Please Note: This Is Not a Guarantee That the Listed Plants Will Be Available at the Time That You Are Shopping
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Camellia Sinensis • Use: Almost Everyone Drinks Tea Without Really
Camellia sinensis Use: Almost everyone drinks tea without really thinking about it, not re- alizing that the leaves themselves are actually from a well known garden plant, the Camellia. Camellia sinensis var sinensis originates from China where it naturally grows on moist mountain slopes in fertile acidic soils. Yes you can harvest the leaves to make a refreshing cup of tea. These plants were grown using organic practices. Exposure: Prefers sheltered site, part sunny or medium shade, and any well drained neutral/acid soil. Extreme summer heat may cause leaf burn; needs some shade if planted near a white house due to reflection of sun. Growth: Moderate growing to 8-10’ tall and 6-8’ wide. Can be kept as short as 4-5’ tall for easy harvesting. Hardiness: Zone 7-10; Shrub Foliage: Evergreen, glossy. You can make both green tea or black tea the dif- ference is in how you dry the leaves. Green tea is dried right after harvesting, while black tea is crushed and allowed to oxidize. What's most exciting about those leaves, is that you can pick them and make your own tea. Flower: It blooms in late fall and winter, white flowers illuminating the sleepy You'll have a great conversation–starter with winter landscape. You can even surprise your dinner guests with fresh floral visitors, and the coolest homemade present. tablescapes. Prune only right after blooms fade if you want flowers every year. . -
Taming the Wild Stewartia©
1 Boland-Tim-2019B-Taming-Stewartia Taming the Wild Stewartia© Timothy M. Boland and Todd J. Rounsaville Polly Hill Arboretum, 809 State Road, West Tisbury, Massachusetts 02575, USA [email protected] Keywords: Asexual propagation, native trees, plant collections, seeds, Stewartia SUMMARY The Polly Hill Arboretum (PHA) began working with native stewartia in 1967. Our founder, Polly Hill, was devoted to growing trees from seed. In 2006, the Polly Hill Arboretum was recognized as the Nationally Accredited Collection holder for stewartia. This status has guided our collection development, particularly on focused seed expeditions, which began in 2007. The PHA has been successful growing both species from seed, however, overwintering survival and transplanting of juvenile plants has proved more challenging. New insights into winter storage of seedlings is beginning to shed light on this problem. Experimentation with overwintering rooted cuttings has revealed that plants have preferred temperature and chilling requirements. These new overwintering protocols have thus far yielded positive results. Recent work with tissue culture has also shown promising results with both species. Future work includes grafting superior clones of our native stewartia onto Asiatic species in an effort to overcome the problematic issues of overwintering, transplantability, and better resistance to soil borne pathogens. Our Plant Collections Network (PCN) development plan outlines our next phase work with stewartia over the upcoming several years. The results of this work will be shared in future years as we continue to bring these exceptional small flowering trees into commercial production. 2 INTRODUCTION The commitment to building Polly Hill Arboretum’s (PHA) stewartia collection is based on our founder Polly Hill’s history with the genus and our own desire to encourage the cultivation of these superb small-flowering trees in home gardens. -
Camellia Debaoensis (Theaceae), a New Species of Yellow Camellia from Limestone Karsts in Southwestern China
