Preclinical Evidence for the Pharmacological Actions of Naringin: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Preclinical Evidence for the Pharmacological Actions of Naringin: a Review Reviews 437 Preclinical Evidence for the Pharmacological Actions of Naringin: A Review Authors Saurabh Bharti, Neha Rani, Bhaskar Krishnamurthy, Dharamvir Singh Arya Affiliation Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India Key words Abstract BDNF: brain-derived neurotrophic factor l" naringin ! BMP: bone morphogenetic protein l" flavonoid Naringin, chemically 4′,5,7- trihydroxyflavanone- DMBA: 7,12-dimethylbenz[a]anthracene l" antioxidant 7-rhamnoglucoside, is a major flavanone glyco- DNFB: 2,4-dinitrofluorobenzene l" anti‑inflammatory side obtained from tomatoes, grapefruits, and DPP: dipeptidyl peptidase l" atherosclerosis l" diabetes mellitus many other citrus fruits. It has been experimen- DSS: dextran sodium sulphate l" neurological disorders tally documented to possess numerous biological EGF: epidermal growth factor l" cardiovascular disorders properties such as antioxidant, anti-inflamma- eNOS: endothelial nitric oxide synthase l" hepatoprotection tory, and antiapoptotic activities. In vitro and in ER: estrogen receptor l" nephroprotection vivo studies have further established the useful- ERK: extracellular signal-regulated kinase l" bone diseases ness of naringin in various preclinical models of FRAP: ferric reducing antioxidant power l" gastrointestinal diseases atherosclerosis, cardiovascular disorders, diabetes GSK: glycogen synthase kinase l" metabolic syndrome l" dentistry mellitus, neurodegenerative disorders, osteopo- hDuox2: human dual oxidase 2 l" cancer rosis, and rheumatological disorders. Apart from HMG‑CoA: hydroxymethylglutaryl-coenzyme A l" allergy this, naringin has also exerted chemopreventive HUVECs: human umbilical vascular endothelial l" drug interaction and anticancer attributes in various models of cells l" pharmacokinetics oral, breast, colon, liver, lung, and ovarian cancer. IC: inhibitory concentration This wide spectrum of biological expediency has ICAM-1: intercellular adhesion molecule 1 been documented to be a result of either the up- IFN: interferon regulation of various cell survival proteins or the IKK: IκB kinase inhibition of inflammatory processes, or a combi- IL: interleukin nation of both. Due to the scarcity of human stud- iNOS: inducible nitric oxide synthase ies on naringin, this review focuses on the various IRS-1: insulin receptor substrate-1 received August 12, 2013 established activities of naringin in in vitro and in JNK: c-Jun N-terminal kinase revised February 10, 2014 vivo preclinical models, and its potential thera- Kir: inward rectifying potassium channel accepted March 10, 2014 peutic applications using the available knowledge LPS: lipopolysaccharides This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited. Bibliography in the literature. Additionally, it also encompasses MAPK: p38 mitogen-activated protein kinase DOI http://dx.doi.org/ the pharmacokinetic properties of naringin and MCP-1: monocyte chemotactic protein-1 10.1055/s-0034-1368351 its inhibition of CYP isoenzymes, and the subse- MDR: multidrug-resistance protein Published online Apil 7, 2014 quent drug interactions. Moreover, further clini- MIP-1α: macrophage inflammatory Planta Med 2014; 80: 437–451 cal research is evidently needed to provide signif- protein-1alpha © Georg Thieme Verlag KG Stuttgart · New York · icant insights into the mechanisms underlying MMP: matrix metalloproteinase ISSN 0032‑0943 the effects of naringin in humans. mTOR: mammalian target of rapamycin NF-κB: nuclear factor kappa-light-chain-en- Correspondence Dr. D. S. Arya, Professor hancer of activated B cells Department of Pharmacology Abbreviations NK: neurokinin All India Institute of Medical ! NNK: 4-(methylnitrosamino)-1-(3-pyridyl)- Sciences Ansari Nagar ABTS: 2,2-azinobis(3-ethylbenzothiazoline- 1-butanone New Delhi 110029 6-sulfonic acid) diammonium salt nNOS: neuronal nitric oxide synthase India Akt: protein kinase B Nrf2: nuclear factor-erythroid 2-related Phone: + 911126594266 Fax:+911126584121 AMPK: AMP-activated protein kinase factor-2 [email protected] AP: activator protein Bharti S et al. Preclinical Evidence for… Planta Med 2014; 80: 437–451 438 Reviews OATP: organic anion transporting polypeptide Sirt1: silent mating-type information regulation 2 PAF: platelet activating factor homolog-1 PARP: poly (ADP-ribose) polymerase sPLA2: secretory phospholipase A2 PGC1-α: peroxisome proliferator-activated receptor gamma STZ: streptozotocin coactivator SULT: sulfotransferases PGE2: prostaglandin E2 TBARS: thiobarbituric acid reactive