<<

lAEA-TECDOC- 327

URANIUM BIOGEOCHEMISTRY: A BIBLIOGRAPHY AND REPORT ON THE STATE OF THE ART

REPORT PREPAREE TH Y DB BIOGEOCHEMICAL PROSPECTIN URANIUR GFO M WORKING GROUP A SUBGROUP OF THE JOINT NEA/IAEA GROUP OF EXPERTS URANIUN I D R& MN I EXPLORATION TECHNIQUES

TECHNICAA L DOCUMENT ISSUEE TH Y DB INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1985 URANIUM BIOGEOCHEMISTRY: BIBLIOGRAPHA T AR REPORE D STATE YTH AN TH F EN O T O IAEA, VIENNA, 1985 IAEA-TECDOC-327

Printed by the IAEA in Austria February 1985 PLEASE BE AWARE THAT MISSINE TH F GO L PAGEAL THISN I S DOCUMENT WERE ORIGINALLY BLANK The IAEA doe t maintaisno n stock f reportso thin si s series. However, microfiche copie f thesso e reportobtainee b n sca d from

IN IS Clearinghouse International Atomic Energy Agency Wagramerstrasse5 P.O. Box 100 A-1400 Vienna, Austria

Orders should be accompanied by prepayment of Austrian Schillings 80.00 in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the IN IS Clearinghouse. URANIUM BIOGEOCHEMISTRY: A BIBLIOGRAPHY AND REPORT ON THE STATE OF THE ART

. DUNN*CE . EK**J , . BYMAN**J , * * Saskatchewan Geological Survey, Saskatchewan, Canada ** Swedish Geological Survey, Uppsala *** Swedish Geological Survey, Luleâ Sweden FOREWORD

e NEA/IAETh A Joint Grou Uraniun i f Expert o pD R+ m n i Exploratios n Techniques was formed in 1976 to encourage and facilitate interna- tional collaboratio d co-operatioan n e developmenth n i n f uraniuo t m exploration technology. One of the projects carried out under the Joint Grou s Projecwa p , "Biogeochemica5 t l Exploratio r Uranium"fo n .

Project 5 met first at Lulea, Sweden, in September 1979. At that meeting it was decided to compile a "State of the Art" report and bibliography on the use of biogeochemical methods in uranium explora- tion as a guide and aid to workers contemplating the application of these methods. The task was entrusted to Colin E. Dünn of the Saskatchewan Geological Survey (Canada) and Jan Byman of the Swedish Geological Survey. They were later joined by John Ek, also of the Swedish Geological Survey.

The task of obtaining copies of all pertinent papers on the subject and translating them fro varieta m f languageo y sformidaa provee b o t d- ble one, and resulted in some delay in producing the document. The results of these efforts are presented in the main body of the report. meetina t A f Projeco g , hel 5 tconjunction i d h Internan12t wite -th h tional Geochemical Exploration Symposium at Helsinki in August 1983 the authors were fortunate to obtain an additional extensive list of references from Dr. Alexander Kovalevsky (USSR). These references, mostl f papero y Russian i s n previously unknow o themt n , were added to the report as Supplement A. Since the authors had no access to these papers, thee listear y references a d s only, wit o commenn h t on content. The authors took the occasion to compile an additional list of references, some previously unknown to them, and include papers publishe n 1983i d . Thes e includear e Supplemenn i d . B t

e subjecTh f biogeochemicao t l prospectin r uraniufo g comples i m d an x many conflicting results have been obtained. However, a firm data base is emerging and answers are being found to the many questions that have arisen. This encourage feeline th s g that biogeochemistry has much to offer to a uranium exploration programme. The authors wish to thank Drs. Brooks, Erdman and Sheppard for providing copie f papero s s thed beeha yn unabl o obtaint e . They especially wis o than t h. Kovalevsk Dr kimportans hi r fo y t contribution. Many individuals provided informatio f helo n n assessini p e statth g f o e the art. Finally e authorth , s wis o thant h k their organizations, the Swedish Geological Survey and the Saskatchewan Geological Survey, for support in the project.

EDITORIAL NOTE

In preparing this materialpress, the International the stafffor of Atomic Energy Agency have mounted and paginated the original manuscripts and given some attention to presentation. The views expressed do not necessarily reflect those of the governments of the Member States or organizations under whose auspices manuscriptsthe were produced. thisin The bookuse of particular designations countriesof territoriesor does implynot any judgement publisher,the legalby the IAEA, to the status as suchof countries territories,or of their authorities and institutions or of the delimitation of their boundaries. Tlie mention of specific companies or of their products or brand names does not imply any endorsement recommendationor IAEA. partthe the of on CONTENTS

Introduction ...... 9 Historical development...... 9 . Geobotany...... 10 The choice of sample for biogeochemistry...... 11 Level concentration...... U f so 2 1 . Chemica physicad an l l control uptake...... U n so 3 1 . Relationship of U in soils and bedrock to U in ...... 15 ...... 5 1 . Bacteria ...... 16 Depth of burial of U ore detectable by biogeochemical methods...... 17 Natural variations...... 8 1 . Sample spacing ...... 8 1 . Unpublished information...... 9 1 . Recommendations ...... 20 Lis referencef o t s ...... 3 2 . Summary of information contained in the publications on uranium biogeochemistry ...... 35 Index of common names ...... 63 Inde scientifif xo c names ...... 6 .6

Supplement ...... 1 .7 Supplement A: References to papers in Russian supplied by Dr. A. Kovalevskii...... 73 Supplement B: Additional references in languages other than Russian...... 81 INTRODUCTION This report comprises a compilation of the world literature published f 1982o d en , e tha th classifies i to u t p d unde e generath r l headinf o g 'Uranium Biogeochemistry1. This subject examine e distributioth s n of U within natural organic systems. To the exploration geologist e stud th s concernei y d mainly wite analysith h f plano s t materian i l n attempa o identift y variation U concentration n i s se b whic y ma h attribute o concealet d mineralizationU d n additionI . , referencee ar s included on geobotany; on U in peat, coal, and fossil ; on the migratioe naturath n i d fixinl U an nenvironmen f o g d resulttan s from laboratory experiments; and even one paper on the U content of some birds 3 paper A tota15 .d book f an so l s were identified f whico , h nine prove o contait d o relevann n t informatio w e subjectfe th a n o nd ,an others (mainly from obscure Russian journals) proved unobtainable. Information include 0 paper13 n i sd (comprising several thousand pagef o s text, table d figuresan s s summarizei ) n tabulai d r form followine th g list of references. Our task has been complicated by the fact that many papers are in Russian, and others are in Spanish, German, French, Rumania d Japanesean n e havw t e ,bu attempte o outlint d e maith en findings incorporated in each paper that are pertinent to biogeochemical prospecting for U. Following the tabular summary there is an index of the common names, then an index of the scientific names of plants referred to in the publications. Within the report, numbers in square brackets [] identify the references in the bibliography and summary table.

HISTORICAL DEVELOPMENT

The earliest reports of U in plants appear to be the early 1940's data f Huffmao n [58 ] whic59 , contenhU gave f th ealgaeo t , grasses, and vegetables in Austria. A major advance took place in the 1950's when Cannon (especially her 1952 and 1964 papers) and her co-workers recognized selenium (Se) indicator plants on the Colorado Plateau (USA), and related their presence to the Se association with U in sandstones. A wealth of data on geobotany and the U content of plants was published following this discovery. Durin e latgth e 1950' 1960'd an s s many paper biogeochemistrU n o s y appeare e Russiath n i d n literatured an , other reports came from Australia, Great Britain, Scandinavia, France, Rumania w ZealandNe , d Japanan .A US ,Sinc e mid-1960'th e s several compilation and review papers have been published on the migration and accumulation of U in organic substances [49, 64, 72, 104, 108, 111, 117]. In recent years the literature has contained papers on chemical disequilibrium [41 , 115,78 , 127] therd bees ,an ha ea greaten r emphasis on case histories e.g. Spain [7], Canada [8, 17, 30, 35, 36, 40, 41, 109, 122], USA.[46, 47, 95, 107], Sweden [43, 79], Finland [130], Israel [78] USSd ,an R [116]. e greatesth r Bfa yt proportio f investigationo n s have been conducted in cool or cold northern climates. A number of studies are reported from dry regions (especially the southern USA), but very little is known (or at least published) about the application of U biogeochemistry in tropical terrains.

GEOBOTANY No plants have been recognized that are direct indicators of U minerali- zation, although in Alaska it has been noted that lupine tends to favour U-rich soil [42]. Several indirect indicator e knowar s n (notably Astragalus spp.) which have an affinity for selenium, and therefore e actuallar y selenium indicators s associatei U . e th dn i wit e S h sandstone roll-front type deposits of the mid-western USA, where Se indicator plants have been used successfully in the discovery of U mineralization [19, 24, 25, 63]. Another geobotanical indicato U mineralizatio f o r e developmenth s i n t of abnormal growth patterns, which have been observed in the field and in laboratory experiments [19, 24, 25, 75, 113, 120]. Such morphological changes are not, however, a reliable guide to U mineralization, since many other physica d chemicaan l l parameter y effecma s t similar changes. Three studies have noted changes from normal colours near U mineralization. Shacklette [106] noted a paling in the pink hue of fireweed; Kovalsk d Vorotnitskayan y a [75] noted albinis d varian m - coloured flower f Caraganao s Brookd ;an s [14] indicated thaU t anthocyanins may give a bluish tint to which are typically red or pink.

