lapponica 0 L 4.003 117 Stigmella confusella 0 L 4.004 90 Stigmella tiliae 0 A 4.005 110 Stigmella betulicola 0 L 4.006 113 Stigmella sakhalinella 0 L 4.007 112 Stigmella luteella 0 L 4.008 114 Stigmella glutinosae 0 L Examination of larva essential 4.009 115 Stigmella alnetella 0 L Examination of larva essential 4.010 111 Stigmella microtheriella Yes 0 L 4.011 109 Stigmella prunetorum 0 L 4.012 102 Stigmella aceris 0 A 4.013 97 Stigmella malella Apple Pigmy 0 L 4.014 98 Stigmella catharticella 0 A 4.015 92 Stigmella anomalella Rose Leaf Miner 0 L 4.016 94 Stigmella spinosissimae 0 R 4.017 93 Stigmella centifoliella 0 R 4.018 80 Stigmella ulmivora 0 L Exit-hole must be shown or larval colour 4.019 95 Stigmella viscerella -
Comparative Anatomy of Ovules in Galinsoga, Solidago and Ratibida (Asteraceae)
ACTA BIOLOGICA CRACOVIENSIA Series Botanica 56/2: 115–125, 2014 DOI: 10.2478/abcsb-2014-0024 COMPARATIVE ANATOMY OF OVULES IN GALINSOGA, SOLIDAGO AND RATIBIDA (ASTERACEAE) JOLANTA KOLCZYK1, PIOTR STOLARCZYK2, AND BARTOSZ J. PŁACHNO1* 1Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland 2Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, University of Agriculture in Cracow, Al. 29 Listopada 54, 31-425 Cracow, Poland Manuscript submitted September 9, 2014; revision accepted October 22, 2014 Many Asteraceae species have been introduced into horticulture as ornamental or interesting exotic plants. Some of them, including Solidago and Galinsoga, are now aggressive weeds; others such as Ratibida are not. Special modifications of the ovule tissue and the occurrence of nutritive tissue have been described in several Asteraceae species, including invasive Taraxacum species. This study examined whether such modifications might also occur in other genera. We found that the three genera examined – Galinsoga (G. quadriradiata), Solidago (S. canadensis, S. rigida, S. gigantea) and Ratibida (R. pinnata) – differed in their nutritive tissue structure. According to changes in the integument, we identified three types of ovules in Asteraceae: “Taraxacum” type (recorded in Taraxacum, Bellis, Solidago, Chondrilla), with well-developed nutritive tissue having very swollen cell walls of spongy structure; “Galinsoga” type (in Galinsoga), in which the nutritive tissue cells have more cyto- plasm and thicker cell walls than the other integument parenchyma cells, and in which the most prominent character of the nutritive tissue cells is well-developed rough ER; and “Ratibida” type (in Ratibida), in which the nutritive tissue is only slightly developed and consists of large highly vacuolated cells. -
National List of Vascular Plant Species That Occur in Wetlands 1996
National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt. -
SOLIDAGO BRENDIAE ABSTRACT a New Species of S
Semple, J.C. 2013. A new species of Triplinerviae goldenrod in eastern Canada (Asteraceae: Astereae): Solidago brendiae . Phytoneuron 2013-57: 1–9. Published 21 August 2013 ISSN 2153 733X A NEW SPECIES OF TRIPLINERVIAE GOLDENROD IN EASTERN CANADA (ASTERACEAE: ASTEREAE): SOLIDAGO BRENDIAE JOHN C. SEMPLE Department of Biology University of Waterloo Waterloo, Ontario Canada N2L 3G1 [email protected] ABSTRACT A new species of Solidago is described from collections made in Maritime Canada. Fernald (1915, 1950) treated some of these plants as S. lepida var. elongata , which is native to far western North America. Comparison of these entire to sharply and coarsely serrate narrower leaved specimens that are sparsely hairy to glabrate with S. canadensis and the broader leaved and sometimes more hairy specimens of the S. lepida complex from Quebec, Newfoundland, New Brunswick, Nova Scotia, and Prince Edward Island indicate that Fernald was correct in recognizing two closely related races native to the Canadian Maritimes that are similar to the mostly western S. lepida, but they are treated here as varieties of S. fallax. Fernald was incorrect in thinking that the narrower leaved race belonged in S. elongata . These three eastern taxa are diploid while the S. lepida infrequently occurring in the Maritimes is hexaploid. All four taxa are usually more stipitate- glandular and have more leafy inflorescences with ascending branches than in sometimes similar S. canadensis . The following new name and combinations are proposed: Solidago brendiae Semple, sp. nov. , Solidago fallax (Fernald) Semple, comb. et stat. nov. , and Solidago fallax var. molina (Fernald) Semple, comb. nov. KEY WORDS : Solidago brendiae , Solidago canadensis , Solidago elongata , Solidago fallax , Solidago lepida , biogeography, Canada Fernald (1915) described two new varieties of Solidago lepida DC., var. -