substances PhIP: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine TNF-α: tumor necrosis factor-alpha PPAR: peroxisome proliferator-activated receptors VCAM-1: vascular cell adhesion molecule-1 RANKL: receptor activator of nuclear factor kappa-B ligand VEGF: vascular endothelial growth factor RANTES: regulated on activation, normal T cell expressed and secreted Introduction common dietary constituent would invariably be present in a lot ! of the dietary products consumed by humans. Thus, a human Naringin was first discovered by De Vry in the flowers of grape- being would be exposed to naringin intake in some form or an- fruit trees growing in Java in 1857, but he did not publish his other. Literature is replete with various researches and reviews findings at that time [1]. Extensive research on this “novel com- that focus on the numerous potential therapeutic effects of narin- pound” was conducted in the years to come by De Vry and Hoff- gin. In fact, a wide spectrum of beneficial effects has been attrib- man, and, subsequently, Will [2]. The name naringin is probably uted to naringin including cardiovascular, hypolipidemic, antia- derived from the Sanskrit term “narangiʼ meaning “orange” [2]. It therosclerotic, antidiabetic, neuroprotective, hepatoprotective, is present in citrus and grape fruits, beans, cherries, cocoa, orega- and anticancer activities [14,15]. These articles highlight the fact no, and tomatoes [3–8]. It is present in grapefruit juice up to con- that naringin possesses the potential to be employed as a thera- centrations of 800 mg/L [9]. The chemical structure of naringin peutic agent in a large number and variety of human ailments. At was first elucidated in 1928 by Asahina and Inubuse [10] and is the same time, the occurrence of adverse reactions with allo- depicted in l" Fig. 1. Naringin is a flavanone glycoside composed pathic medications might encourage physicians to explore safer of naringenin, an aglycone and neohesperidose attached to the alternatives in complementary medicine, thus prompting the de- hydroxyl group at C-7 and tastes bitter due to its glucose moiety velopment of naringin and related flavonoids for therapeutic [11]. Nevertheless, it can be converted to 1,3-diphenylpropan-1- purposes. one, a compound 300–1800 times sweeter than sugar with a Moreover, the knowledge of pharmacokinetic properties and po- menthol-like refreshing sweet taste when treated with potassi- tential interactions of naringin with other drugs would assume um hydroxide or another strong base [12]. Depending up on the paramount importance, as it would provide guidance for the maturity of the fruit and the method of purification, naringin nat- measures that should be taken and precautions to be followed urally occurs as a mixture of chiral isomers that markedly vary in during consumption of naringin, which would also simulta- proportion [13]. neously apply to patients taking other medications and concom- Naringin typically exemplifies the term “phytopharmaceutical”, itantly consuming dietary constituents rich in naringin. Unfortu- which commonly refers to products obtained from plants that nately, information on these parameters of naringin are limited are found to be useful in human disorders. Naringin being a very and scattered in the literature. Hence, this review aims at sum- Fig. 1 Naringin and its metabolism in humans. This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited. Bharti S et al. Preclinical Evidence for… Planta Med 2014; 80: 437–451 Reviews 439 marizing the experimental work performed to date on biological Distribution actions, mechanisms of action, pharmacokinetic data, and clini- Zou and colleagues have demonstrated that naringin and its me- cally relevant drug interactions of naringin. To the best of our tabolites, being highly lipophilic, are distributed to almost all the knowledge, this attempt is the first of its kind. body organs with the highest concentrations being observed in the stomach and the lowest in the brain due to reduced blood brain barrier permeability. Naringin is concentrated in the liver Search Methodology and bile by the processes of active transport [32,33]. ! Database searches using Google Scholar, Pubmed, and Science Di- Metabolism rect were conducted until 15th December 2013 to include up-to- Naringin undergoes extensive phase I and phase II metabolism in date documented information in the present review article. The the liver, as depicted in l" Fig. 1. Liu and colleagues have identi- search was limited to English language papers. For data mining, fied a total of 23 metabolites of naringin after oral administration the following MESH words were used in the databases men- to rats (42 mg/kg) and dogs (12.4 mg/kg). They identified 4-hy- tioned above: naringin allergies, naringin Alzheimerʼs, naringin droxyphenylpropionic acid (37% in dogs and 16% in rats) as a ma- anti-inflammatory, naringin antioxidant, naringin