10 THE CHOICE OF SAMPLE FOR BIOGEOCHEMISTRY DatcontenU e recorde e ar a th f abou to n 0 o dplan 20 t t genera. These range from the and vegetables consumed by man, to the indigenous mosses, grasses, and which represent the sample media appropriate for biogeochemical prospecting. Obviously, environment is the primary control on the choice of sample, but in general conifers are suitable for northern climates; juniper and oak for temperate climates; eucalyptus for hotter climates; and sagebrush and catclaw mimosa for arid regions. Many studies demonstrat e greath e t variatio contenU f o n t that occurs, withi a given n area, froe speciee nexton mth o .t s Thus ,a prim e rule of biogeochemical investigations applies: that analytical data from different species must not be mixed, unless a very thorough study is made of the relative element concentrations of those species in a specific environment. t onlNo y mus n appropriatta e specie e selecteb s r samplingfo d t als,bu o it is vital to identify which part of the plant is the most effective U accumulator moss i td ,practicaan o collectt l exampler Fo . , withia n spruce the U content of the differs greatly from that of the trunk, bark, cones, twig r needleso s . Some studies have concluded e greatesth r fa tha t concentrates y i amountb U f e planto th n ti d roots [e.g. 7, 19, 22, 24, 25, 71, 87, 98, 112, 113, 130], and Kovalevsky [71] found the bark of the roots to highly concentrate U. Other studies have found that twigs usually contain more U than or needles, which both have more than trunkwood [6, 34, 35, 36, 37, 118, 122, 130]. In some specie e aeriath s l part f planto s s have mor U thaee th n s [10, 36]25 ,. Some surveys have combine twige th d s witneedlee th h s stild an l] obtaine62 , 51 , d 43 meaningfu , [8 l results. Other studies s havknowu eo t nobtaine d interestin t uninterpretablbu g e numberd an s therefore werpublishedt no e . These d man,an y other observations e literaturequoteth n i d , indicate the complexity of the U distribution in plants, and emphasize the crucial nee o obtait d n informatio e distributioth n o n withiU f o n n a given species before attempting to conduct a biogeochemical survey using that species. Variatio contenU f o n t occurs withi a singln e twig: studies have shown more U in the 3-4 yr-old growth of birch and larch, thayr-ol2 1- n d growth [129]. Similarl contenU e th y t

11 f blaco k spruce 4 yr-oltwig2- highes s i e s dth growthn i t d decrease,an s in older growth d beec[35] highese re th n h.I concentrationU t s were found in the 1-3 yr-old and 20-30 yr-old trunk growth £126], Cannon and Kleinhampl [27] recommended collecting the latest year's growth of needles or branch tips from the entire periphery of a tree. Kovalevsky [70] suggested that the 2-8 yr-old growth of branches is preferrede tb o Dund ,an n [36] concluded thas latese yr th t 0 1 t growth of black spruce twigs provided the most effective, consistent and practical sample mediu o collect me borea th n li t forest f Canadaso . Once the complexity of the situation is understood, steps can be taken to solve the problem and identify a sample medium which is simple, effectiv d practicalan e o collectt y siftinB . g throug e literaturth h t i e is possibl o ascertait e e problemth n s surroundin a gparticula r species in a particular environment, and the limitations of the biogeochemical e quantifiedmethob n ca d r exampleFo .s foun i t ,i d that natural variations influencing black spruc Canadn i e f treeao e (e.g,ag .seasons , terrain) accounte r 15% n averagefo do , e dat th a f ,o variabilit f o y U concentration e s latesgrowtth yr n 0 f blaci 1 sto h k spruce twigs [35, 39]. No doubt for other species in other environments this per- centage will differ a carefull t ,bu y planned orientation surven ca y readily determine the appropriate precautions and limitations that must be considered bot conductinn i h e surveth gd interpretinan y e datath g .

LEVEL U CONCENTRATIO F SO N Exceedingly hig concentrationU h plantn i s e recordedar s . Data quoted in this section are from the U content of ashed sample, unless otherwise stated. The highest is 16.5% U in fossil wood from the Colorado plateau y peabees Dr [12]ha tn . reporte d3.1o t witU [6] %p u hlivinn . I g plant highese th s t leve 2.5s i U frolw Zealan% mosa Ne m n i s d [126], and several studies repor U tconcentration mosn i s s d betweean 1 0. n 0.5% [44 107, ,55 , 123, 130]. highese th r Btfa y concentratio e higheth n i nr order plant s 740m i s pp 0 roote th f greasewooo sn i U d (Sarcobatus. [19]) Alaskn I . combinea a d sampl f twigo ed needle an s s fro a mlodgepol e pine yielded 239m 6pp a simila d an U r sampl westerf o e d cedare n r containe dU [42] m 212pp .7 In Saskatchewa recordes i n U 227 m 0dpp from black spruce twigs [37].

12 The roots of juniper which penetrated U ore in Colorado yielded 1600 ppm U [25]. All these value e extremear s . Normal backgroun dn plan i level U t f o s ash are of the order of 0.5-2 ppm [9, 10, 19, 25, 29, 37, 65, 1211. Cannon [19] considered that U concentrations greater than 2 ppm were anomalous d determine,an d thae optimuth t m concentratio r planfo n t growt s 1.3-2. hwa U [25] m Russiae 0pp . Th n literature sometimes cites unusually low levels (less than 0.2 ppm) of U in plant ash as represent- ative of background [65, 66, 118]. A unique area occur northern i s n Saskatchewan, where "background" exceeds 10 ppm U in spruce twig ash over an area of 10,000 sq. km [40],

Low-order plant forms (especially mosses, lichens and aquatic ) readily accumulat wherea, U e s high-order forms only accumulatn i U e certain part f theio s r structures d unde,an r certain physicochemical and hydrological conditions. In general it appears that background levels of U in plant ash are less than 2ppm d planan , t material which contains muc excesn i h f thiso s amount is indicative either of local U mineralization, or the presence of high background levels of U in the substrate, i.e. a uranium province.

CHEMICAL AND PHYSICAL CONTROLS ON U UPTAKE Many papers have examined the chemical components which govern the absorption, and fixation of U by plants and organic matter in general. Plants grown in soils spiked with U accumulated more U in their roots than in their aerial parts [22, 23, 113], although the amount of U e brancith n h tip s founswa o beat d a rdefinit e relationshi o that p t available in the soil [22]. Roots with a high cation exchange capacity can absorb the most U [24]. Another study suggested that U compounds in plants probably a forresul s a m f -exchangto e reactions between metal-bearing solutions and plant tissues [5]. Organic compounds can bind and transfer U [89]. Studies have shown that U occurs as oxonium complexes in cellulose and lignin [4], and as chelates [101]. Humi d fulvian c e dominanc th acid e ar st concentrators and transporter U [18 f o s, 104, 110, 111, 119] d thee believean ,ar y d to play a significant role in the formation of secondary U deposits [104].

13 In a study of leaves of Coprosma austral is [128] it was shown that 65% of the U occurred as a RNA complex, 25% as a protein complex, and 10% in low molecular form. At least 50% of the total U was found to be boun o celt d l wall proteins. Low levels of soil greatly increase the ability of plants to accumulate U [1], whereas high levels of carbonate have a similar effect [19]. U is effectively absorbed by plants that take up very little potassium (e.g. rospind an ee families [21, 22]). Where formation waters have a high salt content U tends to stay in solution [84], and e presencith n f salto e d calciuman s n migratca ,U e considerable distances [117]. Important observations for biogeochemical prospecting are: 1) U is absorbed best by plants which have a fairly acid cell and a high cation exchange capacity in the root [21, 25, 76]. This acidity is lesd 5 [185 [4] e an 4- estimate]2 sH [95] On p H ,5. p tha .e H b p n o t d Russian study found the highest U uptake to take place in peat at pH 6 [115]; and 2) plants with high rates transport most to their upper parts [25]. Wor y Kovalevskb k y [70,71] indicated that e boreaplantth n li s forests of Siberia appeared to have a physiological barrier to U uptake, wherea a migrateR s d readily o e plant fron e soilth d th mo an t ss barrier seemed present e noteH . d that physiological barrier e mucar s h more significant in the aerial portions of plants than their roots, and that the barriers are absent in the roots of high-order plants and of low significance in the lower plants. A later study [72] defined U as a "low barrier" element (i.e. only small quantities can be taken up by the high-order plants), but noted that element absorption by plants is, on average, 3000 times more vigorous from aqueous solutions than from the solid phase of soils. Thus where U is dissolved in groundwaters, much higher U concetrations in plants may result than whers presen i e soils U th e n i t. This observatio e valuablb y ma nn i e explaining the situation that occurs in Saskatchewan, where far greater U concentration e presen aeriae ar sth n i lt parts tharoote th n s [36, 39]. This study [39] concluded thae "barrierth t e root"th sn existi t no s e twigsth n i , whert bu U dissolvee n fluidi d s passine xyleth p mu g tissues precipitate a changH tha p o t n t i e e occurdu s s during U is in low concentrations in the soils, but available in the formation waters thae root e th ttapping ar s .