Canada Goldenrod (Solidago Canadensis) - Fields of Gold
Canada Goldenrod (Solidago canadensis) - Fields of Gold Did you Know? Canada Goldenrod... is considered an invasive species in Europe. is often blamed for causing hayfever because they flower during allergy season. However, the true culprits are ragweeds. Goldenrods do not cause allergies. ofter carry ball-like growths called galls which contain the larvae of a moth. If you dig one out, try popping it in your mouth, they are said to taste like popcorn. Habitat: Clearings and edges of forests, meadows and fields, roadsides and ditches, disturbed areas Blooms: Between July and November with flowers sometimes even lasting into December. Range: One of the commonest species found throughout the United States except Florida and all of Canada except areas in the extreme north. Status: S5 - Secure (what does this S-rank mean?) Also Known As: Common Goldenrod, Rock Goldenrod The Bruce Trail Conservancy | PO Box 857 Hamilton, ON L8N 3N9 | 1.800.665.4453 | [email protected] Identification: Usually a tall plant (up to 152 cm tall) in the Composite family with showy clusters of yellow, graceful flowers in a plumelike form. Leaves: Leaves are alternate along the stem and lance shaped with sharp teeth around the edge. They are hairless on the upper surface, and hairy beneath especially on the veins. Leaves are described as being 3-nerved, meaning the midrib and 2 parallel lateral veins are prominent. Basal leaves form but fall off early leaving only stem leaves that are all nearly the same size. Leaves lack stalks, so bases attach directly to The Bruce Trail Conservancy | PO Box 857 Hamilton, ON L8N 3N9 | 1.800.665.4453 | [email protected] the stem. -
Please Note: This Is Not a Guarantee That the Listed Plants Will Be Available at the Time That You Are Shopping
UNC Charlotte Botanical Gardens - Fall Plant Sale 2020 (Please note: this is not a guarantee that the listed plants will be available at the time that you are shopping. There may be additional unlisted plants available at the time of the plant sale as well! Inventory changes quickly as plants are purchased. For the best selection, become a Member!) SIZE NATIVE PERENNIALS 1 Quart Achillea millefolium 'Little Moonshine' 1 Quart Achillea millefolium 'Moonshine' 1 Quart Achillea millefolium 'Terra Cotta' 1 Quart Agastache 'Arizona Mix' 1 Quart Agastache 'Morello' 3 Gallon Agave americana 1 Quart Allium cernuum 1 Quart Amsonia hubrectii 1 Quart Aquilegia canadensis 1 Quart Asarum canadensis 1 Quart Asclepias incarnata 1 Quart Asclepias syriaca 1 Quart Asclepias tuberosa 1Quart Asclepias verticillata 1 Quart Aster carolinianus syn. Ampleaster carolinianus 1 Quart Aster cordifolius 'Avondale' syn. Symphyotrichum cordifolium 'Avondale' 1 Quart Aster cordifolius syn. Symphyotrichum cordifolium 1 Gallon Aster divaricatus syn. Eurybia divaricata 1 Quart Aster divaricatus syn. Eurybia divaricata 1 Quart Aster divaricatus 'Eastern Star' syn. Eurybia divaricata 'Eastern Star' 1 Gallon Aster elliottii syn. Symphyotrichum elliotii 1 Quart Aster ericoides 'Snow Flurry' syn. Symphyotrichum ericoides 'Snow Flurry' 1 Quart Aster lateriflorus 'Lady in Black' syn. Symphyotrichum lateriflorus 'Lady in Black' 1 Quart Aster oblongifolium 'October Skies' syn. Syphyotrichum oblongifolium 'October Skies' 1 Gallon Baptisia 'American Goldfinch' 1 Quart Baptisia australis -
The Solidago Lepida Complex (Asteraceae: Astereae)
