SGI™ 2100 Owner's Guide

Total Page:16

File Type:pdf, Size:1020Kb

SGI™ 2100 Owner's Guide SGI™ 2100 Owner’s Guide Document Number 007-4114-001 CONTRIBUTORS Written by M. Schwenden, Bruce Miles, and Kameran Kashani Illustrated by Dan Young and Cheri Brown Production by Amy Swenson Engineering contributions by Brad Morrow, Ed Reidenbach, Philip Montalban, Jim Ammon, Joan Roy, Sameer Gupta, and Dean Olson. St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica. © 1999, Silicon Graphics, Inc.— All Rights Reserved The contents of this document may not be copied or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc. RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is SGI, 1600 Amphitheatre Pkwy., Mountain View, CA 94043-1351. Silicon Graphics, the Silicon Graphics logo, CHALLENGE, IRIS, IRIX, and Onyx are registered trademarks, and Origin, Origin2000, Origin Vault, SGI, and XIO are trademarks, of Silicon Graphics, Inc. R10000 is a trademark of MIPS Technologies, Inc. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd. VME is a trademark of Motorola. SGI™ 2100 Owner’s Guide Document Number 007-4114-001 Contents List of Figures vii List of Tables ix About This Guide xi Finding Additional Information xii Online Reference (Manual) Pages xiv Release Notes xiv World Wide Web-Accessible Documentation xv Conventions xv Compliance Information xvi 1. Introducing the SGI 2100 1 System Features 1 SGI 2100 Functional Overview 3 Linked Microprocessors 3 ccNUMA Architecture and Memory 3 The Node Boards 4 The I/O Subsystem 6 About the XIO Boards 6 The System Midplane 7 Module System Controller 7 Internal Drives 7 System Location and Environment 7 2. Chassis Tour 9 SGI 2100 System Physical Description 9 Components and Controls on the Front of the System 12 iii Contents Components and Controls on the Rear of the System 15 Power Connector and Switch 15 System Node Board Locations 17 Node Board LEDs 17 The System Midplane 18 System Configuration Guidelines 21 Node and Router Board Combinations 21 Maximum Number of CPUs 21 Node and XIO Board Combinations 21 XIO Board Slots 25 The BaseIO Panel 27 3. Getting Started 29 System Operation Guidelines 30 Operating Voltages 30 Safety Precautions 31 Sliding Open the Front Door Panel 31 Removing the System’s Plastic Covers 32 System Drives 36 Connecting to an Ethernet 38 Powering On the SGI 2100 System 39 Powering Off the SGI 2100 System 41 4. SGI 2100 Interface and Cabling Information 43 The Ethernet Interface Connection 44 Standard Serial Ports 46 The Standard SCSI Connector 48 5. Installing and Replacing Customer Replaceable Units 51 Installing or Removing the System Disk and Optional Hard Drives 51 Removing or Inserting a Data Disk 54 Replacing the Module System Controller or CD-ROM Drive 56 Installing External Drives 58 6. Using the Module System Controller 59 The MSC Front Panel 60 iv Contents Understanding the MSC’s LEDs and Switches 64 MSC Features and Functions 65 MSC Status Messages 67 7. Basic Troubleshooting 69 General Guidelines 69 Operating Guidelines 70 Power Supply Problems 71 The Amber (Yellow) LED 72 The Green LED 72 The Red LED 72 Crash Recovery 73 Rebooting the System 73 Restoring System Software 73 Restoring From Backup Tapes 74 Restoring a Filesystem From the System Maintenance Menu 74 Recovery After System Corruption 76 MSC Shutdown 77 Fixing the MSC Shutdown 77 Hardware Graph and hinv Commands 78 Hardware Graph Information 78 hinv Information 79 Index 85 v List of Figures Figure i Information Sources for the SGI 2100 System xiii Figure ii VCCI Information xvii Figure iii Regulatory Insignia xvii Figure 1-1 The SGI 2100 Server 2 Figure 1-2 Node Board Example 5 Figure 2-1 SGI 2100 System Components 11 Figure 2-2 Opening the Front of the SGI 2100 System 12 Figure 2-3 CD-ROM and Module System Controller 13 Figure 2-4 The System Disk and Optional Drive Bays 14 Figure 2-5 Component and Control Locations on the Back 16 Figure 2-6 Node Board LEDs 18 Figure 2-7 The SGI 2100 Midplane (Front View) 19 Figure 2-8 SGI 2100 Midplane (Rear View) 20 Figure 2-9 SGI 2100 Router and Node Board Configurations 23 Figure 2-10 Node and XIO Board Functional Configurations 24 Figure 2-11 XIO Board Slots 26 Figure 2-12 BaseIO Panel Connections and Indicators 27 Figure 3-1 Opening and Closing the Sliding Front Panel 32 Figure 