14 RELATIONSHI N SOILI N PLANT D BEDROCI U SAN U F O P S O KT A recurring observation in the literature is that there is a good correlation betwee, 7 soin , i r bedrockplantn 5 o i lU n , U [1 sd ,an , 126]69 , .57 Conversely, 52 , 30 , other studies repor discerniblo n t e relationship between U in the soils and bedrock and that in plants [17, 34, 36, 37, 46, 84]. Work in the USSR found U levels to be usually 10-100 times lowe plantn i r s tha soiln i n s [67] observation ,A s wa n made thae correlatioth t n between soili s n plantonlU i wa s d U yn an s n soila furthei d U an , m U rincreaspp 0 t 1 no n soilo i t egood p di su d resuln increasea n i t d uptak y plantb e s [70] Saskatchewann .I , however, soils consistently yielding about 2 ppm U support spruce containing fro twin h m[37i as g5-88U ,m 39]6pp .A stud European i y n found an inconsistent relationship between soilsi n plantU i .d U n an s Thus therwida s i e spectru f resulto m s fro a mgoo o poot d r correlation, perhaps dependant upoe porosityth n , permeabilit d hydrologian y e e substrateregimth f o e . Each study arean musow e treates b t it n o d merits a bette f I .r geochemical profil s obtainei e d from soils than plants, then the soils should be collected. If a similar response is foun n boti d h sample media, then whicheve mors i r e practical should be collected. Bearin minn i g d thae extensivth t e root syste a tre f emo integrate e geochemicath s l signatur f severao e l cubic metre f soilo s , the trees may, therefore, provide a more representative geochemical picture of the environment than a handful of soil. The latter holds particularly true where the soil is allochthonous, such as in glaciated terrains. If the U in the bedrock is incorporated in the crystal lattices of resistate , thero morn s likele i eb tha o t ya subtln e biogeochemical respons e mineralizationth o t e , despit e highlth e y corrosive micro-environment established around rootlets. However, if the U is labile (e.g. as pitchblende or other U oxides in fractures and at crystal boundaries) then it can be readily assimilated by some planta stron d an sg biogeochemical respons y resultma e .

PEAT The literature contains a large number of papers that deal with the of peat bogs, and many of these papers refer to U. We have not attempted to compile a complete bibliography of U in ; instead

15 e have classiw th e f selecteo c w studiesfe a d , mos f whico t h deal also wit U biogeochemistryh . Peat bogs are potential 'sinks' for U precipitation because their organic acid components readily absorb and adsorb the element. A bog in northern Sweden with up to 3.1% U in dry material concentrated U 9000-fold froe e sprinlevelth th m n i gsn I water . s6] feedin, [5 t i g the USA [11] waters with up to 110 ppb U produced 2880 ppm U in dry material ( a 26,000-fold concentration). This is greater than the maximum concentration factor of 10,000 obtained by experimental studies [110] on humic acids in peats. Furthermore, it has been observed by others [64] that waters with little more than background levelU f o s y providma e concentration n peai tU equivalenf o s n enrichmena o t t t facto million2 f ro , indicating that other factor y interacsma d an t locally give ris o extremt e e concentrations n importanA . t difference between the experimental study and the field study, is that the experimental conditions were static whereas the field environment was dynamic and time could play a vital role in permitting U to concentrate. In Sweden stream bank peats have been used successfull outlininn i y g uraniferous areas [79]. Peats, comprising decaying grasses, sedges and roots, are collected immediately below lowest stream levels. Reconnaissance surveys by this method have found enhanced U levels to occur in regions underlain by granite, and have provided targets for follow-up work. Several prospects have been found directly by this biogeochemical method. It would appear that because of the physicochemical of peats .they may be of use in establishing the proximity of U mineralization. However, false anomalies may occur in situations where slight enrichments of U in bedrock are leached by groundwaters, and low levels of dissolved e suppliear U a restricte o t d d basin containin a peag t bog e containeTh . d organic matter than continuously absorb oveU s ra lon g perio f timeo d .

BACTERIA e rol Th f bacterio e n mobilizini a s beeha nU g examine n severai d l papers. Thiobacillus ferrooxidans can survive at a pH of zero and in an oxidizing environment where the Eh is up to 760 mv [99]. An increase in microbial activity greatly increases the dissolution of U [86]. It has been noted [50] that Desulfovibrio desulfuricans in groundwaters associated

16 wit U deposith s instrumentai s n controllini l g redox reactions d thu,an s n assisca mobilizinn i t d subsequentlan g y immobilizin . U Somg e bacteria hav a mechanise m which inhibits successive uptak U int f o e the cells. These adapted strains play an important and more active role e biogeniith n c migratio U tha f no n unadapted strain sa resul [74]s A .t f theso e capabilitie f bacteriao s , thera bacteria s i e l zoning associated with metal zoning acros U roll-fronedge f th so e t deposits [99]. The implication for biogeochemical exploration for U hinges upon the abilit f bacterio y o develot a p resistanc U toxicity o t e bacterif I . a thae normallar t y intoleran e founar o havU t d o et t adapteU o t d f (i.ethee i presen.ar y n uraniferoui t s soil samples), theU a n deposit should be nearby. Researchers in this new field of experimentation (e.g. J. Hatterson, USGS) suggest that there is the potential for the metal resistanc f restricteeo d group f metal-sensitivo s e organisme b o t s tested more easily thaanalysie e soilth n th sf o sthemselves .

DEPTE DETECTABL OR F BURIA O HU F O L Y BIOGEOCHEMICAEB L METHODS Biogeochemical method n readilca s y detec mineralizatioU t r closo t a en to the surface. So can many other exploration techniques, rendering biogeochemistry redundant for such occurrences. The object of using biogeochemistry is to assist in providing a "window" through surficial material to U mineralization that is not readily detectable by other means. On the Colorado Plateau biogeochemical surveys have effectively detected U mineralization that m beneatoccur 5 2 e surfac t deptho sa th ht p u se [21, 25, 27, 63]. Similarly, in the USSR high U concentrations in plants wer m [10]Spain eI 0 depta 2 . foun n t f a o hther ds s wa wherwa e e or e a good correlation between U in oak leaves and mineralization, especially m [7] 0 .1 dow o t n An unusual situation occurs in Saskatchewan where high grade pods of pitchblende that occur beneath 150 m of Precambrian Athabasca Sandstone are reflected in the overlying vegetation [36]. In this environment it seems that the near vertical fracture system, coupled with an upward hydraulic gradien s responsibli t r producinfo e e biogeochemicath g l anomalies [36, 39].

17 NATURAL VARIATIONS If the roots on one side of a tree penetrate U mineralization, the U content f leaveo d twigan s s wil e higheb l n thao r e tret th side f o e[25] , If . however, the U source is disseminated throughout the soil, bedrock or groundwaters, then no systematic difference occurs around the periphery of the tree [35]. As a general rule it is better to collect samples fron branches around a tree. e plan th n mak ca f ta o edifferenc e ag e amoun th U e take : Th n f o eo tup n some plants increase thei contenU r t with age, others decrease [1]. Within limits of + 15% it was found [35] that the latest 10 yrs growth of black spruce twigs showed no systematic difference from young to old trees d loca,an l variation fell withi e samth ne limits. Twigs taken fro ma spruc e tre n threo e e successive years showe o appreciabln d e differenc U concentrations n i e , whereas considerable differences were e needlesth note r fo A similad. r patter s founwa nsamplinn i d a gtre e in Jun d agaian e Augustn i n t shoU level:no wd consistendi s t changes e twigs a pronounceith nt bu , d decrease occurre e needlesth n i d . Several workers have noted seasonal change U concentration n i s d founan s d that each species responds differently [2, 19, 25, 37, 53, 65], Cannon [25] found tha n generali t ,U level s increase durin e growinth g g season i n evergreens, but decrease in deciduous species. Another feature whic s beeha hn considere whethes i d r ther e differencear e s betwee U conten e th n f dea d o tlivin an d g twigs. Observation e agaiar s n inconsistent t therbu , a tendence e seemb r deao t sfo y d organ o contait s n mor thaU e n live [28, 42].

SAMPLE SPACING For detailed sampling over a U prospect, sample spacing of 5, 15, 20 s beeha n m variouslan0 3 d y suggeste s adequata d r outlinfo e g mineralization [27, 36, 51, 63, 65]. Obviously, this will depend upon the depth of the mineralizatio e fracturth d an ne system through which uraniferous waters may pass. For rapid reconnaissance surveys, sample intervals of 75 m [27] and m [37 0 ]20 have been suggested Wollastoe 10,00m k Th .. 0sq n anomaly in Saskatchewan was outlined by sampling at 1 km intervals near its centre, and progressively increasing the sample intervals to 2 km, 5 km and 10 km [37, 39].

18 r reconnaissancFo e level stream bank peat survey Sweden i s e samplon n e r regionafo ; km l. isurveysq s 5 take e samplr th spe n r epe densit3 2- s i y sq. km; and for detailed surveys the density is about 20 samples per . km . sq Another sample medium appropriat e preliminarth r fo e y assessmene th f o t U potentia n are a aquatis i af o l c bryophytes [107, 124] thin .I s instance no specific sample interval can be recommended, since their occurrence t ubiquitousino s . They should, however e sample,b s closa d o springt e s as possible.