A peer-reviewed open-access journal PhytoKeysCamellia 135: 49–58 debaoensis (2019) (Theaceae), a new species of yellow camellia from limestone karsts... 49 doi: 10.3897/phytokeys.135.38756 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Camellia debaoensis (Theaceae), a new species of yellow camellia from limestone karsts in southwestern China Renchuan Hu1, Sujuan Wei2, Yongqing Liufu3, Yunkai Nong1, Wei Fang4 1 Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, Guangxi 530022, China 2 Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin, Guangxi 541006, China 3 Guangxi Museum of Natural History, Nanning, Guangxi 530012, China 4 Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China Corresponding author: Yongqing Liufu ([email protected]) Academic editor: C. Morden | Received 8 August 2019 | Accepted 1 October 2019 | Published 28 November 2019 Citation: Hu R, Wei S, Liufu Y, Nong Y, Fang W (2019) Camellia debaoensis (Theaceae), a new species of yellow camellia from limestone karsts in southwestern China. PhytoKeys 135: 49–58. https://doi.org/10.3897/phytokeys.135.38756 Abstract Camellia debaoensis R.C.Hu & Y.Q.Liufu, sp. nov. is described and illustrated as a new species from southwestern Guangxi, China. It is morphologically similar to Camellia pubipetala Y. Wan & S. Z. Huang, C. mingii S.X. Yang and C. tuyenquangensis D.V. Luong, N.N.H. Le & N. Tran, but it differs from these species in having glabrous young branches, glabrous petiole, glabrous sepals, glabrous petals, glabrous stamens and glabrous ovary, 10 petals, cylindrical ovary and style 3-lobed to 1/6 style length. -
Page MACLURA POMIFERA
MACLURA POMIFERA (RAF.) SCHNEID.: A NEW HOST RECORD FOR BACTROCERA TRYONI (FROGGATT) (DIPTERA: TEPHRITIDAE) and DELIA PLATURA (MEIGEN) (DIPTERA: ANTHOMYIIDAE) Olivia L. Reynolds1, T. Osborne2 and A. Finlay3 1 Graham Centre for Agricultural Innovation (New South Wales Department of Industry and Charles Sturt University), Private Bag 4008, Narellan, NSW 2567, Australia. 2 New South Wales Department of Industry, Private Bag 4008, Narellan, NSW 2567, Australia. 3 Pikes Creek Orchard, 3895 Texas Rd, Stanthorpe Qld 4380, Australia. Summary Three dipteran flies, Bactrocera tryoni (Froggatt), Delia platura (Meigen) and an unidentified species, family Muscidae, have been reared from fruit collected from Osage orange, Maclura pomifera (Raf.) Schneid. in Stanthorpe, Queensland, Australia. This is the first record of B. tryoni and D. platura recorded in M. pomifera fruit and has management implications for this tree species, particularly in and surrounding horticultural production areas. Keywords: Queensland fruit fly, Seedcorn maggot, biosecurity, Osage orange, horticulture, pupae, adult flies INTRODUCTION also attacks other species such as cabbage, cucumber, The Queensland fruit fly, Bactrocera tryoni green beans, melon, turnips, lettuce, onion, seed (Froggatt) (Diptera: Tephritidae) is Australia’s most potatoes and other cruciferous vegetables (Kessing significant biosecurity threat to horticulture, infesting and Mau 1991). It is often considered a secondary nearly all commercial fruit crops (White and Elson- pest as it is associated with plants that have been Harris 1992) and fruiting vegetables (Hancock et al. damaged by insects or disease (Brooks 1951). Delia 2000). This polyphagous pest has been recorded on platura is a native of Europe but now occurs on all over 240 host species from 48 families (Hancock et continents except Antarctica (Griffiths 1991). -
Canada Goldenrod (Solidago Canadensis) - Fields of Gold
Canada Goldenrod (Solidago canadensis) - Fields of Gold Did you Know? Canada Goldenrod... is considered an invasive species in Europe. is often blamed for causing hayfever because they flower during allergy season. However, the true culprits are ragweeds. Goldenrods do not cause allergies. ofter carry ball-like growths called galls which contain the larvae of a moth. If you dig one out, try popping it in your mouth, they are said to taste like popcorn. Habitat: Clearings and edges of forests, meadows and fields, roadsides and ditches, disturbed areas Blooms: Between July and November with flowers sometimes even lasting into December. Range: One of the commonest species found throughout the United States except Florida and all of Canada except areas in the extreme north. Status: S5 - Secure (what does this S-rank mean?) Also Known As: Common Goldenrod, Rock Goldenrod The Bruce Trail Conservancy | PO Box 857 Hamilton, ON L8N 3N9 | 1.800.665.4453 | [email protected] Identification: Usually a tall plant (up to 152 cm tall) in the Composite family with showy clusters of yellow, graceful flowers in a plumelike form. Leaves: Leaves are alternate along the stem and lance shaped with sharp teeth around the edge. They are hairless on the upper surface, and hairy beneath especially on the veins. Leaves are described as being 3-nerved, meaning the midrib and 2 parallel lateral veins are prominent. Basal leaves form but fall off early leaving only stem leaves that are all nearly the same size. Leaves lack stalks, so bases attach directly to The Bruce Trail Conservancy | PO Box 857 Hamilton, ON L8N 3N9 | 1.800.665.4453 | [email protected] the stem. -
