MONARCH NECTAR PLANTS Northeast
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
And Belowground Insect Herbivory Mediates Invasion Dynamics and Impact of an Exotic Plant
plants Article Release from Above- and Belowground Insect Herbivory Mediates Invasion Dynamics and Impact of an Exotic Plant Lotte Korell 1,2,3,4,* , Martin Schädler 3,4, Roland Brandl 5, Susanne Schreiter 6 and Harald Auge 3,4 1 Plant Ecology and Geobotany, Department of Ecology, University of Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany 2 Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany 3 Department of Community Ecology, Helmholtz-Centre for Environmental Research -UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; [email protected] (M.S.); [email protected] (H.A.) 4 German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany 5 Animal Ecology, Department of Ecology, University of Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany; [email protected] 6 Department of Soil System Science, Helmholtz-Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; [email protected] * Correspondence: [email protected] Received: 28 October 2019; Accepted: 21 November 2019; Published: 26 November 2019 Abstract: The enemy-release hypothesis is one of the most popular but also most discussed hypotheses to explain invasion success. However, there is a lack of explicit, experimental tests of predictions of the enemy-release hypothesis (ERH), particularly regarding the effects of above- and belowground herbivory. Long-term studies investigating the relative effect of herbivores on invasive vs. native plant species within a community are still lacking. Here, we report on a long-term field experiment in an old-field community, invaded by Solidago canadensis s. -
Review of the National Ambient Air Quality Standards for Ozone
Review of the National Ambient Air Quality Standards for Ozone: Policy Assessment of Scientific and Technical Information Appendices to OAQPS Staff Paper EPA-452/R-07-003 January 2007 Review of the National Ambient Air Quality Standards for Ozone: Policy Assessment of Scientific and Technical Information Appendices to OAQPS Staff Paper U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park, North Carolina APPENDICES APPENDIX 2A. PLOTS OF DIURNAL POLICY RELEVANT BACKGROUND OZONE PATTERNS FOR 12 URBAN AREAS BASED ON RUNS OF THE GEOS- CHEM MODEL FOR APRIL-OCTOBER 2001 ..................................................................... 2A-1 APPENDIX 3A. MECHANISMS OF TOXICITY ................................................................. 3A-1 APPENDIX 3B. TABLE OF KEY EPIDEMIOLOGICAL STUDIES................................... 3B-1 APPENDIX 3C. TABLE OF KEY CONTROLLED HUMAN EXPOSURE STUDIES....... 3C-1 APPENDIX 4A: EXPOSURE TABLES................................................................................. 4A-1 APPENDIX 5A.1: OZONE AIR QUALITY INFORMATION FOR 12 URBAN AREAS... 5A-1 APPENDIX 5A.2: SCATTER PLOTS.................................................................................. 5A-10 APPENDIX 5B1: TABLES OF STUDY-SPECIFIC INFORMATION................................. 5B-1 APPENDIX 5B2: CONCENTRATION-RESPONSE FUNCTIONS AND HEALTH IMPACT FUNCTIONS............................................................................................................ 5B-8 APPENDIX 5B3: -
Canada Goldenrod (Solidago Canadensis) - Fields of Gold
Canada Goldenrod (Solidago canadensis) - Fields of Gold Did you Know? Canada Goldenrod... is considered an invasive species in Europe. is often blamed for causing hayfever because they flower during allergy season. However, the true culprits are ragweeds. Goldenrods do not cause allergies. ofter carry ball-like growths called galls which contain the larvae of a moth. If you dig one out, try popping it in your mouth, they are said to taste like popcorn. Habitat: Clearings and edges of forests, meadows and fields, roadsides and ditches, disturbed areas Blooms: Between July and November with flowers sometimes even lasting into December. Range: One of the commonest species found throughout the United States except Florida and all of Canada except areas in the extreme north. Status: S5 - Secure (what does this S-rank mean?) Also Known As: Common Goldenrod, Rock Goldenrod The Bruce Trail Conservancy | PO Box 857 Hamilton, ON L8N 3N9 | 1.800.665.4453 | [email protected] Identification: Usually a tall plant (up to 152 cm tall) in the Composite family with showy clusters of yellow, graceful flowers in a plumelike form. Leaves: Leaves are alternate along the stem and lance shaped with sharp teeth around the edge. They are hairless on the upper surface, and hairy beneath especially on the veins. Leaves are described as being 3-nerved, meaning the midrib and 2 parallel lateral veins are prominent. Basal leaves form but fall off early leaving only stem leaves that are all nearly the same size. Leaves lack stalks, so bases attach directly to The Bruce Trail Conservancy | PO Box 857 Hamilton, ON L8N 3N9 | 1.800.665.4453 | [email protected] the stem. -