UNPUBLISHED INFORMATION During discussions with various researchers and exploration geologists, several facts have come to light which have not been published in professional journals. Some pertinent observation e outlinear s n i d this section. In Australia eucalypts and spinofex grass have both been used to success- fully outline uraniferous zones. Leave f eucalypto s s were founo t d contain considerably mor U etha n dead twigs, whic turn d mori h ha ne than live twigs. There are unconfirmed reports that eucalypt trunkwood from the Rum Jungle area contains over 1000 ppm U. In northern Canada (Saskatchewan, e NorthwesYukonth d ,an t Territories) jack pind blacan e k spruc e suitablar e effectivd an e e sample medi arean i a f permafroso s t and discontinuous permafrost e Yukoe studth On .n i y suggested that black spruce twigs {abou e latesth t4 yrs3- t . growth) with ove3 1. r n theii h representeU as r m pp a dbedroc n northerI k sourc. U nf o e Swede knowl al n n major area f mineralizatioo s n give ris enhanceo t e d U level neighbourinn i s g stream bank peats, commonl n associatioi y n Y enrichments d an wit u C h . Studies by French geologists in France and Africa have been disappointing, and although anomalous concentrations of U have been found in plants e soilth s have provee cheapeb o t d mor an r e rapi o samplet d t I . s beeha n foun areal d al tha sn i texamined U ,concentration e conar s - sistently higher in roots than aerial parts over granitic terrains. Over sedimentary rock U anomalies s occu twigsn i r , leave d rootan sf oako s , but again soils have provided similar information. In Mediterranean climates pines have provided positive results onlt ,bu y very closo t e mineralization. Tree Nigerin i s m belo a5 e surface indicatth o wt p u ,U e

19 and in the equatorial climate of Gabon the trees give the same indications as the soils. In Madagascar some positive results have been obtained.

RECOMMENDATIONS o universaN l guideline e laib n d ca dowsr conductin fo n a biogeochemicag l survey for uranium. This is evident from the diverse results that appear e literatureith n . However, careful observatio e fielth df o nenvironment , plu a rapis d orientation surve o ascertait y e mosth nt appropriate sample medium may provide the geologist with an important additional tool to his exploration program. It is imperative that sampling is undertaken ia thorougn d systematian h c manner d tha,an t summary field notee ar s take t eaca n h a techniqusampl t no es i sitee t whicI .n usuall ca h e b y effectively undertaken by an untrained field assistant. Once the limitations of a particular sample medium have been identified and quantified by a competent biogeochemist, then a routine sampling program can be carried out by lesser qualified personnel. e positivTh e biogeochemical respons f planto e o concealet s d uranium mineralizatio a well-establishe s i n d well-documentean d d factn I . addition there mus e manb t y studies which havt beeno e n published because results were negative: the examination of government assessment files bears witness to this. It seems that interesting U accumulations in plants have often been recordet interpretedno t bu d . Sometimes this is because insufficient effort has been put into sample collection. For example, all too frequently random lengths of twigs have been collected and ashed without separating the needles. As indicated in the literature, twigs usually contain greatly different concentrations U fro f mo needle U concentration d an s s vary wite alon ag e hlengt th g h of some twigs [35]. As a result such data are uniriterpretable. In conclusio s considerei t i n d that biogeochemistr n providca y a eusefu l aid to the exploration for U, particularly in areas where the U is labile and not structurally incorporated in crystal lattices. Careful orientation surveys mus e carrieb t t beforou d e embarking upo majoa n r sampling program. Samples must be collected carefully and systematically, and in order to be cost-effecitive a technique must be chosen and refined so that it is practical and rapid. Biogeochemistry is likely to be most effectiv d superioan e o othet r r techniques where allochthonous soils

20 cover the bedrock (e.g. desert and glaciated terrains). Roots can penetrate this overburden and integrate the geochemical signature of the bedrock or the formation waters, thereby providing a "window" throug e overburdenth h .

21 LIST OF REFERENCES

Reference number placee sar d alongsid papere eth s whice har summarize Tablee th n .i d They correspond, e alsoth o ,t references quoted in the report on the state of the art. References marked wit asterisn ha ) indicat(* k e papers that contain littldato n uraniun o ar e o m biogeochemistryt ,ye appea worln i r d lists under that general heading.

References which have no number or asterisk are those which were w e unabl obtaino t e .

Ref.No.

1 Anderson, R< Y., Kurtz, E. B., 1954. Factors influencing uranium accumu- lation in plants. Cool. Soc. America Bull., 65. p. 1226.

2 Anderson , Kurtz1955, Y. B. . . ,.R ,E Biogeochemical reconnaissancf o e the Annie Laurie uranium prospect, Santa Cruz County, Arizona. Econ. 227-232. Ceol.p , ,50 .

3 Anderson, R. Y., Kurtz, E. B., 1956. A method for determination of alpha- radioactivity in plants as a tool for uranium prospecting. Econ. Geol., 51, p. 64-68.

4 Andreyev Andreyeva, F. . Rogozina, ,P V. 1962, . ,I M. . .,E Reactionf o s uranyl salts with the components of plant and some of their derivatives. , ]_'• 4, P- 359-364.

5 Armands, G., 1967. Geochemical prospecting of a uraniferous bog depo- sit at Masugnsbyn, northern Sweden. In: "Geochemical Prospectin Fennoscandia"n gi , (Ed Kvalheim). .A 127. ,p - 154. Interscience, John Wiley, New York.

6 Armands Landergren, ,G. 1960, S. , . Geochemical prospectin uraniur gfo m in Sweden. The enrichment of uranium in peat. Report of the 21st Internat. Geol. Congress, Norden, part XV, p. 51-66.

7 Arribas Herrero-Payo, ,A. 1979, ,J. . Geochemical distributio uraniuf no m i nmine" 3 soil e vegetatiod ,"F san Saelices e th f o n , Salamanca, Spain : "Secon.In d Symposiu Origie th n nmo and Distribution of the Elements: and Chemistry Earthe oth f " (Ed. L.H. Ahrens). Vol Pergamo, .11 n Press, p. 727-738.

8 Barakso 1979, J. . ,.J Geochemical dispersio uraniuf no overburdenn i m - covered regions. CIM Bull. (Montreal), April, p. 135- 142.

9 Beus, A. A., Grigorian, S. V., 1977. Geochemical Exploration Methods for Opnnsits. Appl. Publ., Illinois 287. ,pp .

* BjSrklund Tenhola, ,A. 1976, M. , . Karelia: regional prospectinr fo g uranium. J. Geochem. Explor., .5_:3, P. 244-246.

* Bogdanov Prakash, V. . ,MirkinaY , Onoshko, R. 1977, L. S. . ,S . .,I First fin f uranium-bearino d g bitumen n Indiai s . Doklady Akad. Nauk SSSR, 224, p. 30-32.

23 10 Botova Malyuga, M. , Moiseyenko . P. ,M . ,D , 1963 I. . ,U . Expérimentae us l of the biogeochemical method in prospecting for uranium under desert conditions. Geochemistry 379-387. p , 4 : .,£

11 Bowes, W.A., Bales, W.E., Haselton, G.M., 1957. of the uraniferous bog deposit at Pettit Ranch, Kern County, California. U.S. Atomic Energy Coram. RME-2063 (Par. 1) t

* Bowie, S. H. U., Ostle, D., 1969. A comparative evaulation of scintillo- metric, geochemica d biogeochemicaan l l method f prospectino s g for uranium: discussion. Econ 933. p . Geol., .8 : ,64

12 Breger, I. A., 1974. The role of organic matter in the accumulation of uranium and organic geochemistry of the coal-uranium assoc- iation. Symp. Form. Uraniu Depositse Or m , Athens, IAEA- SM-183/29 99-124. ,p .

13 Breger, I. A., Deul, M., 1956. The organic geochemistry of uranium. U. S. Geol. Surv., Prof. Paper 300 505-510. ,p .

14 Brooks, R. R., 1972. Geobotany and biogeochemistry in mineral exploration. Harpe . Rowd Yorkpp w an r ,Ne 0 ,29

15 Brooks, R. R., 1979a. Indicator plants for mineral prospecting - a critique. J. Geochem. 67-78 . Explor.p , 1 . ; ,12

16 Brooks, R. R., 1979b. Advances in botanical methods of prospecting for minerals. Advance- Par I I t biogeochemican i s l methodf o s prospecting : "GeophysicIn . d Geochemistrsan e th n i y Search for Metallic Ores" (Ed. P. J. Hood). Geol. Surv. Canada, Econ. Geol., Reportai» p. 397-410.

17 BrooksHolzbecher, R. . ,R Robertson, ,J. , 1982Ryan, E. J. . ,. D , D Bio- geochemical prospecting for uranium in Nova Scotia. J. Geochem. Explor.. 16 , BrooksWhitehead, R. . , 1969,R E, . ,.N Biogeochemical prospectinr fo g uranium in New Zealand. (Abstract). N. Z. Geochem. Group, Newsl., 12_ ,11-12. p .

18 Calvo, M. M., 1974. Concideraciones sobre el papel que desempenan las sustancias organicas naturales de caracter humico en la concentratio uranil de n o (presenteFernand. A . J r ofo dPolo) . Iln Spanish] Symp. Form. Uraniu Deposite mOr s (Athens) IAEA-SM-183/33, p. 125-137. 19 Cannon, 1952L. . e effec,H . Th f uranium-vanadiuo t m deposit vegee th -n o s Colorade tatioth f no o plateau Journ. Am . . Sei., 250; 735-770. p , 10 .