3-2 Removing the Front Plastic Panel 34 Figure 3-3 Removing the Top Plastic Panel 35 Figure 3-4 SGI 2100 Internal Drive Bays 37 Figure 3-5 MSC Keyswitch and Front-Panel Controls 40 Figure 3-6 System Power Cable and Switch 42 Figure 4-1 Standard Ethernet on the SGI 2100 45 Figure 4-2 Serial Port Location and Pinouts 47 Figure 4-3 68-Pin Single-Ended SCSI Connector 50 Figure 5-1 Installing or Removing the System Disk 53 vii List of Figures Figure 5-2 Removing a Data Disk Drive Module 55 Figure 5-3 Installing or Replacing the MSC or CD-ROM Drive 57 Figure 5-4 External Origin Drive Expansion Box 58 Figure 6-1 MSC Interface Location 60 Figure 6-2 MSC Status Panel and Switches 61 Figure 6-3 MSC Front Diagnostic Port Pinouts 62 Figure 6-4 MSC Rear Diagnostic Serial Connector 63 viii List of Tables Table 1-1 Air Clearance Requirements for the SGI 2100 System 8 Table 2-1 SGI 2100 System Physical Specifications 10 Table 2-2 Functional Configuration Overview 22 Table 2-3 BaseIO Connectors 28 Table 4-1 Ethernet 100-BASE T Ethernet Port Pin Assignments 44 Table 4-2 68-Pin Single-Ended, High-Density SCSI Pinouts 48 Table 6-1 MSC Messages 67 ix About This Guide This guide is designed to help you learn to use, manage, troubleshoot, and upgrade your SGI 2100 server and is organized as follows: Chapter 1, “Introducing the SGI 2100,” describes the system and its capabilities and contrasts them with other server technology. A brief overview of the system’s compute and interface capabilities is provided. Chapter 2, “Chassis Tour,” describes all of the system components and reviews all of the controls, indicators, and connectors. Chapter 3, “Getting Started,” reviews hardware-specific operating procedures. The chapter covers booting the system, graceful shutdown, and proper use of optional console terminals. Chapter 4, “SGI 2100 Interface and Cabling Information,” covers the use of Ethernet, serial, and external SCSI interfaces. The chapter also describes optional types of connections that make the system operational. Chapter 5, “Installing and Replacing Customer Replaceable Units,” describes installation and replacement procedures for disk, CD-ROM, and System Controller assemblies. Includes basic information on external peripherals. Chapter 6, “Using the Module System Controller,” describes the basic System Controller and interface panel used with the SGI 2100 server. Chapter 7, “Basic Troubleshooting,” offers information on tracking down and fixing simple problems. Start at the beginning to familiarize yourself with the features of your new system, or proceed directly to the information you need using the table of contents as your guide. xi About This Guide Additional software-specific information is found in the following software guides: • Personal System Administration Guide • IRIX Admin: System Configuration and Operation • IRIX Admin: Software Installation and Licensing Finding Additional Information This SGI 2100 Owner’s Guide covers many basic and useful topics that are necessary for setting up, operating, and maintaining your system. Refer to it whenever you need help with the basic hardware aspects of your system. The system and the procedures in this guide are designed to help you maintain the system without the help of a trained technician. However, do not feel that you must work with the hardware yourself. You can always contact your maintenance provider to have an authorized service provider work with the hardware instead. Figure i and the following sections describe multiple, additional sources of information that you may find helpful or vital to your work with the SGI 2100. xii About This Guide Hard Copy Optional IRIX 6.X Systems IRIX Admin Manual Set (also available online) Computer Systems Computer Systems Owner's Guide Computer Systems Computer Systems Computer Systems Computer Systems Computer Systems SGI 2100 Owner's Guide 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 01 11 1 0 0 1 0 1 011 0 1 0 0 1 0 1 011 0 1 0 0 1 0 1 0 Online MAN (1) MAN (1) NAME man - print entries from the on-line reference manuals: find manual entries by keyword SYNOPSYS man [-cdwWtpr] [-M path] [-T macropackage] [section] title ... man [-M path -k keyword ... man [-M path -f filename DISCRIPTION man locates and prints the titled entries from the on-line reference manuals.