PC22 Doc. 22.1 Annex (In English Only / Únicamente En Inglés / Seulement En Anglais)
Original language: English PC22 Doc. 22.1 Annex (in English only / únicamente en inglés / seulement en anglais) Quick scan of Orchidaceae species in European commerce as components of cosmetic, food and medicinal products Prepared by Josef A. Brinckmann Sebastopol, California, 95472 USA Commissioned by Federal Food Safety and Veterinary Office FSVO CITES Management Authorithy of Switzerland and Lichtenstein 2014 PC22 Doc 22.1 – p. 1 Contents Abbreviations and Acronyms ........................................................................................................................ 7 Executive Summary ...................................................................................................................................... 8 Information about the Databases Used ...................................................................................................... 11 1. Anoectochilus formosanus .................................................................................................................. 13 1.1. Countries of origin ................................................................................................................. 13 1.2. Commercially traded forms ................................................................................................... 13 1.2.1. Anoectochilus Formosanus Cell Culture Extract (CosIng) ............................................ 13 1.2.2. Anoectochilus Formosanus Extract (CosIng) ................................................................ 13 1.3. Selected finished -
The Orchid Flora of the Colombian Department of Valle Del Cauca Revista Mexicana De Biodiversidad, Vol
Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Kolanowska, Marta The orchid flora of the Colombian Department of Valle del Cauca Revista Mexicana de Biodiversidad, vol. 85, núm. 2, 2014, pp. 445-462 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42531364003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 85: 445-462, 2014 Revista Mexicana de Biodiversidad 85: 445-462, 2014 DOI: 10.7550/rmb.32511 DOI: 10.7550/rmb.32511445 The orchid flora of the Colombian Department of Valle del Cauca La orquideoflora del departamento colombiano de Valle del Cauca Marta Kolanowska Department of Plant Taxonomy and Nature Conservation, University of Gdańsk. Wita Stwosza 59, 80-308 Gdańsk, Poland. [email protected] Abstract. The floristic, geographical and ecological analysis of the orchid flora of the department of Valle del Cauca are presented. The study area is located in the southwestern Colombia and it covers about 22 140 km2 of land across 4 physiographic units. All analysis are based on the fieldwork and on the revision of the herbarium material. A list of 572 orchid species occurring in the department of Valle del Cauca is presented. Two species, Arundina graminifolia and Vanilla planifolia, are non-native elements of the studied orchid flora. The greatest species diversity is observed in the montane regions of the study area, especially in wet montane forest. -
Page 1 of 19 the Origins of Camellia X Williamsii at Caerhays the History