Please Note: This Is Not a Guarantee That the Listed Plants Will Be Available at the Time That You Are Shopping
UNC Charlotte Botanical Gardens - Fall Plant Sale 2020 (Please note: this is not a guarantee that the listed plants will be available at the time that you are shopping. There may be additional unlisted plants available at the time of the plant sale as well! Inventory changes quickly as plants are purchased. For the best selection, become a Member!) SIZE NATIVE PERENNIALS 1 Quart Achillea millefolium 'Little Moonshine' 1 Quart Achillea millefolium 'Moonshine' 1 Quart Achillea millefolium 'Terra Cotta' 1 Quart Agastache 'Arizona Mix' 1 Quart Agastache 'Morello' 3 Gallon Agave americana 1 Quart Allium cernuum 1 Quart Amsonia hubrectii 1 Quart Aquilegia canadensis 1 Quart Asarum canadensis 1 Quart Asclepias incarnata 1 Quart Asclepias syriaca 1 Quart Asclepias tuberosa 1Quart Asclepias verticillata 1 Quart Aster carolinianus syn. Ampleaster carolinianus 1 Quart Aster cordifolius 'Avondale' syn. Symphyotrichum cordifolium 'Avondale' 1 Quart Aster cordifolius syn. Symphyotrichum cordifolium 1 Gallon Aster divaricatus syn. Eurybia divaricata 1 Quart Aster divaricatus syn. Eurybia divaricata 1 Quart Aster divaricatus 'Eastern Star' syn. Eurybia divaricata 'Eastern Star' 1 Gallon Aster elliottii syn. Symphyotrichum elliotii 1 Quart Aster ericoides 'Snow Flurry' syn. Symphyotrichum ericoides 'Snow Flurry' 1 Quart Aster lateriflorus 'Lady in Black' syn. Symphyotrichum lateriflorus 'Lady in Black' 1 Quart Aster oblongifolium 'October Skies' syn. Syphyotrichum oblongifolium 'October Skies' 1 Gallon Baptisia 'American Goldfinch' 1 Quart Baptisia australis -
Title Geographic Variations in Phenotypic Traits of the Exotic Herb Solidago Altissima and Abundance of Recent Established Exoti
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Geographic variations in phenotypic traits of the exotic herb Title Solidago altissima and abundance of recent established exotic herbivorous insects Author(s) Sakata, Yuzu; Ohgushi, Takayuki; Isagi, Yuji Citation Journal of Plant Interactions (2013), 8(3): 216-218 Issue Date 2013-04-10 URL http://hdl.handle.net/2433/193002 The Version of Record of this manuscript has been published Right and is available in Journal of Plant Interactions (2013) http://www.tandfonline.com/10.1080/17429145.2013.779036. Type Journal Article Textversion author Kyoto University 1 Geographic variations in phenotypic traits of the exotic herb Solidago altissima 2 and abundance of recent established exotic herbivorous insects 3 Author: Yuzu Sakataa, Takayuki Ohgushib, Yuji Isagia 4 Address: a Laboratory of Forest Biology, Division of Forest and Biomaterials Science, 5 Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan 6 b Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan 7 Author for correspondence: [email protected] 8 Tel: +81 075-753-6129 9 Fax: +81 075-753-6129 10 11 12 13 14 Abstract 15 Many invasive plants increase aggressiveness after introduction. Since 16 evolutionary forces such as herbivore pressure may change over different time scales, 17 understanding the changes in biotic interactions in invasive plants through time can 18 clarify the mechanism of their evolution in aggressiveness. In this study we examined 19 the geographic variation in phenotypic traits of Solidago altissima and the abundance of 20 two exotic herbivorous insect species (the aphid, Uroleucon nigrotuberculatum and the 21 lacebug, Corythucha marmorata), which are recently expanding their habitat on S. -
Floristic Quality Assessment Report
FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al. -
A Comparative Study of Cultivated Asters Richard G