Recommended publications
  • Mipspro C++ Programmer's Guide
    MIPSproTM C++ Programmer’s Guide 007–0704–150 CONTRIBUTORS Rewritten in 2002 by Jean Wilson with engineering support from John Wilkinson and editing support from Susan Wilkening. COPYRIGHT Copyright © 1995, 1999, 2002 - 2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Silicon Graphics, SGI, the SGI logo, IRIX, O2, Octane, and Origin are registered trademarks and OpenMP and ProDev are trademarks of Silicon Graphics, Inc. in the United States and/or other countries worldwide. MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, R2000, R3000, R4000, R4400, R4600, R5000, and R8000 are registered or unregistered trademarks and MIPSpro, R10000, R12000, R1400 are trademarks of MIPS Technologies, Inc., used under license by Silicon Graphics, Inc. Portions of this publication may have been derived from the OpenMP Language Application Program Interface Specification.
    [Show full text]
  • Microprocessors History of Computing Nouf Assaid
    MICROPROCESSORS HISTORY OF COMPUTING NOUF ASSAID 1 Table of Contents Introduction 2 Brief History 2 Microprocessors 7 Instruction Set Architectures 8 Von Neumann Machine 9 Microprocessor Design 12 Superscalar 13 RISC 16 CISC 20 VLIW 23 Multiprocessor 24 Future Trends in Microprocessor Design 25 2 Introduction If we take a look around us, we would be sure to find a device that uses a microprocessor in some form or the other. Microprocessors have become a part of our daily lives and it would be difficult to imagine life without them today. From digital wrist watches, to pocket calculators, from microwaves, to cars, toys, security systems, navigation, to credit cards, microprocessors are ubiquitous. All this has been made possible by remarkable developments in semiconductor technology enabling in the last 30 years, enabling the implementation of ideas that were previously beyond the average computer architect’s grasp. In this paper, we discuss the various microprocessor technologies, starting with a brief history of computing. This is followed by an in-depth look at processor architecture, design philosophies, current design trends, RISC processors and CISC processors. Finally we discuss trends and directions in microprocessor design. Brief Historical Overview Mechanical Computers A French engineer by the name of Blaise Pascal built the first working mechanical computer. This device was made completely from gears and was operated using hand cranks. This machine was capable of simple addition and subtraction, but a few years later, a German mathematician by the name of Leibniz made a similar machine that could multiply and divide as well. After about 150 years, a mathematician at Cambridge, Charles Babbage made his Difference Engine.
    [Show full text]
  • MIPS IV Instruction Set
    MIPS IV Instruction Set Revision 3.2 September, 1995 Charles Price MIPS Technologies, Inc. All Right Reserved RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and / or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor / manufacturer is MIPS Technologies, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. R2000, R3000, R6000, R4000, R4400, R4200, R8000, R4300 and R10000 are trademarks of MIPS Technologies, Inc. MIPS and R3000 are registered trademarks of MIPS Technologies, Inc. The information in this document is preliminary and subject to change without notice. MIPS Technologies, Inc. (MTI) reserves the right to change any portion of the product described herein to improve function or design. MTI does not assume liability arising out of the application or use of any product or circuit described herein. Information on MIPS products is available electronically: (a) Through the World Wide Web. Point your WWW client to: http://www.mips.com (b) Through ftp from the internet site “sgigate.sgi.com”. Login as “ftp” or “anonymous” and then cd to the directory “pub/doc”. (c) Through an automated FAX service: Inside the USA toll free: (800) 446-6477 (800-IGO-MIPS) Outside the USA: (415) 688-4321 (call from a FAX machine) MIPS Technologies, Inc.