Semple, J.C., H. Faheemuddin, M. Sorour, and Y.A. Chong. 2017. A multivariate study of Solidago subsect. Triplinerviae in western North America: The Solidago lepida complex (Asteraceae: Astereae). Phytoneuron 2017-47: 1–43. Published 18 July 2017. ISSN 2153 733X A MULTIVARIATE STUDY OF SOLIDAGO SUBSECT. TRIPLINERVIVAE IN WESTERN NORTH AMERICA: THE SOLIDAGO LEPIDA COMPLEX (ASTERACEAE: ASTEREAE) JOHN C. SEMPLE , HARIS FAHEEMUDDIN , MARIAN K. SOROUR , AND Y. ALEX CHONG Department of Biology University of Waterloo Waterloo, Ontario Canada N2L 3G1 [email protected] ABSTRACT Solidago subsect. Triplinerviae includes four species native to western North America: S. altissima, S. elongata , S. gigantea, and S. lepida . All of these except S. gigantea have been included at one time or another within S. canadensis . While rather similar among themselves, each species is distinguished by different sets of indument, leaf, and inflorescence traits. A series of multivariate morphometric analyses were performed on 244 specimens to discover additional technical traits useful in separating the species and to elucidate problems with identification in a group of species complicated by multiple ploidy levels and considerable infraspecific variation. Statistical support for recognizing S. gigantea var. shinnersii and S. lepida var. salebrosa was generated in comparisons of the varieties with the typical variety in each species. Solidago subsect. Triplinerviae (Torrey & A. Gray) Nesom (Asteraceae: Astereae) includes 17 species native North and South America (Semple 2017 frequently updated). Semple and Cook (2006) recognized 11 species with infraspecific taxa in several species occurring in Canada and the USA: S. altiplanities Taylor & Taylor, S. altissima L., S. canadensis L., S. elongata Nutt., S. -
Floristic Quality Assessment Report
FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al. -
A Comparative Study of Cultivated Asters Richard G
Plant Evaluation Notes ISSUE 36, 2013 A Comparative Study of Cultivated Asters Richard G. Hawke, Plant Evaluation Manager Jessie Vining Stevens Symphyotrichum oblongifolium ‘Raydon’s Favorite’ utumn is the time of asters. In days one of the largest and most evolutionarily sion, white. The ray florets surround the clus- suffused with the brilliant tones of specialized of plant families. The familial re- ter of disk florets; the number of rays varies senescing leaves, asters finally show semblance is evident among aster relatives from a few to hundreds in some double-flow- their true colors in gardens, both cultivated such as dahlias (Dahlia spp.), coneflowers ered cultivars. Each ray floret has one long, and natural, along roadsides, and in native (Echinacea spp.), sunflowers (Helianthus narrow ligule that is distinctly petallike in ap- places. Like clockwork, their starry flowers in spp.), Shasta daisies (Leucanthemum spp.), pearance, and acts much like the petal of a rich hues of blue, purple, pink, or white burst and zinnias (Zinnia spp.). Recently, changes in typical flower to attract pollinators to the forth to mark the change of seasons. A ubiq- the generic names of North American species plant. Ray florets come in varying shades of uitous nature often saddles asters with the from Aster to less melodious names such as pink, red, lavender, blue, violet, purple, and reputation of looking too wild, but their natu- Doellingeria, Eurybia, and Symphyotrichum white; the rays rather than the disks describe ral beauty and garden merit cannot be over- have complicated matters for gardeners. The the overall flower color. Another attribute of looked. -
Relative Ranking of Ornamental Flower Plants to Foraging Honey Bees (With Notes on Favorability to Bumble Bees)
Relative Ranking of Ornamental Flower Plants to Foraging Honey Bees (With Notes on Favorability to Bumble Bees) Whitney Cranshaw Colorado State University Observations were made during the 2007-2009 growing seasons on the relative attractiveness of various flowering ornamental plants to honey bees (Apis mellifera). This information was collected so that honey bee favorability - or lack of favorability - may be considered in plant selection. The study was conducted by repeated visits to public garden plantings in Larimer, Denver, Adams, and Cheyenne counties. Gardens were chosen that had large mass plantings of numerous flowering plants so that comparisons could be made and included the Denver Botanic Garden, gardens at Colorado State University (PERC, Flower Demonstration Planting), Welby Gardens, and Cheyenne Botanic Garden. These sites also were chosen because plantings had identification labeling. Plantings were visited between 2 and 12 times between mid-June and mid-September. Evaluations were made by examining plants that were in flower for the presence of honey bees. A planting was then given a relative ranking based on honey bee numbers. A 0-3 scale was used: 3 - Heavily visited by foraging honey bees 2 - Moderately visited by honey bees and foraged 1 - Honey bees seen occasionally visiting flowers 0 - Honey bees do not forage at these flowers Data were collected from a total of 319 different plant entries durig this study. Variation in rankings between dates did occur; where this occurred from multiple ratings the final ranking was rounded up to a whole number. Numerous other bees and other insects were commonly seen on many plants. -