Plant Evaluation Notes ISSUE 36, 2013 A Comparative Study of Cultivated Asters Richard G. Hawke, Plant Evaluation Manager Jessie Vining Stevens Symphyotrichum oblongifolium ‘Raydon’s Favorite’ utumn is the time of asters. In days one of the largest and most evolutionarily sion, white. The ray florets surround the clus- suffused with the brilliant tones of specialized of plant families. The familial re- ter of disk florets; the number of rays varies senescing leaves, asters finally show semblance is evident among aster relatives from a few to hundreds in some double-flow- their true colors in gardens, both cultivated such as dahlias (Dahlia spp.), coneflowers ered cultivars. Each ray floret has one long, and natural, along roadsides, and in native (Echinacea spp.), sunflowers (Helianthus narrow ligule that is distinctly petallike in ap- places. Like clockwork, their starry flowers in spp.), Shasta daisies (Leucanthemum spp.), pearance, and acts much like the petal of a rich hues of blue, purple, pink, or white burst and zinnias (Zinnia spp.). Recently, changes in typical flower to attract pollinators to the forth to mark the change of seasons. A ubiq- the generic names of North American species plant. Ray florets come in varying shades of uitous nature often saddles asters with the from Aster to less melodious names such as pink, red, lavender, blue, violet, purple, and reputation of looking too wild, but their natu- Doellingeria, Eurybia, and Symphyotrichum white; the rays rather than the disks describe ral beauty and garden merit cannot be over- have complicated matters for gardeners. The the overall flower color. Another attribute of looked. -
Relative Ranking of Ornamental Flower Plants to Foraging Honey Bees (With Notes on Favorability to Bumble Bees)
Relative Ranking of Ornamental Flower Plants to Foraging Honey Bees (With Notes on Favorability to Bumble Bees) Whitney Cranshaw Colorado State University Observations were made during the 2007-2009 growing seasons on the relative attractiveness of various flowering ornamental plants to honey bees (Apis mellifera). This information was collected so that honey bee favorability - or lack of favorability - may be considered in plant selection. The study was conducted by repeated visits to public garden plantings in Larimer, Denver, Adams, and Cheyenne counties. Gardens were chosen that had large mass plantings of numerous flowering plants so that comparisons could be made and included the Denver Botanic Garden, gardens at Colorado State University (PERC, Flower Demonstration Planting), Welby Gardens, and Cheyenne Botanic Garden. These sites also were chosen because plantings had identification labeling. Plantings were visited between 2 and 12 times between mid-June and mid-September. Evaluations were made by examining plants that were in flower for the presence of honey bees. A planting was then given a relative ranking based on honey bee numbers. A 0-3 scale was used: 3 - Heavily visited by foraging honey bees 2 - Moderately visited by honey bees and foraged 1 - Honey bees seen occasionally visiting flowers 0 - Honey bees do not forage at these flowers Data were collected from a total of 319 different plant entries durig this study. Variation in rankings between dates did occur; where this occurred from multiple ratings the final ranking was rounded up to a whole number. Numerous other bees and other insects were commonly seen on many plants. -
Goldenrod Is There a More Maligned Plant Than Goldenrod? It’S Blamed for Causing Hay Fever When the Culprit Is Really Ragweed
Notable Natives Goldenrod Is there a more maligned plant than goldenrod? It’s blamed for causing hay fever when the culprit is really ragweed. (Insect- pollinated goldenrod has heavy, sticky pollen that adheres to bees and butterflies while ragweed pollen is wind-borne and flies through the air to bedevil your nostrils.) Goldenrod is sneeringly derided as a mere roadside weed — which is occasionally true. However, gardeners, home owners, lovers of flowers and bees and butterflies and all things environmentally Stiff goldenrod at Flint Creek Savanna. Photo by Diane Bodkin. healthy, take note. Many of our native goldenrods Solidago, sp. are for you! see it along the road, one of these two species is the culprit. Two species give goldenrod its bad name; they are tall and These are very fine plants as part of a mature prairie or a Canada goldenrod Solidago altissima and S. canadensis. high-quality restoration. They offer the same ecosystem When you see massed fields of tall, spindly goldenrod or you services as the other goldenrods, providing pollen and nectar for pollinators and habitat for other insects, birds, and small creatures. The galls on goldenrod stems are evidence that goldenrod gall fly larvae are making a home inside. Chickadees and downy woodpeckers open the galls and eat the larvae. These plant species become problematic in backyards and prairie gardens because there is little competition either above or below ground to keep them in check. Such rhizomatous species often become invasive. They spread rampantly when outside their proper ecosystems. Don’t let these two species get started in your yard, or you will regret it! Now think about all the wonderful goldenrod species you can plant and enjoy. -
So Go Ahead and Plant, Or Encourage, Goldenrod. It May Even Outcompete That Nasty Ragweed!