The Origins of Camellia x williamsii at Caerhays The history of the camellia in UK horticulture is a rather peculiar story. Camellias enjoyed rising popularity in the 1840s but, largely, only in the grandest country houses with large conservatories as at Chatsworth, Chiswick and Sheffield Park. The perception was that camellias were delicate, tender, plants suitable only for growing under the protection of glass. This was very probably because early forms of Camellia japonica from Japan were being imported from much warmer Mediterranean climates in Spain, Portugal and Italy where, again, they were being grown in the courtyards and walled gardens of wealthy nobility and landowners. The situation in Cornwall in the latter half of the 19th Century was different. Ships’ captains operating out of Falmouth were commissioned to bring back new plants from overseas by Cornish landowners and industrialists. One of the earliest examples of a collection of Camellia japonica varieties can still be found today in decline and over maturity in the walled garden at Scorrier House near Redruth. Here they still grow up against sheltering high stone walls. Tregothnan Estate near Truro also has one of the very earliest collections of Camellia japonica dating from the 1820s. It would appear that the plants which you still see today in good order were actually moved (and cut back) to their current location in the arboretum in about 1923. So camellias were far from being unknown in English gardens, but they had not exactly become popular or widely grown. One has to remember that in its pure specie form Camellia japonica has small, often sparse, and fairly unexciting single red flowers. -
(Silky Camellia, Virginia Stewartia) Size/Shape
Stewartia malacodendron (Silky Camellia, Virginia Stewartia) The Silky camellia is a reference to its flower texture, which is very silky and resembles those of the related camellias. A thriving silky camellia can make an extraordinary garden feature in a landscape. Landscape Information Pronounciation: stew-ART-ee-uh mah-lah-koh- DEN-dron Plant Type: Shrub Origin: Southern United States Heat Zones: 6, 7, 8, 9 Hardiness Zones: 7, 8, 9 Uses: Specimen, Border Plant Size/Shape Growth Rate: Moderate Tree Shape: Upright Canopy Texture: Medium Height at Maturity: 3 to 5 m, 5 to 8 m Spread at Maturity: 1.5 to 3 meters, 3 to 5 meters Plant Image Time to Ultimate Height: 10 to 20 Years Stewartia malacodendron (Silky Camellia, Virginia Stewartia) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Venation: Pinnate Leaf Persistance: Deciduous Leaf Type: Simple Leaf Blade: 5 - 10 cm Leaf Shape: Ovate Leaf Margins: Entire Leaf Textures: Smooth Leaf Scent: No Fragance Color(growing season): Green Color(changing season): Green, Orange, Red, Flower Image Purple Flower Flower Showiness: True Flower Size Range: 3 - 7 Flower Type: Solitary Flower Scent: No Fragance Flower Color: Purple, White Seasons: Spring, Summer Trunk Number of Trunks: Multi-Trunked Trunk Esthetic Values: Showy, Smooth Fruit Fruit Showiness: False Fruit Colors: Brown Seasons: Spring, Summer Stewartia malacodendron (Silky Camellia, Virginia Stewartia) Horticulture Management Tolerance Frost Tolerant: Yes Heat Tolerant: No Drought Tolerant: No Salt Tolerance: Poor Requirements Soil Requirements: Loam, Sand Soil Ph Requirements: Acidic, Neutral Water Requirements: Moderate Light Requirements: Part, Shade Management Toxity: No Leaf Image Invasive Potential: No Susceptibility to Pests and Diseases: No Pruning Requirement: Needed, to develop a strong structure Fruit/ Leaves/ Flowers litter: No Edible Parts: None Plant Propagations: Seed, Cutting. -
CW Final Tree List 12-29-16
List of Trees at Cheekwood - for Arboretum Certification Level 4 - 122 species Cheekwood Botanical Garden Tree Common Name Acer buergerianum Trident Maple Acer griseum Paperbark Maple Acer henryi Henry's Maple Acer palmatum Japanese Maple Acer pensylvanicum Striped Maple Acer rubrum October Glory® Red Maple Acer saccharum Sugar Maple Acer tataricum subsp. ginnala Amur Maple Acer triflorum Three-flower Maple Acer truncatum Purpleblow Maple Aesculus parviflora Bottlebrush Buckeye Aesculus pavia Red Buckeye Amelanchier canadensis Shadblow Serviceberry Amelanchier laevis Allegheny Serviceberry Asimina triloba Common Pawpaw Betula nigra River Birch Carpinus betulus European Hornbeam Carya ovata Shagbark Hickory Cedrus atlantica 'Glauca Pendula' Weeping Blue Atlas Cedar Cedrus deodara Himalayan Cedar Celtis laevigata Sugar Hackberry Celtis occidentalis Common Hackberry