    [Show full text]
  • On the Efficacy of Source Code Optimizations for Cache-Based Systems
    On the efficacy of source code optimizations for cache-based systems Rob F. Van der Wijngaart, MRJ Technology Solutions, NASA Ames Research Center, Moffett Field, CA 94035 William C. Saphir, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Abstract. Obtaining high performance without machine-specific tuning is an important goal of scientific application programmers. Since most scientific processing is done on commodity microprocessors with hierarchical memory systems, this goal of "portable performance" can be achieved if a common set of optimization principles is effective for all such systems. It is widely believed, or at least hoped, that portable performance can be realized. The rule of thumb for optimization on hierarchical memory systems is to maximize tem- poral and spatial locality of memory references by reusing data. and minimizing memory access stride. We investigate the effects of a number of optimizations on the performance of three related kernels taken from a computational fluid dynamics application. Timing the kernels on a range of processors, we observe an inconsistent and often counterintuitive im- pact of the optimizations on performance. In particular, code variations that have a positive impact on one architecture can have a negative impact on another, and variations expected to be unimportant can produce large effects. Moreover, we find that cache miss rates--as reported by a cache simulation tool, and con- firmed by hardware counters--only partially explain the results. By contrast, the compiler- generated assembly code provides more insight by revealing the importance of processor- specific instructions and of compiler maturity, both of which strongly, and sometimes unex- pectedly, influence performance.
    [Show full text]
  • C++ Programmer's Guide
    C++ Programmer’s Guide Document Number 007–0704–130 St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica. Copyright © 1995, 1999 Silicon Graphics, Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of Silicon Graphics, Inc. LIMITED AND RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR 52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy., Mountain View, CA 94043-1351. Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice, SSD, SUPERCLUSTER, UNICOS, X-MP EA, and UNICOS/mk are federally registered trademarks and Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90, CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS, Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY SV1, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP, CRAY XMS, CRAY-2, CSIM, CVT, Delivering the power . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS, ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE, SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, and UNICOS MAX are trademarks of Cray Research, Inc., a wholly owned subsidiary of Silicon Graphics, Inc.
    [Show full text]
  • Design of the RISC-V Instruction Set Architecture
    Design of the RISC-V Instruction Set Architecture Andrew Waterman Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2016-1 http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html January 3, 2016 Copyright © 2016, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Design of the RISC-V Instruction Set Architecture by Andrew Shell Waterman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David Patterson, Chair Professor Krste Asanovi´c Associate Professor Per-Olof Persson Spring 2016 Design of the RISC-V Instruction Set Architecture Copyright 2016 by Andrew Shell Waterman 1 Abstract Design of the RISC-V Instruction Set Architecture by Andrew Shell Waterman Doctor of Philosophy in Computer Science University of California, Berkeley Professor David Patterson, Chair The hardware-software interface, embodied in the instruction set architecture (ISA), is arguably the most important interface in a computer system. Yet, in contrast to nearly all other interfaces in a modern computer system, all commercially popular ISAs are proprietary.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • Sony's Emotionally Charged Chip
    VOLUME 13, NUMBER 5 APRIL 19, 1999 MICROPROCESSOR REPORT THE INSIDERS’ GUIDE TO MICROPROCESSOR HARDWARE Sony’s Emotionally Charged Chip Killer Floating-Point “Emotion Engine” To Power PlayStation 2000 by Keith Diefendorff rate of two million units per month, making it the most suc- cessful single product (in units) Sony has ever built. While Intel and the PC industry stumble around in Although SCE has cornered more than 60% of the search of some need for the processing power they already $6 billion game-console market, it was beginning to feel the have, Sony has been busy trying to figure out how to get more heat from Sega’s Dreamcast (see MPR 6/1/98, p. 8), which has of it—lots more. The company has apparently succeeded: at sold over a million units since its debut last November. With the recent International Solid-State Circuits Conference (see a 200-MHz Hitachi SH-4 and NEC’s PowerVR graphics chip, MPR 4/19/99, p. 20), Sony Computer Entertainment (SCE) Dreamcast delivers 3 to 10 times as many 3D polygons as and Toshiba described a multimedia processor that will be the PlayStation’s 34-MHz MIPS processor (see MPR 7/11/94, heart of the next-generation PlayStation, which—lacking an p. 9). To maintain king-of-the-mountain status, SCE had to official name—we refer to as PlayStation 2000, or PSX2. do something spectacular. And it has: the PSX2 will deliver Called the Emotion Engine (EE), the new chip upsets more than 10 times the polygon throughput of Dreamcast, the traditional notion of a game processor.