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Rhamnosidase Activity of Selected Probiotics and Their Ability to Hydrolyse Flavonoid Rhamnoglucosides
    Bioprocess Biosyst Eng DOI 10.1007/s00449-017-1860-5 RESEARCH PAPER Rhamnosidase activity of selected probiotics and their ability to hydrolyse flavonoid rhamnoglucosides Monika Mueller1 · Barbara Zartl1 · Agnes Schleritzko1 · Margit Stenzl1 · Helmut Viernstein1 · Frank M. Unger1 Received: 12 October 2017 / Accepted: 24 October 2017 © The Author(s) 2017. This article is an open access publication Abstract Bioavailability of flavonoids is low, especially Introduction when occurring as rhamnoglucosides. Thus, the hydrolysis of rutin, hesperidin, naringin and a mixture of narcissin and As secondary plant metabolites with important contents in rutin (from Cyrtosperma johnstonii) by 14 selected probi- human diets [1, 2], flavonoids occur in a wide variety of otics was tested. All strains showed rhamnosidase activity compounds comprising six subclasses [3, 4]. Flavonols, the as shown using 4-nitrophenyl α-L-rhamnopyranoside as a most common flavonoids in foods include quercetin, its gly- substrate. Hesperidin was hydrolysed by 8–27% after 4 and coside rutin (quercetin-3-rutinoside), kaempferol, isorham- up to 80% after 10 days and narcissin to 14–56% after 4 and netin and its glycoside narcissin (isorhamnetin-3-rutinoside) 25–97% after 10 days. Rutin was hardly hydrolysed with a [5, 6]. Main sources of these compounds are onions and conversion rate ranging from 0 to 5% after 10 days. In the broccoli, but also red wine and tea. Flavanones with their presence of narcissin, the hydrolysis of rutin was increased important representatives naringenin (grapefruits) and hes- indicating that narcissin acts as an inducer. The rhamnosi- peretin (oranges), and their glycosides, are also found in dase activity as well as the ability to hydrolyse flavonoid other human foods such as tomatoes and aromatic plants [4].
    [Show full text]
  • Thesis of Potentially Sweet Dihydrochalcone Glycosides
    University of Bath PHD The synthesis of potentially sweet dihydrochalcone glycosides. Noble, Christopher Michael Award date: 1974 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 THE SYNTHESIS OF POTBTTIALLY SWEET DIHYDROCHALCOITB GLYCOSIDES submitted by CHRISTOPHER MICHAEL NOBLE for the degree of Doctor of Philosophy of the University of Bath. 1974 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author.This copy of the the­ sis has been supplied on condition that anyone who con­ sults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be pub­ lished without the prior written consent of the author.
    [Show full text]
  • Treatment Protocol Copyright © 2018 Kostoff Et Al
    Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al PREVENTION AND REVERSAL OF ALZHEIMER'S DISEASE: TREATMENT PROTOCOL by Ronald N. Kostoffa, Alan L. Porterb, Henry. A. Buchtelc (a) Research Affiliate, School of Public Policy, Georgia Institute of Technology, USA (b) Professor Emeritus, School of Public Policy, Georgia Institute of Technology, USA (c) Associate Professor, Department of Psychiatry, University of Michigan, USA KEYWORDS Alzheimer's Disease; Dementia; Text Mining; Literature-Based Discovery; Information Technology; Treatments Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al CITATION TO MONOGRAPH Kostoff RN, Porter AL, Buchtel HA. Prevention and reversal of Alzheimer's disease: treatment protocol. Georgia Institute of Technology. 2018. PDF. https://smartech.gatech.edu/handle/1853/59311 COPYRIGHT AND CREATIVE COMMONS LICENSE COPYRIGHT Copyright © 2018 by Ronald N. Kostoff, Alan L. Porter, Henry A. Buchtel Printed in the United States of America; First Printing, 2018 CREATIVE COMMONS LICENSE This work can be copied and redistributed in any medium or format provided that credit is given to the original author. For more details on the CC BY license, see: http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License<http://creativecommons.org/licenses/by/4.0/>. DISCLAIMERS The views in this monograph are solely those of the authors, and do not represent the views of the Georgia Institute of Technology or the University of Michigan. This monograph is not intended as a substitute for the medical advice of physicians. The reader should regularly consult a physician in matters relating to his/her health and particularly with respect to any symptoms that may require diagnosis or medical attention.