Cercidiphyllum japonicum Katsuratree Cercis canadensis Eastern Redbud Chamaecyparis nootkatensis 'Glauca Pendula' Nootka Falsecypress Chamaecyparis obtusa Hinoki Falsecypress Chamaecyparis thyoides 'Red Star' Atlantic Whitecedar Chionanthus retusus Chinese Fringetree Chionanthus virginicus White Fringetree Cladrastis kentukea American Yellowwood Cornus alternifolia Pagoda Dogwood Cornus controversa Giant Dogwood Cornus asperifolia var. drummondii Roughleaf Dogwood Cornus elliptica Evergreen Dogwood Cornus florida Flowering Dogwood Cornus kousa var. chinenesis Chinese Dogwood Cornus mas Corneliancherry Dogwood Cornus nuttallii Pacific Dogwood Cornus officinalis Japanese Cornel -
A Comparative Study of Cultivated Asters Richard G
Plant Evaluation Notes ISSUE 36, 2013 A Comparative Study of Cultivated Asters Richard G. Hawke, Plant Evaluation Manager Jessie Vining Stevens Symphyotrichum oblongifolium ‘Raydon’s Favorite’ utumn is the time of asters. In days one of the largest and most evolutionarily sion, white. The ray florets surround the clus- suffused with the brilliant tones of specialized of plant families. The familial re- ter of disk florets; the number of rays varies senescing leaves, asters finally show semblance is evident among aster relatives from a few to hundreds in some double-flow- their true colors in gardens, both cultivated such as dahlias (Dahlia spp.), coneflowers ered cultivars. Each ray floret has one long, and natural, along roadsides, and in native (Echinacea spp.), sunflowers (Helianthus narrow ligule that is distinctly petallike in ap- places. Like clockwork, their starry flowers in spp.), Shasta daisies (Leucanthemum spp.), pearance, and acts much like the petal of a rich hues of blue, purple, pink, or white burst and zinnias (Zinnia spp.). Recently, changes in typical flower to attract pollinators to the forth to mark the change of seasons. A ubiq- the generic names of North American species plant. Ray florets come in varying shades of uitous nature often saddles asters with the from Aster to less melodious names such as pink, red, lavender, blue, violet, purple, and reputation of looking too wild, but their natu- Doellingeria, Eurybia, and Symphyotrichum white; the rays rather than the disks describe ral beauty and garden merit cannot be over- have complicated matters for gardeners. The the overall flower color. Another attribute of looked. -
Relative Ranking of Ornamental Flower Plants to Foraging Honey Bees (With Notes on Favorability to Bumble Bees)
Relative Ranking of Ornamental Flower Plants to Foraging Honey Bees (With Notes on Favorability to Bumble Bees) Whitney Cranshaw Colorado State University Observations were made during the 2007-2009 growing seasons on the relative attractiveness of various flowering ornamental plants to honey bees (Apis mellifera). This information was collected so that honey bee favorability - or lack of favorability - may be considered in plant selection. The study was conducted by repeated visits to public garden plantings in Larimer, Denver, Adams, and Cheyenne counties. Gardens were chosen that had large mass plantings of numerous flowering plants so that comparisons could be made and included the Denver Botanic Garden, gardens at Colorado State University (PERC, Flower Demonstration Planting), Welby Gardens, and Cheyenne Botanic Garden. These sites also were chosen because plantings had identification labeling. Plantings were visited between 2 and 12 times between mid-June and mid-September. Evaluations were made by examining plants that were in flower for the presence of honey bees. A planting was then given a relative ranking based on honey bee numbers. A 0-3 scale was used: 3 - Heavily visited by foraging honey bees 2 - Moderately visited by honey bees and foraged 1 - Honey bees seen occasionally visiting flowers 0 - Honey bees do not forage at these flowers Data were collected from a total of 319 different plant entries durig this study. Variation in rankings between dates did occur; where this occurred from multiple ratings the final ranking was rounded up to a whole number. Numerous other bees and other insects were commonly seen on many plants.