By Sue Gwise, Horticulture Educator As a native species, goldenrods (Solidago spp.) are powerhouses when it comes to supporting native insects. The blooms provide an enormous amount of pollen and nectar late in the season (August – October) when there aren’t many other options. Many goldenrod species become quite tall, providing a backdrop that gives gardens a natural feel. For these reasons, we love to recommend goldenrods. But we often get a flat-out dismissal of the whole Solidago genus when we say “this is a good species to plant.” Reading this, you may even be thinking, “why would anyone intentionally plant these allergy triggering plants”? STOP right there – it is a common misconception that goldenrod causes late summer hay fever! Goldenrods are insect pollinated, which means that they don’t spew irritating pollen into the air. How did goldenrod get its undeserved reputation? The problem is that the allergy friendly goldenrod blooms at the same time as the evil, allergy-producing plant, ragweed. Goldenrod blooms are showy, yellow sprays of flowers. Ragweed is a boring green weed with green flowers that blends in with everything else. We blame the plant that is most Ragweed plant conspicuous. Ragweed is wind pollinated and, therefore, it produces copious amounts of lightweight pollen which floats easily through the air and up our noses. Goldenrod pollen is heavy and sticky – it is designed to be carried by insects, not the wind. One ragweed plant can produce 1 billion pollen grains, and there is never just one plant in a given location. The ability of ragweed to grow on almost any site and the fact that seeds can remain viable in the soil for up to 80 years, cause the plant to be very prolific. -
Pityopsis) Graminifolia (Asteraceae: Astereae
Semple, J.C. and F. Jabbour. 2019. Type specimens of Inula (Pityopsis) graminifolia (Asteraceae: Astereae). Phytoneuron 2019-22. 1-9. Published 25 April 2019. ISSN 2153 733X TYPE SPECIMENS OF INULA (PITYOPSIS) GRAMINIFOLIA (ASTERACEAE: ASTEREAE) JOHN C. SEMPLE Department of Biology, University of Waterloo Waterloo, Ontario Canada N2L 3G1 [email protected] and FLORIAN JABBOUR Institut de Systématique, Évolution, Biodiversité (ISYEB) Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, 75005 Paris, France ABSTRACT Recent proposed changes to the nomenclature of the goldenaster genus Pityopsis disagreed significantly on the application of the name Inula graminifolia, the basionym of Pityopsis graminifolia. In order to clarify the problem, the three known collections of Inula graminifolia in the Herbarium of the Muséum national d’Histoire naturelle, Paris (P) collected by André Michaux were examined. The holotype collection has small heads with many stipitate glands on the distal portion of the phyllaries and obvious long hairs on the peduncles. This is also the case for the isotype collection. A third collection by Michaux is mixed with a shoot with larger heads and shoots with smaller heads and all with phyllaries with few or no stipitate glands. Thus, the third specimen is not part of the same taxon as the holotype and isotype. The Pityopsis graminifolia (Michx.) Nutt. complex includes goldenasters native to the southeastern USA, southern Mexico, Guatemala, Belize, western Honduras, and the Bahamas. The complex includes either a single species with multiple varieties (Semple & Bowers 1985; Semple 2006) or the complex might be divided into multiple species with more narrowly defined morphological and ecological limits. -
Native Plants and Why It Matters
Module 14: Native Plants and Why They Matter LSU AgCenter Home Gardening Certificate Course Dr. Joe Willis, Dr. Paula Barton-Willis, Anna Timmerman & Chris Dunaway What is a Native Plant? So many answers! Iris fulva Copper Louisiana Iris A native plant is… Coreopsis tinctoria Plains Coreopsis One that exists in a given region through non-human introduction, directly or indirectly. (Lady Bird Johnson Wildflower Center) Cephalanthus occidentalis Buttonbush A plant that lives or grows naturally in a particular region without direct or indirect human intervention. (USDA National Arboretum) Saurunus cernuus Lizard’s Tail With respect to a particular ecosystem, a species that, other than as a result of an introduction, historically occurred, or currently occurs, in that ecosystem. (US Fish and Wildlife Service) Magnolia grandiflora Southern Magnolia Why Do Native Plants Belong in Our Gardens? Solidago sempervirens Seaside Goldenrod 1. Gain a new appreciation of American flora, which is rich, diverse, and beautiful. “Sense of Place” and “Belonging” in a garden. Salvia coccinea Scarlet Sage 2. Create “mini ecosystems” within habitat that has been developed over time. Hydrangea quercifolia Oakleaf Hydrangea 3. Native plants are best suited to local conditions and adapt to challenges related to weather and soil conditions. Chamaecrista fasticulata Partridge Pea 4. Foster diversity within a garden landscape. Aquilegia chrysantha var. hinckleyana Hinckley’s Columbine 5. Connect to local ecological history and indigenous traditions. Eyrthrina herbacea Coralbean aka Mamou 6. Support pollinators and other beneficial insect species. Native plants are a “better” choice for meeting insect food/habitat needs. “Specialist” species are unable to switch host plants as easy as “Generalist” feeders.