    [Show full text]
  • Bergamot) Juice Extracted from Three Different Cultivars Vincenzo Sicari*, Teresa Maria Pellicanò (Received December 14, 2015
    Journal of Applied Botany and Food Quality 89, 171 - 175 (2016), DOI:10.5073/JABFQ.2016.089.021 Department of Agraria, University “Mediterranea” of Reggio Calabria, Reggio Calabria (RC), Italy Phytochemical properties and antioxidant potential from Citrus bergamia, Risso (bergamot) juice extracted from three different cultivars Vincenzo Sicari*, Teresa Maria Pellicanò (Received December 14, 2015) Summary Bergamot presents a unique profile of flavonoids and flavonoid Secondary substances occurring in plant-derived products possess glycosides in its juice, such as neoeriocitrin, neohesperidin, naringin, biological activity and thus may protect human beings from various narirutin (SICARI et al., 2015). Diets rich in flavonoids reduce post- diseases. ischemic miocardiac damage in rats (FACINO et al., 1999), coronaric The following physical and nutritional properties of three bergamot damage and the incidence of heart attacks in elderly man (HERTOG cultivars (Castagnaro, Fantastico and Femminello) were determined et al., 1993). and compared: pH, titratable acidity, vitamin C, total flavonoids, The major causes of cell damage following oxidative stress are total polyphenols, antocianyn, bioactive molecules and antioxidant reactive oxygen species (ROS). Reactive oxygen species (ROS) are capacity (ABTS and DPPH assay). The comparison data, were found produced as a normal product of plant cellular metabolism. Various to be statistically different. environmental stresses lead to excessive production of ROS causing In all juice samples analyzed the highest antioxidant capacity was progressive oxidative damage and ultimately cell death (SASTRE found in Castagnaro juice (64.21% I of DPPH and 1.97% I of ABTS) et al., 2000). compared to Fantastico (44.48% I of DPPH and 1.83% I of ABTS) After ingestion as food the flavanone glycosides are metabolized and Femminello (33.39% I of DPPH and 1.13% I of ABTS).
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Glycosides in Lemon Fruit
    Food Sci. Technol. Int. Tokyo, 4 (1), 48-53, 1998 Characteristics of Antioxidative Flavonoid Glycosides in Lemon Fruit Yoshiaki MIYAKE,1 Kanefumi YAMAMOT0,1 Yasujiro MORIMITSU2 and Toshihiko OSAWA2 * Central Research Laboratory of Pokka Corporation, Ltd., 45-2 Kumanosyo, Shikatsu-cho, Nishikasugai-gun, Aichi 481, Japan 2Department of Applied Biological Sciences, Nagoya University, Nagoya 46401, Japan Received June 12, 1997; Accepted September 27, 1997 We investigated the antioxidative flavonoid glycosides in the peel extract of lemon fruit (Citrus limon). Six flavanon glycosides: eriocitrin, neoeriocitrin, narirutin, naringin, hesperidin, and neohesperidin, and three flavone glycosides: diosmin, 6~-di- C-p-glucosyldiosmin (DGD), and 6- C-p-glucosyldiosmin (GD) were identified by high- performance liquid chromatography (HPLC) analysis. Their antioxidative activity was examined using a linoleic acid autoxidation system. The antioxidative activity of eriocitrin, neoeriocitrin and DGD was stronger than that of the others. Flavonoid glycosides were present primarily in the peel of lemon fruit. There was only a small difference in the content of the flavonoid glycosides of the lemon fruit juice from various sources and varieties. Lemon fruit contained abundant amounts of eriocitrin and hesperidin and also contained narirutin, diosmin, and DGD, but GD, neoeriocitrin, naringin, and neohesperidin were present only in trace amounts. The content of DGD, GD, and eriocitrin was especially abundant in lemons and limes; however, they were scarcely found in other citrus fruits. The content of flavonoid compounds in lemon juice obtained by an in-line extractor at a juice factory was more abundant than that obtained by hand-squeezing. These compounds were found to be stable even under heat treatment conditions (121'C, 15 min) in acidic solution.