20 Cannon, H. L., 1953. Geobotanical reconnaissance near Grants, New Mexico. U. S. Geol. Survey Circ., 264, 8 pp.

21 Cannon , 1957L. . ,.H Descriptio f indicatono r plant methodd an s prosf o s - pectin r uraniufo g m deposit Colorade th n so o Plateau. Geol. U.S . Survey Bull., 1030-M 399-516. .p .

22 Cannon, H. L., 1959. Advances in botanical methods of prospecting for uraniu western i m n United States. Mexico City, Proc. Geo- chem. Explor. Symp., Internat. Geol. Congr. 20th 235. ,p - 241. 23 Cannon, H. L., 1960a. Botanical prospecting for ore deposits. Science, 132. p, 591-598.

24 24 Cannon, H. L., 1960b. The development of botanical methods of prospecting for uranium on the Colorado Plateau. U. S. Geol. Survey Bull., 1085-A. 50 pp.

5 2 Cannon, 1964L. .. ,H Geochemistr rockf o yrelated an s d soil vegetatiod san n Yelloe i th nareat wCa , Grand County ,. Geol S Utah . U .. Survey Bull.. ,pp 1176 7 12 .

26 Cannon, H. L., 1971. Use of plant indicators in ground water surveys, geologic mapping and mineral prospecting. Taxon, 20, p. 227- 256. 27 Cannon , KleinhamplL. . ,H 1956, J. ., ,F Botanical method prospectinf o s r fo g uranium Geol. S . .U .Surve y Prof. Paper 300 681-686. p , .

28 Cannon, H. L., Starrett, W. H., 1956. Botanical prospecting for uranium on La Ventura Mesa, Sandoval County, New Mexico. U. S. Geol. Survey Bull., 1009-M, p. 391-402.

* Brooks Cohen, Reeves , 1969, E. R. D. . ,N . . , R ,R Pathfinder geochemn i s - ical prospecting for uranium in New Zealand. Econ. Geol., 64., p. 519-525. 29 Dean, M. H., 1966. A survey of the uranium content of vegetation in Great Britain. J. Ecol., 54, p. 589-595.

Debnam , 1955H. .. ,A Biogeochemical investigation Northere th n i s n Territory, 1954. Commonwealth Australia Dep. Natl. Devel. Bur. Min. Geolog. Res y Geophysics. Recs., 1955/48. pp 4 ,2

Rencz, 0 , 19803 W. DiLabioN. .. . N ,A . RelationshiR , p between levelf so copper, uranium d lea glacian ,an i d l sedimentn i d an s Vaccinium uliginosum at an arctic site enriched with heavy metals. Can 2017-2021. p . , Botany18 : .,58

NEWSE DO 3:1 e issue1979Do . sNURa E report entitled "Investigatioe th f o n relationship between organic matter and deposits". U. S. Departmen Energyf o t , Grand Junctiox n Bo Office . 0 . P , 2567, Grand Junction, CO 81502, Report No. CJBX-130(79),

32 Duncan, D. W., and Bruynesteyn, A., 1971. Enhancing bacterial activity in a uranium mine. Can. Inst. Min. Met., 74, p. 116-120. 33 Dunn, C. E., 1979. Biogeochemical survey of two deeply buried uranium deposits, NEA/IAEA test area. In "Summary of Investiga- tions 1979, Saskatchewan Geological Survey" (Eds. J. E. Christophe Macdonald. R d ran ) Sask. Dept. Min. Res. Misc. Report 79-10, p. 166-167.

34 Dunn, C. E., 1980a. The biogeochemical expression of a deeply buried major uranium deposi Saskatchewann i t , Canada. (Abstr.n )I abstracts of the 8th Int. Geochem. Explor. Symp., Hannover, . 198029 . p ,

5 3 , 1980bDunnE. . .,C Uranium Biogeochemistry: NEA/IAEA Test Area: In . "Summar f Investigationo y s 1980, Saskatchewan Geological Survey" (Eds. J. E. Christopher and R. Macdonald), Sask. Min. Res. Misc. Report 80-4 60-63. p , . 6 3 , 1981aDunnE. e biogeochemica. ,C .Th l expressio deeplf no y buried uranium mineralizatio Saskatchewann i n , Canada Geochem. J . . Explor., 15» p.437-452.

25 7 3 , 1981bDünnE. . C ,. Reconnaissance leve d detailean l d surveyexplore th n i s- ation for uranium by a biogeochemical method. In "Summary of Investigations 1981, Saskatchewan Geological Survey" (Eds. J. E. Christopher and R. Macdonald) Sask. Dept. Min. Res. Misc., Report 81-4, p. 117-126.

38 Dünn, C.E., 1982a Wollastoe Th . n Uranium Biogeochemical Anomaly, northern Saskatchewan (Abstr.). In abstracts of 9th International Geochemical Exploration Symposium, Saskatoon, May 1982, p. 108-109.

39 Dünn, C.E., 1982b massive Th . e Wollaston Uranium Biogeochemical Anomaly boreae th n li fores northerf o t n Saskatchewan, Canada. In: "Proceedings of the Symposium on Uranium Exploration Methods: NEA/IAEe Revie th ProgrammeD f & wo AR , Paris, 1 to 4 June, 1982" by the OECD Nuclear Energy Agency, and the IAEA, p.477-489.

40 Dünn, C.E., 1982c. Further investigations on uranium biogeochemistry in northern Saskatchewan. In: "Summary of Investigations 1982, Saskatchewan Geological Survey". Sask. Energd yan Mines, Misc. Rept. 82-4, p. 86-90.

41 Dyck. ,W Boyle, 1980W. .. ,R Radioactive disequilibriu surfician i m l materials from uraniferous environments in northern Saskatchewan BulletinM CI . , June 77-83. ,p .

42 Eakins, G. R. 1970n experimenA . geobotanican i t l prospectin r uraniumfo g , Bokan Mountain area, southeastern Alaska. Alaska Div. Mines Geol., Rep. 41, 52 pp.

43 Ek, J., 1982. Uraniu n soili m , forest litte livind ran g plant material above three uranium mineralizations in northern Sweden. In: "Proceedings of the Symposium on Uranium Exploration Methods: NEA/IAEe Revie th ProgrammeD f & wo AR , Paris, June4 o t 1OECe , th 1982D y Nucleab " r Energy Agency and the IAEA, p. 465-475. 44 Erametsa, 0., Yliruokanen, I., 1971. Niobium, molybdenum, hafnium, tungsten, thoriu d uraniuan m n licheni m mossesd an s . Suom. Karaisti- 372-374. p , leht44 .iB 5 4 Erdman Harrach, A. , 1980 . H. ,J . . ,G Uraniusagebrusg bi n mi h from Western d evidencan . S f possibl o e. U e mineralizatio Owyhee th n ei n Mountain . Deptf IdahoS so f . Interior.o U . , Open-File Report 80-370, 20 pp.

46 Erdman, J. A., Harrach, C. H., 1981. Uranium in big saftebrush from western U. S. and evidence of possible mineralization in the Owyhee Mountain f Idahoo s . GeochemJ . . Explor, 1 ; 4 1 . p. 83-94.

7 McCarthyd 4 an Erdman , A. , 1981 . ,H. ,J . Uraniu sagebrusn guida i m e b e n ca h to buried deposits (abst.): Cordilleran SectionA ,GS Meetings, Hermosillo, Mexico (March 25-27). 55 . ,p

8 4 ErdmanMcNeal, Pierson, A. M. e deser, Harms, 1979. J ,Th . T. F. ,J . . . tC ,,T , Catlaw Mimosa, as a possible indicator of uranium occurrences. (Abstr.) Exploration Geochemistry in the Basin and Range Province. Symposiu Assocf o m Explorf .o . Geo- chera., Tucson, Arizona, April 9-10, p. 16.

26 49 Faust, R. A., Bondietti, E. A., 1976. Biogeochemical aspects of the behav- ior of uranium and thorium in the environment. Report 920, ORNL/EIS-99, 142 pp.

0 5 Fisher 1978, ,C. . Bacterial mediatio redof no x potentia uraniun i l e mor deposits. (Abstr.) Am. Assoc. Pet. Geol., Bull., 62 ;3, p. 513.

51 Froelich, A. J. , Kleinharapl, F. J., 1960. Botanical prospecting for uranium, Deer Flat area, White Canyon District n Jua,Sa n County, Geol. S Utah . .U .Surve y Bull., 1085-B 51-84. ,p . 52 Goldsztein, M., 1957. Geobotanical prospecting for uranium in Esterel. [In French] Soc. fr., Miner. Cristallogr. Bull., ,80 p. 318-324. 53 Gough, L.P., Erdman, J.A., 1980. Seasonal differences in the element content of Wyoming big sagebrush. J. Range Manage- ment, J33_:5, p. 374-378.

54 Gough, L. P., Severson, R. C., 1981. Biogeochemical variability of plants at nativ d altereean d sites n Jua,Sa n Basin Mexicow ,Ne . U. S. Geol. Survey Prof. Paper 1134-D, 26 pp. Grabovskaya . I Biogeochemica . ,L l method mineran i s l explorationF VG . Publishing House, Moscow.