    [Show full text]
  • Single-Cycle Processors: Datapath & Control
    1 Single-Cycle Processors: Datapath & Control Arvind Computer Science & Artificial Intelligence Lab M.I.T. Based on the material prepared by Arvind and Krste Asanovic 6.823 L5- 2 Instruction Set Architecture (ISA) Arvind versus Implementation • ISA is the hardware/software interface – Defines set of programmer visible state – Defines instruction format (bit encoding) and instruction semantics –Examples:MIPS, x86, IBM 360, JVM • Many possible implementations of one ISA – 360 implementations: model 30 (c. 1964), z900 (c. 2001) –x86 implementations:8086 (c. 1978), 80186, 286, 386, 486, Pentium, Pentium Pro, Pentium-4 (c. 2000), AMD Athlon, Transmeta Crusoe, SoftPC – MIPS implementations: R2000, R4000, R10000, ... –JVM:HotSpot, PicoJava, ARM Jazelle, ... September 26, 2005 6.823 L5- 3 Arvind Processor Performance Time = Instructions Cycles Time Program Program * Instruction * Cycle – Instructions per program depends on source code, compiler technology, and ISA – Cycles per instructions (CPI) depends upon the ISA and the microarchitecture – Time per cycle depends upon the microarchitecture and the base technology Microarchitecture CPI cycle time Microcoded >1 short this lecture Single-cycle unpipelined 1 long Pipelined 1 short September 26, 2005 6.823 L5- 4 Arvind Microarchitecture: Implementation of an ISA Controller control status points lines Data path Structure: How components are connected. Static Behavior: How data moves between components Dynamic September 26, 2005 Hardware Elements • Combinational circuits OpSelect – Mux, Demux, Decoder, ALU, ... - Add, Sub, ... - And, Or, Xor, Not, ... Sel - GT, LT, EQ, Zero, ... Sel lg(n) lg(n) O O0 A A0 0 O O1 A O 1 A Result 1 . A . ALU Mux . lg(n) . Comp? Demux Decoder O B An-1 On n-1 1 • Synchronous state elements – Flipflop, Register, Register file, SRAM, DRAM D register Clk ..
    [Show full text]
  • An Illustration of the Benefits of the MIPS® R12000® Microprocessor
    An Illustration of the Benefits of the MIPS® R12000® Microprocessor and OCTANETM System Architecture Ian Williams White Paper An Illustration of the Benefits of the MIPS® R12000® Microprocessor and OCTANETM System Architecture Ian Williams Overview In comparison with other contemporary microprocessors, many running at significantly higher clock rates, the MIPS R10000® demonstrates competitive performance, particularly when coupled with the OCTANE system architecture, which fully exploits the microprocessor’s capabilities. As part of Silicon Graphics’ commitment to deliver industry-leading application performance through advanced technology, the OCTANE platform now incorporates both system architectural improvements and a new- generation MIPS microprocessor, R12000. This paper discusses the developments in the MIPS R12000 microprocessor design and describes the application performance improvements available from the combina- tion of the microprocessor itself and OCTANE system architecture updates. Table of Contents 1. Introduction—OCTANE in the Current Competitive Landscape Summarizes the performance of OCTANE relative to current key competitive systems and micropro- cessors, highlighting MIPS R10000 strengths and weaknesses. 2. Advantages of MIPS R10000 and MIPS R12000 Microprocessors 2. 1 Architectural Features of the MIPS R10000 Microprocessor Describes the MIPS R10000 microprocessor’s strengths in detail. 2.2 Architectural Improvements of the MIPS R12000 Microprocessor Discusses the developments in the MIPS R12000 microprocessor to improve performance. 3. OCTANE System Architecture Improvements Describes the changes made to the OCTANE system architecture to complement the MIPS R12000 microprocessor. 4. Benefits of MIPS R12000 and OCTANE Architectural Changes on Application Performance Through a real customer test, shows in detail how the features described in the two previous sections translate to application performance.