    [Show full text]
  • Important Flavonoids and Their Role As a Therapeutic Agent
    molecules Review Important Flavonoids and Their Role as a Therapeutic Agent Asad Ullah 1 , Sidra Munir 1 , Syed Lal Badshah 1,* , Noreen Khan 1, Lubna Ghani 2, Benjamin Gabriel Poulson 3 , Abdul-Hamid Emwas 4 and Mariusz Jaremko 3,* 1 Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; [email protected] (A.U.); [email protected] (S.M.); [email protected] (N.K.) 2 Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan; [email protected] 3 Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] 4 Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] * Correspondence: [email protected] (S.L.B.); [email protected] (M.J.) Received: 20 September 2020; Accepted: 1 November 2020; Published: 11 November 2020 Abstract: Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models.
    [Show full text]
  • Absorption and Pharmacokinetics of Grapefruit Flavanones in Beagles
    Downloaded from British Journal of Nutrition (2007), 98, 86–92 doi: 10.1017/S0007114507707262 q The Authors 2007 https://www.cambridge.org/core Absorption and pharmacokinetics of grapefruit flavanones in beagles Maria de Lourdes Mata-Bilbao1, Cristina Andre´s-Lacueva1, Elena Roura1, Olga Ja´uregui2, Elvira Escribano3, 4 1 Celina Torre and Rosa Maria Lamuela-Ravento´s * . IP address: 1Department of Nutrition and Food Science, CerTA, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, Barcelona, Spain 2 Scientific and Technical Services, University of Barcelona, Barcelona, Spain 170.106.35.229 3Biopharmaceutics and Pharmacokinetics Unit, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, Barcelona, Spain 4Affinity Pet-care, Barcelona, Spain , on (Received 25 August 2006 – Revised 8 January 2007 – Accepted 24 January 2007) 29 Sep 2021 at 02:36:36 The present study evaluated the pharmacokinetics of three different grapefruit flavanone forms in dog plasma and demonstrated their absorption after an oral intake of a grapefruit extract; pharmacokinetic parameters of these forms were also determined. Ten healthy beagles were adminis- tered 70 mg citrus flavonoids as a grapefruit extract contained in capsules, while two additional dogs were used as controls and given an excipient. The grapefruit flavanone naringin, along with its metabolites naringenin and naringenin glucuronide, was detected in dog plasma. Blood , subject to the Cambridge Core terms of use, available at samples were collected between 0 and 24 h after administration of the extract. Naringin reached its maximun plasma concentration at around 80 min, whereas naringenin and naringenin glucuronide reached their maximun plasma concentrations at around 20 and 30 min, respectively.
    [Show full text]
  • Cushnie TPT, Lamb AJ. Antimicrobial Activity of Flavonoids. International Journal of Antimicrobial Agents, 2005. 26(5):343-356
    Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 2005. 26(5):343-356. PMID: 16323269 DOI: 10.1016/j.ijantimicag.2005.09.002 The journal article above is freely available from the publishers at: http://www.idpublications.com/journals/PDFs/IJAA/ANTAGE_MostCited_1.pdf and also... http://www.ijaaonline.com/article/S0924-8579(05)00255-4/fulltext Errata for the article (typesetting errors by Elsevier Ireland) are freely available from the publishers at: http://www.ijaaonline.com/article/S0924-8579(05)00352-3/fulltext and also... http://www.sciencedirect.com/science/article/pii/S0924857905003523 International Journal of Antimicrobial Agents 26 (2005) 343–356 Review Antimicrobial activity of flavonoids T.P. Tim Cushnie, Andrew J. Lamb ∗ School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, UK Abstract Flavonoids are ubiquitous in photosynthesising cells and are commonly found in fruit, vegetables, nuts, seeds, stems, flowers, tea, wine, propolis and honey. For centuries, preparations containing these compounds as the principal physiologically active constituents have been used to treat human diseases. Increasingly, this class of natural products is becoming the subject of anti-infective research, and many groups have isolated and identified the structures of flavonoids possessing antifungal, antiviral and antibacterial activity. Moreover, several groups have demonstrated synergy between active flavonoids as well as between flavonoids and existing chemotherapeutics. Reports of activity in the field of antibacterial flavonoid research are widely conflicting, probably owing to inter- and intra-assay variation in susceptibility testing. However, several high-quality investigations have examined the relationship between flavonoid structure and antibacterial activity and these are in close agreement.