55 Grodzinsky , 1959M. . .,D Natural radioactivit mossen i y lichensd san . [In Russian] Ukr. biokhim. 30-81- P Zhur ., ,Ü

56 Grodzinksy , GolubkovaM. . 1964, ,D G. nature . ,.M Th existinf eo g radio- activity of the soil and plants in the USSR. [In Russian] Fizdol-biokhim. Osobennosti Deistviya yadern Izluchen Rast., Akad. Nauk. Ukr. SSR, Inst. Fiziol Rast., p. 135- 146._____ Cruzdev, B.I., 1965. Plant accumulatio uraniumf no , radiu d thoriuman m and the distribution of these elements in the soil-plant syste n somi m e natural photocoenosis. Abstract Commf so - unication All-Unioe th f so n Inter-College Session devoted e probletth o microelementf o m d naturasan l radioactivity, vol. Ill, Petrozavodsk. (Probably in Russian: quoted in Verkhovskay . 1967)al t e a.

Scintree th Erdman d f * o 1980, an , WardHarmsxe A. F. , L'A-Us . ,J F. ,. , T 3 uranium analyzer for biogeochemical prospecting (abst.j: 8th International Geochemical Exploration Symposium, Hannover, Germany, p. 135.

57 Harms, T. F., Ward, F. N., and Erdman, J. A., 1981. Laser fluorimetric analysis of plants for uranium exploration: J. Geochem. Exploration 617-623. p , 15 .. ,v

58 Huffman, J., 1941. Experimente Erfassung von Uran in lebenden Susswasser- algen. [In German] Naturwissenschaften, 2j}, p. 403-404.

59 Huffman, J., 1942. Nachweis von Uran in lebenden und toten Pflanzen. [In German] Bodenkunde u. Pflanzennährung, 26, p. 318-327. 60 Huffman, C. Jr., Riley, L. B., 1970. The fluorimetric method - its use d precisioan r determinatiofo n f o h as uraniuf o ne th n i m plants Geol. S . .U . Survey B Prof . p ., B Pape 0 70 r 181-183.

27 61 Jayarara, K. M. V., Dwivedy, K. K., Bhurat, M. C., Kulshrestha, S. G., 1974. influence A studth f o y microflorf eo genesie th n f ao so the occurrence Udaisagart sa , Udaipur District thans a j .,Ra Symposium on Form. Uranium Ore Deposits (Athens): No. 74-0085 IAEA-SM-183/31. * Jensen, 1963L. . .,H isotope biogenid san c origi uraniferouf no s deposits of the Grants and Laguna districts, New Mexico. New Mexico Bur. Mines Mineral Resources, Mem. 15, p. 182.

2 6 Kleinhampl , 1962J. . .,F Botanical prospectin uraniur fo g n Soutmo k El h Ridge, San Juan County, Utah. U. S. Geol. Survey Bull., 1085-D. p. 105-188.

63 Kleinhampl, F. J., Koteff, C., 1960. Botanical prospecting for uraniura in the Circle Cliffs area, Garfield County,. S Utah . U . Geol. Survey Bull., 1085-C 85-104. .p .

64 Kochenov, A. V., Zinevyev, V. V., Levaleva, S. S., 1965. Some features of the accumulatio f uraniuo n pean i m t bogs. Internat. Geo- 65-70. p , .1 chem : J2 . 65 Konstantinov , 1963M. . .,V Feasibilit usinf o y biogeochemicaa g l survey in prospectin r uraniufo g n arimi d territories. [In Russian] Sov. Geol., v. 3, p. 151-155. 6 6 Kovalevsky , 1962L. . ,A . Naturally occurring radioactive element plantsn i s . [In Russian] Izv. sib. Otd. Akaci. Nauk, SSSR, ^, p. 108- 114.

* Kovalevsky , 1962 L. biogenie . .Th ,A c accumulatio elementf o n soilsn i s . [In Russian] Izv. sib. Otd. Akad. Nauk. SSSR, J9- >P ~ 115. 112 67 Kovalevsky, A.L., 1964. The geochemistry of radioactive elements in soils. Proc d Soi.2n l Conf. r EastFa , e Siberi, th d aan Novosibirsk n Russian],[i . Akad. Nauk. Sib. Biolog. Inst. 53-60. ,p .

8 6 Kovalevsky , 1965L. . .,A Absorptio radiuf o n m from various kind f planesso . [In Russian] Izv. sib. Otd. Akad. Nauk, SSSR, Ser. biol. -raed. Nauk, j^, p. 43-47.

9 6 Kovalevsky , 1966L. . .,A Natural radioactive element plantf so Siberiaf so . [In Russian] Ulan-Ude, Buryat, Kn. Izd. 96 pp. * Kovalevsky, A. L., 1967. A method for determining the (effective) depth of the biogeochemical metho r prospectinfo d r usefufo g l elements n Russian][I . . Geol d Geophys..an . 111-113p , ,JJ .

0 7 Kovalevsky , 1972L. . .,A Biogeochemical prospectin uraniur fo g m deposits. At. Energy, JÎ3:7, p. 647-652 [Eng. translation].

71 Kovalevsky, A. L., 1973. Distribution of uranium, radium, and potassium in natural plant communities with increased concentrations in soils. [In Russian] Mater. Vses. Simp. Teor. Prakt. Aspekty Deistuiya Malykh. Doz. loniz. Radiats., p. 90-92.

72 Kovalevsky , 1978L. . .,A Biogeocheraica ldeposits e haloor f so . Int. Geol. Rev., 20:5, p. 548-562. 73 Kovalevsky, A. L., 1979. Biogeochemical exploration for mineral deposits. Trans Naty ,b . Tech. Info. Service, Springfield, Virginia, Amerind Publishin . PvtgCo . Ltd. Yorkw ,Ne , 136pp.

28 74 Kovalsky, V. V., Letunova, S. V., 1970. The role of micro-organisms in the biogenic migration of uranium. fin Russian] Nauchnye Dokl. Vyss. Shk., Biol. Nauk., Mikrobiol. Virusolog., 6., p. 81-88.

75 Kovalsky, V. V., Vorotnitskaya, I. E., 1966. The biogenic migration of uranium. [In Russian] Ukr. Biokhim. Zhur., 38, p. 119- 124. * Kovalsky Vorotnitskaya, V. . ,V , 1966E. . .,I Regularitie biogenie th n i s c migration of uranium. [In Russian] Ukr. Biokhim. Zl., ji_, p. 419-424.

6 7 Kovalsky Vorotnitskaya, V. . ,V , Lekarev E. , 1966 . S. I , . .,V Biogeochemical food chain f uraniuso n aquatii m d terraneouan c s organisms. Internat. Symp. of Radioecological Concentration Processes (Eds. Aberg, B. and Hungate, F. P.) Pergamon, New York, p. 329-332.

77 Kovalsky, V. V., Vorotnitskaya, I. E., Lekarev, V. S., 1973. Uranium bio- geochemical province e Issyk-kuth f o s l basin n Russian[I . ] Mater. Vses. Simp. Tcor. Prakt. Aspekty Deistuiya Malykh Doz. loniz, Radiats. 83-84. p , .

78 Kronfeld, J., Zafrir, H., 1982. The possibility of using desert palms in hydrologie reconnaissance prospectin uraniumr fo g . .J Geochem. Explor., ^6_:3, p. 183-188.

79 Larsson, J_0., 1976. Organic stream sediments in regional geochtmical prospecting, Precambrian Pajala District, Sweden. J. of Geochem. Explor., £, p. 233-249.

80 Lecoq, J. J., Bigotte, G., Hinault, J., Leconte, J. R., 1958. Prospecting for uranium and thorium minerals in desert countries and in the equatorial forest regions of the French Union. Geneva, Proc. Internat. Conf. Peaceful Uses . Energy, 2nd, 2, p. 744-786. 81 Leroy, L. W. , Koksoy, M., 1962. The lichen - A possible plant medium for mineral exploration. Econ .107-113. Geolp , .57 .

* Levy, Y., Miller, D. S., Friedman, G. M., 1977. Fission and alpha-track study of biogeochemistry of plutonium and uranium in carbonate Bikinf so Enewetad ian k atolls. U.S. Deptf .o Energy, Report COO-3462-14, 45 pp. 2 8 Lexow, S.G., Maneschi, E.P.P. A.M., ,Sa , 1948. Preliminarye th not n eo presence of uranium in living things in Argentina. Anales Assoc. Quimica Argentina, 36, p. 203-207.

3 8 Lisitsin Kruglov, PanteleevK. , I. . , A . Sidel'nikova, ,A M. . ,V , D. . ,V 1967. Conditions of uranium accumulation in low-lying peat bogsn Russian[I . ] Litol. polez. Iskop. 103-116. p , ,J3 .

Lobanov, E. M., Khatamov, S., 1968. Stable and natural radioactive elements in plant ash. [In Russian] Izv. Akad. Nauk, tadzhik SSR., Otd. fiz.-mat., 2_, p. 3-11. 84 Lopatkina, A. P.,1967. Conditions of accumulation of uranium in peat. Geochemistry International, 4j3 ,577-588. p .

5 8 Lopatkina P.,.Komarov. ,A Sergeyev, S. Andreyev, . ,N. V , 1970 . ,G. A . .,A On concentration of uranium by living and dead peat- forming plants. Geochem. 277-282« P Int » .2. .

29 * Magne Berthelin, ,R. Dommergues, R. . ,J 1974, ,Y. . Microbial solubilization of uranium from ores, granite, and granite sand. (Abstr.) in "Symposium on environmental biogeochemistry )' p. 20-21.