Goldenrod Is There a More Maligned Plant Than Goldenrod? It’S Blamed for Causing Hay Fever When the Culprit Is Really Ragweed
Notable Natives Goldenrod Is there a more maligned plant than goldenrod? It’s blamed for causing hay fever when the culprit is really ragweed. (Insect- pollinated goldenrod has heavy, sticky pollen that adheres to bees and butterflies while ragweed pollen is wind-borne and flies through the air to bedevil your nostrils.) Goldenrod is sneeringly derided as a mere roadside weed — which is occasionally true. However, gardeners, home owners, lovers of flowers and bees and butterflies and all things environmentally Stiff goldenrod at Flint Creek Savanna. Photo by Diane Bodkin. healthy, take note. Many of our native goldenrods Solidago, sp. are for you! see it along the road, one of these two species is the culprit. Two species give goldenrod its bad name; they are tall and These are very fine plants as part of a mature prairie or a Canada goldenrod Solidago altissima and S. canadensis. high-quality restoration. They offer the same ecosystem When you see massed fields of tall, spindly goldenrod or you services as the other goldenrods, providing pollen and nectar for pollinators and habitat for other insects, birds, and small creatures. The galls on goldenrod stems are evidence that goldenrod gall fly larvae are making a home inside. Chickadees and downy woodpeckers open the galls and eat the larvae. These plant species become problematic in backyards and prairie gardens because there is little competition either above or below ground to keep them in check. Such rhizomatous species often become invasive. They spread rampantly when outside their proper ecosystems. Don’t let these two species get started in your yard, or you will regret it! Now think about all the wonderful goldenrod species you can plant and enjoy. -
So Go Ahead and Plant, Or Encourage, Goldenrod. It May Even Outcompete That Nasty Ragweed!
By Sue Gwise, Horticulture Educator As a native species, goldenrods (Solidago spp.) are powerhouses when it comes to supporting native insects. The blooms provide an enormous amount of pollen and nectar late in the season (August – October) when there aren’t many other options. Many goldenrod species become quite tall, providing a backdrop that gives gardens a natural feel. For these reasons, we love to recommend goldenrods. But we often get a flat-out dismissal of the whole Solidago genus when we say “this is a good species to plant.” Reading this, you may even be thinking, “why would anyone intentionally plant these allergy triggering plants”? STOP right there – it is a common misconception that goldenrod causes late summer hay fever! Goldenrods are insect pollinated, which means that they don’t spew irritating pollen into the air. How did goldenrod get its undeserved reputation? The problem is that the allergy friendly goldenrod blooms at the same time as the evil, allergy-producing plant, ragweed. Goldenrod blooms are showy, yellow sprays of flowers. Ragweed is a boring green weed with green flowers that blends in with everything else. We blame the plant that is most Ragweed plant conspicuous. Ragweed is wind pollinated and, therefore, it produces copious amounts of lightweight pollen which floats easily through the air and up our noses. Goldenrod pollen is heavy and sticky – it is designed to be carried by insects, not the wind. One ragweed plant can produce 1 billion pollen grains, and there is never just one plant in a given location. The ability of ragweed to grow on almost any site and the fact that seeds can remain viable in the soil for up to 80 years, cause the plant to be very prolific.