    [Show full text]
  • MIPS R5000 Microprocessor Technical Backgrounder
    MIPS R5000 Microprocessor Technical Backgrounder Performance: SPECint95 5.5 SPECfp95 5.5 Instruction Set MIPS-IV ISA Compatibility MIPS-I, MIPS-II, AND MIPS-III Pipeline Clock 200 MHz System Interface clock Up to 100 MHz Caches 32 kB I-cache and 32 kB D-cache, each 2-way set associative TLB 48 dual entries; Variable Page size (4 kB to 16 MB in 4x increments) Power dissipation: 10 watts (peak). at maximum operating frequency Supply voltage min. 3.0 Vtyp. 3.3 Vmax. 3.6 V Packaging: 272-pin cavity-down Ball Grid Array (BGA) 223-pin ceramic Pin Grid Array (PGA) Fabrication Technology: Vendor specific process including 0.35 micron Die Size: 80-90 mm2 (Vendor Dependent) Number of Transistors: 3.6 million (4 Transistor SRAM cell), 5.0 million (6 Transistor SRAM cell) (Of these totals, logic transistors number 800,000). mips 1 Open RISC Technology Overview This backgrounder introduces the R5000 microprocessor from MIPS Technologies, Inc. The information presented in this paper discusses new features in the R5000, i.e. how the R5000 differs from previous microprocessors from MIPS. This section provides general information on the R5000, including: • Introduction • The R5000 microprocessor • Packaging • Future upgrades • Block Diagram Introduction to RISC Reduced instruction-set computing (RISC) architectures differ from older complex instruction-set computing (CISC) architectures by streamlining instruction execution. The MIPS architecture, developed by MIPS Technologies, is firmly established as the leading RISC architecture today. On introduction, RISC microprocessors were used for high performance computing applications. Lately, these processors have found their way into the consumer electronics and embedded systems markets as well.
    [Show full text]
  • A Study of Out-Of-Order Completion for the MIPS R10K Superscalar Processor
    A Study of Out-of-Order Completion for the MIPS R10K Superscalar Processor Prabhat Mishra Nikil Dutt Alex Nicolau [email protected] [email protected] [email protected] Architectures and Compilers for Embedded Systems (ACES) Laboratory Center for Embedded Computer Systems University of California, Irvine, CA 92697-3425, USA http://www.cecs.uci.edu/˜aces Technical Report #01-06 Dept. of Information and Computer Science University of California, Irvine, CA 92697, USA January 2001 Abstract Instruction level parallelism (ILP) improves performance for VLIW, EPIC, and Superscalar pro- cessors. Out-of-order execution improves performance further. The advantage of out-of-order execution is not fully utilized due to in-order completion. In this report we study the performance loss due to in-order completion for MIPS R10000 processor. Contents 1 Introduction 3 2 MIPS R10000 Architecture 5 2.1RegisterFiles..................................... 5 2.2InstructionPipeline.................................. 5 2.3RegisterRenaming.................................. 7 2.4BranchPrediction................................... 7 2.5IntegerQueue..................................... 7 2.6Floating-pointQueue................................. 8 2.7AddressQueue.................................... 8 2.8MemoryHierarchy.................................. 9 3 Experiments 10 3.1ExperimentalSetup.................................. 10 3.2Results......................................... 11 4 Summary 11 5 Acknowledgments 13 List of Figures 1 R10000 Microprocessor Block Diagram
    [Show full text]