6 8 Magne Berthelin. ,R Dommergues, R. . ,J , 1974,Y. . Solubilisatio- in t e n solubilisation de 1' uranium des granités par des bactéries heterotrophes. [In French] Symp. Form. Uranium Ore Deposits (Athens) IAEA-SM-183/18 73-88. ,p . Makarov , 1965S. . .,M Biogeochemical ^respectin uraniur fo g m depositn i s an area of the USSR. [In Russian] Vopr. rud. Guofiz. Minist. Geol. Okhr. Nedr, SSSR. 33-39p , ,_5 . 87 Malyuga, D. P., 1964. Biogeochemical methods of prospecting. New York, Consultants Bureau Enterprises, 205 pp.

88 Mamulea, 0., Buracu, 0., 1967. Biogeochemical methods of prospecting for

uranium deposits n Rumanian[i . ] Rom. Com. Geol., Dari Seama Sedin, _52:3, p. 237-244. 89 Manskaya, S. M., Drozdova, T. V., Emelianova, M. P., 1956. Binding of uraniu humiy mb cmelanoidinsy b acid d san . Geokhimiya, 4., p. 10-23.

0 9 Manskaya Drozdova, M. , 1968. ,S V. . .,T Geochemistr organif o y c substances. (Translated and edited by L. Shapiro and I. A. Bregcr, Pergamon).

91 Massingill , 1979L. . ,G . Uranium indicator Colorade plantth f o s o Plateau. N. M. Geol. (Socorro) Jj4, p. 49-52.

92 Moiseyenko, U. I., 1959. Biogeochemical surveys in prospecting for uranium in marshy areas. Geochemistry . 117-121p , ,JL . 93 Moore, G. W., 1954. Extraction of uranium from aqueous solution by coal and some other materials. Econ. 652-658Geol.. p , ,49 . 94 Murakami, Y., Fujiwara, S., Sato, M., Ohashi, S., 1958. Chemical pros- pecting of uranium deposits in Japan. Geneva, Proc. Internat. Conf. Peaceful Uses Atom. Energy, 2nd, 2_, p. 131- 139.

95 Nash, J. T., Ward, F. N., 1977. Biogeochemical prospecting for uranium with conifers; results froMidnite th m e Mine area, Washington. U. S. Geol. Survey, open-file report 77-354, . pp 3 2

96 Norris, G., Edmond, B.A., 1973. Sandstone-type uranium deposits and their relationshi plano t p t microfossils :review.Ina : "Method- ical Problems of Palynology". Proc. of III Internat. Palyn. Conf. Publ. House "Nauka", Moscow, p. 127-133. Ohashi, S., Murakami, Y., 1960. Progress in geochemical prospecting methods n Japanese[I . ] Genshiryoku Kogyo41-47. p , ,j6 .

97 Peterson , 1971J. . ,.P Unusual accumulatio elementf no y plantsb d an s animals. Sei. Prog. Oxf., 59. 505-526. ,p . 8 9 Prister Prister, S. , 1970 . S. ,B . .,S Effect uraniuf growte so th n hmo and development of plants and its accumulation as a functio contene germinatioe th th f n no i t n medium. Radio- , 10, p. 221-224.

30 99 Rackley , Shockey I. Dahill, , 1968. N. ,R P. . ,P . ,M . Concept methodd an s s of uranium exploration Wyomin: n I . g Geol. Assoc. Guidebook Ann. Field Conf., 20, p. 115-12A.

100 Robertson, N., 1975. Palynology: a new tool in the search for uranium. Rri New Llandudno( s . 1 . p ^ )4

101 Rogers, J. J. W., Adams, J. A. S., 1969. Uranium. In: "Handbook of geochemistry", Ed. Wedepohl, K. H., vol. 2, pt. 1, chap. 92, Springer Verlag, Berlin.

2 Rowntree10 , Mosher , 1976C. V. . J ,. ,D . Case histordiscovere th e f th o y f o y Jabiluka uranium deposits, East Alligator River region, Northern Territory of Australia. In "Exploration for Uranium Ore Deposits" Symp., Vienna, 19-76, IAEA, STI/ PUB/434 551-573. ,p . (IAEA-SM-208/58).

103 Schiller , Skalova,P. , 1975,A. . Determinatio uraniuf o n m using instrumental activation in the biogeochemical study of metallogenic regiont [In German] Chem. Zvesti., 2j^:6 745-749. ,p . 104 Schraidt-Collerus , 1979J. ^. , J Investigatio relationshie th f no p between org- anic matter and uranium deposits. U.S. Dept. of Energy Report GJBX-130 (79), Grand Junction, Colorado. pp 1 29 ,

105 Scott, R. A., 1961. Fossil associated with uranium on the Colorado Plateau. U. S. Geol. Survey Research B-130.

106 Shacklette, H.T., 1964. Flower variation of Epilobium angustifolium L. growing over uranium deposits. Canad. Field Natural., 78 p. 32-42.

107 Shacklette, H.T., Erdman, J.A., 1982. Uranium in spring water and bryophytes at Basin Creek in central Idaho. J. Geochem. Explor., 17:3. p. 221-236.

108 Sheppard, M.I., 1980. The environmental behavior of uranium and thorium. Atomic Energy of Canada Ltd., (AECL-6795), 45 pp.

109 Sheppard, M.I., Olchowy, L., Mayoh, K.R., 1981, Uranium, thorium, radium, and arsenic concentration plantf so e d soilth san f so Precambrian Shield :preliminara y study. Atomic Energy of Canada Ltd., (Pinawa, Manitoba), Kept. TR-159, 32 pp.

Sokolova, A.I., Khramova, V.V., 1961. Biogeochemical studies Russian I . n Trudy Sverdlovsk gorn. 107-115Inst.. p , ,40 . 110 Szalay, A., 1958. The significance of humus in the geochemical enrichment of uranium. Proc. 2nd, Internat. Conf. Peaceful Uses Atom. Energy,Geneva, 2, p. 182-186. 111 Szalay, A., 1968. The role of humic acids in the geochemistry of uranium and their possible role in the geochemistry of other cations. The Chemistry of the Earth's Crust, Ed. Vinog- radov, A.P. , p.456-471,2_ .

* Szalay, A., Samsoni, Z., 1969. Investigation of the leaching of uranium from crushed magm c rockati . Geochemistry Internat., 6^:3, p. 613-623. 112 Talipov, R. M., Khatanov, Sh., 1974. Distribution of trace elements in plants, Tandytan Mountains, central Kyzylkumo. [In Russian] Uzb. Geol. 23-27. Zh.p , ,I .

31 113 Thibault, D. H., Sheppard, M. I., 1980. Growth, survival and heavy metal uptake of Scots pine seedlings in Welcome Dump site soils. Atomic Energy of Canada Limited, (WNRE-495), 20 pp.

114 Timperley , Brooks Peterson, H. R. . , 1970,M . ,R J. . e significanc,P . Th e of essential and non-essential trace elements in plants in relatio o biogeochemicat n l prospecting . ApplJ . . Ecol., I, p. 429-439.

115 Titaeva, N. A., 1967. On the character of radium and uranium bonds in peat. Geokhimiya 1493-1499. p , ,12 . 116 Titaeva Taskaev, A. , Ovchenkov . I. ,N . Aleksakhin, ,A Ya . ,V , M. . ,R Shuktomova , 1978I. . .I , Conten d characteristican t s of U, Th, Ra, and Rn uptake in plants growing under different radioecological conditions. [In Russian] Ekologiya (Sverdlovsk), 4^ p. 37-44. Tsarew , 1973,S. . Biogenic formatio metaf no l sulfide n laksi e sediments in "Symposium on hydrogeochemistry and biogeochemistry" Proceedings, Vol. 2, Biogeochemistry, p. 536-543, Clarke Co., Washington. C . ,D 117 Usik, L., 1969. Review of geochemical and geobotanical prospecting methods in peatland. Geol. Surv. Canada, Pap. 68-66. 43pp.

118 Verkhovskaya, I. N., Vavilov, P. P. and Maslov, V. I., 1967. The migration of natural radioactive elements under natural conditions and their distribution according to biotic and abiotic environmental components.Proc. Internat. Symposium Radio- ecol. Concn. Processes, Stockholm 313-328. ,p . 119 , J. D., Swanson, V. E., Bell, K. G., 1958. The role of humic acids in the geochemistry of uranium. Proc. 2nd Internat. Conf. Peaceful Uses Atom. Energy, Geneva, 2^t p. 187-191. 120 Vostokova, Y. A., 1957. The botanical method of exploration of uranium- bearing ores. [In Russian] Razv. Okhr. Nedr., 23. p. 33- 34.

121 Walker, N. C., 1976. Biogeochemical studies over the Key Lake uranium- nickel ore zone. Sask. Dept. Min. Res., Summary of Investigations, p. 125-127. 122 Walker , 1979C. . ,N . Trace element vegetation i s d soilan n y s Ke ovee th r Lake uranium-nickel orebody, northern Saskatchewan, Canada. In "Geochemical Exploration 1978" (Eds. J. R. Theobald)Watterso. K . P d nan . Proc h Internat.7t . Geochem. Explor. Symp., Colo., Assoc. Explor. Geochem., p. 361-369.

123 Wenrich-Verbeek, K.J., 1979. Peat, , and moss - their role in geo- chemical exploration for uranium. Geol. Soc. Amer., 92nd Annual Meeting, Program with Abstracts . 538-539,p .

4 12 Whitehead , Brooks , 1969aE. R. . N ,. ., R Aquatic s indicatora s s of uranium mineralization. Bryologist 501-517. p , ,72 .