    [Show full text]
  • Antioxidant and Anti-Inflammatory Activity of Citrus Flavanones Mix
    antioxidants Article Antioxidant and Anti-Inflammatory Activity of Citrus Flavanones Mix and Its Stability after In Vitro Simulated Digestion Marcella Denaro †, Antonella Smeriglio *,† and Domenico Trombetta Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; [email protected] (M.D.); [email protected] (D.T.) * Correspondence: [email protected]; Tel.: +39-090-676-4039 † Both authors contributed equally. Abstract: Recently, several studies have highlighted the role of Citrus flavanones in counteracting oxidative stress and inflammatory response in bowel diseases. The aim of study was to identify the most promising Citrus flavanones by a preliminary antioxidant and anti-inflammatory screening by in vitro cell-free assays, and then to mix the most powerful ones in equimolar ratio in order to investigate a potential synergistic activity. The obtained flavanones mix (FM) was then subjected to in vitro simulated digestion to evaluate the availability of the parent compounds at the intestinal level. Finally, the anti-inflammatory activity was investigated on a Caco-2 cell-based model stimulated with interleukin (IL)-1β. FM showed stronger antioxidant and anti-inflammatory activity with respect to the single flavanones, demonstrating the occurrence of synergistic activity. The LC-DAD-ESI- MS/MS analysis of gastric and duodenal digested FM (DFM) showed that all compounds remained unchanged at the end of digestion. As proof, a superimposable behavior was observed between FM and DFM in the anti-inflammatory assay carried out on Caco-2 cells. Indeed, it was observed that both FM and DFM decreased the IL-6, IL-8, and nitric oxide (NO) release similarly to the reference Citation: Denaro, M.; Smeriglio, A.; anti-inflammatory drug dexamethasone.
    [Show full text]
  • A Standardized Extract Prepared from Red Orange and Lemon Wastes Blocks High-Fat Diet-Induced Hyperglycemia and Hyperlipidemia in Mice
    molecules Communication A Standardized Extract Prepared from Red Orange and Lemon Wastes Blocks High-Fat Diet-Induced Hyperglycemia and Hyperlipidemia in Mice Santina Chiechio 1,2,* , Magda Zammataro 1, Massimo Barresi 1, Margherita Amenta 3 , Gabriele Ballistreri 3 , Simona Fabroni 3 and Paolo Rapisarda 3 1 Section of Pharmacology, Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy; [email protected] (M.Z.); [email protected] (M.B.) 2 Oasi Research Institute IRCCS, 94018 Troina, Italy 3 Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, 95024 Acireale, Italy; [email protected] (M.A.); [email protected] (G.B.); [email protected] (S.F.); [email protected] (P.R.) * Correspondence: [email protected] Abstract: Citrus fruits are a rich source of high-value bioactive compounds and their consumption has been associated with beneficial effects on human health. Red (blood) oranges (Citrus sinensis L. Osbeck) are particularly rich in anthocyanins (95% of which are represented by cyanidin-3- glucoside and cyanidin-3-6”-malonyl-glucoside), flavanones (hesperidin, narirutin, and didymin), Citation: Chiechio, S.; Zammataro, and hydroxycinnamic acids (caffeic acid, coumaric acid, sinapic, and ferulic acid). Lemon fruit (Citrus M.; Barresi, M.; Amenta, M.; limon) is also rich in flavanones (eriocitrin, hesperidin, and diosmin) and other polyphenols. All Ballistreri, G.; Fabroni, S.; Rapisarda, of these compounds are believed to play a very important role as dietary antioxidants due to their P. A Standardized Extract Prepared ability to scavenge free radicals.
    [Show full text]