125 Whitehead, N. E., Brooks, R. R., 1969b. A comparative evaluation of scintillo- metric, geochemical and biochemical methods of prospecting for uranium. Econ. Geol., 64; 1, p. 50-56.

32 126 Whitehead , Brooks , 1969cE. R. . ,N . . ,R Radioecological observationn o s Lowee plantth rf o sBulle r Gorge w RegioZealanNe d f no an d their significanc biogeochemicar fo e l prospecting Appl. J . . Ecol., 6., p. 301-310. 127 Whitehead, N. E., Brooks, R. R., Coote, G. E., 1971. Gamma radiation of some plants and soils from a uraniferous area in New Zealand. N.Z.J. Sei., 14; 1, p. 66-76. 128 Whitehead, N. E., Brooks, R. R., Peterson, P. J., 1971. The nature of uranium occurrence in the leaves of Coprosma australis . Rich.(A ) Robinson. Australian Biol- 67 .. p Sei , .24 73. variouf o 9 Yakovlevae 12 ag s e , 1963 e effecplanth N. Th .. f ,M o t organd san the distribution of uranium in them. fin Russian] Voprosy Prikladnodi Radiogeologii . 271-277p , ,_! .

130 Yliruokanen, I., 1975. Uranium, thorium, lead, lanthanoids and yttrium in some plants growin n granitio g d radioactivan c e rocks. Geol. Soc. Fini. Bull. : 1-2 71-78. ,47 p , .

33 SUMMARY OF INFORMATION CONTAINE PUBLICATIONE TH DN I N SO URANIUM BIOGEOCHEMISTRY

35 EXPLANATIO ABBREVIATIONF NO S

Column Heading; Ref. No. Ref. No. is the reference number listed alongside the ref- and Code erence in the bibliography, and referred to in the text. 'Code» refers to the subject matter of the publication. Abbreviations are: A = Analytical methods Biogeochemistr= B terrestriay— l plants Ba= Biogeochemistry - aquatic plants Bb= Biogeochemistr bacteriy- a CoaC= carbonaceoud lan s matter G = Geobotany LaboratorL= y studies OC= Pea= P t RevieR= w paper

Species Investigated: Part of Plant Î B = bark C - cone F = flower Fr= fruit L = N = needles R = root ste= S m T = twig trunkwoo= W d undifferentiate= X d All = entire plant Var.= various organs Tech. Analytical technique employed: A = alpha activity B = beta activity delaye= D d neutron counting F = fluorometry mas= S sM NAA = neutron activation UA 3"scintrex= " laser spectrometer XR X-raF= y fluorescence

36 Ref. Species Investigated Part Ash A Jo. ft of or ï Underlying Reference Year location Environment Scientific Name Common Name plant" l y U Dr Cone. Rocks Summary 1 Ander son, 954 USA A Laboratory studies on U uptake by plants. Different L Kurtx species vary markedly in their ability to accumulate U. 1 accumulatio na linea e seamb ro t s function I U f o n soils. Some plants Increas conteneU t with age, whereas n others U decreases. Low levels of soil phosphate ireatly increas e accumulatioeth . U f no Mesozoic 2 And er son, 955 USA, Hot desert and Quercus enoryi 9nory oak L 9-177 cph Hsh S Pitchblend , wit m a dept h2 t secondarea f ho mineralyU s Kurtz Arizona k woodlanoa d Q. oblongifolia exican bluk eoa L elastics& B M closer to surface. Fracture from mineralization to Prosopia Juli esquite L 0-235 H S carbonates i surfac e- radioactiv e travertine. Seasonal difference Mimosa dysocarpa Velve mimd po t - T 26-886 « H S rhyolitea osa containing observe d- highe r radioactivit leaven yi Novn ai . than H n t 8-64 " H s 'une. pitchblende Conclusion! Positive respons mineralizationo et . 3 Anderaon, 1956 USA. lot desert and Artendsl. ap a Sagebrush X 1.7-29PP» sh F Scintillation alpha counting, adapted to the determin- A,B Kurtz Arizona woodland .45-209 cph) S radioactivite atioth f no f planyo t ash a sufficientl,i y Plnus ponderosa tonderosa pine X 1.2-1.5 ppm F sensitiv usee b n biogeochemica di o e t l surveys when more Juniperus doppeana uniper X 10-32 cph S pp 0 ,has 1 i presen mne ashU th n .i t Prosopia Juliflora lesquite X 28-500 cph S Th elimitatio e methoth s dha n tha t i cannot t distinguish Plnus sp. Pinyon pine X 0.7 PF» T r theio , tetweerTh , decaU n y products. Furthermoree th , method is limited to the analysis of species of relativ- ely great U absorption ability. 4 Andreyev, 962 USSR Conifers (dead) X Aboratory investigatio dean no d tissue s- mainl y coni- L Andreyevs , fers. Maximum absorptio . Bes5 (~lîH U p t f t Ono a Rogozlna absorbent e ligniar swoo d nan d flour. Mechanism involves the formation of oxonium complexes in cellulose or lignin 5 Armands 1967 Sweden, Peat bog (dwarf Alnu. sp s Alder X Granite, Pwlga much richer in U than leaves. U compounds probably B,P lorrbotten spruce and birc! Betula alba Birch X gneiss, forme resula s a df ion-exchang o t e reactions between Butula nana Birch, dwarf X skarn, metal-bearing solutions and plant tissuss..Good correlat- Sali. xop Willow T nax. 860 ppm Iah A+F iroe nor .on between U in plants and in peat. Willow twigs proved n n « 0 L 45 " " H ,he best concentrator n twigI a o R s -t . Ratio+ U U f f so so H it F » 450 » n II Leaves are) - Itotula. alba 3«"9» Dotula. nana 2.5) Salix op. Peat " 3.15t )ry F 2.5| Alnu8.JB. 1.9. Rat f leachinso g frorocke mth s i s dependent upon the bicarbonate content of the waters. lydrogeologic follow-u s necessarpi locato yt U e eth source.

i Armands, I960 Sweden, Peat bog (dwarf Peat x - 600 ppm Dry F Granite, U was derived from four water sources, the most radioact- P Landergren 'lorrbotten spruc bircd an e h ppn0 )90 . ( Ish F gneiss, ivf whico e h emanated from fracturesn i ratie U Th f .o o skarn, >eat to U in spring waters was about 9000:1. A total of iron ore, »45 sample f pea»o t yielde dmeaa n concentratio0 60 f no pegmatite pp (drmU y weight). 7 Arribas, 1977 Spain Semi-arid, warm Quercus ilex Oak ("live-oak" L Localle ov y Cambrian Generall ygooa d correlation leavek betweeoa d n an i s U n B Herrero-Pay •Bicinsn i 1 150a pp 0 As F schists J in bedrock (especially down to 10 m). U content of Spanish '. about I2pp» Dr the oak leaves was similar to that of the trunks and roots, but higher than in the fruits.

W W

oo lief. Species Investigated ksh £

t Par of or v Underlying Ho. 4 H fnrt<> Reference Year Location Environment Scientific Name Common Name plant U Cone. Vv Rocks Summary 8 Barakso 979 Canada, onperate foreotf iotula papyri fera White birch T 160 ppm Hah F "Rexspar" U B U.C. glacial cover .bias laaiocarpa Balaar fi m T+m Npp 0 28 it r horizoB deposit n i U n m )aoilpp a0 60 Thuja plicata Cedar T+N HO ppm H F trachytt ef schists

Lbiea laaiocarpa Balaam fir T+N 25 ppm tt F "Tyee lake" \ Inua contorta Lodgepole pine T+N 10 ppm M F U deposit horizoB n i ) U n i m abousoilsU pp m aboud 2 t pp ,an t5 Plcea englomanni Ehgolaan spruce T+N 20 ppm II F gravelt sf 3 0thicn horizonkC . clays

'aeudotauga menziesli Douglar sfi T+N 45 ppm II F "Day Creek" |50 ppm U in C horizon. bpulus tremuloidoa Trembling aapen T 15 ppm n F [) deposit) arkoae Résulta indicate that plant geochemistr possibla s yi e exploratio arean i heavf d so nai y overburden owino gt hige th h selectivit certaif o y n plant r apecifisfo c elements. 9 Bous, 977 General Notes that the mean concentration of U in the ash of B Orlgorian plants is 0.5 ppm. Points out that the Th/U ratio may be uaed successfull searce depositsU th r n hfo yi s )it decrease in the ash of plants usually indicates the presence of U mineralization in the bedrock. 10 Bö t ova, 963 USSR Arid Artemioia terrae albae Sagebrush Alm lpp J 1.5. 7- Ash F Sandstone Backgroun ppm.2 d s Iplann i Ti h Maximutas m concentra- B Malyuga, Salsola aubaphylla Saltwort All 3.1- 20.5 ppmAsh F and tion ia 80 ppm in the ash of Astragalus. In all but 3 Moiaeyanko nabasis aphylla Itsegek All 3.9- 75.0 ppraAsh F argilllte samples U in the plant ash was higher than in the ,3tragalu3 villoslaiinus Poison vetch All 12 - 80 ppm Ash F 'Permian) solle. Haloxylon aphyllun Black aaxaul All 5.6 ppa Ash F High U in plants only corresponds to high gamma acti- Annuals (un iff.) All a pp 2 5. Aah F vity in rocks and soil where mineralization reaches the surface. plantHign I hU s found wher liee et or s » depth of 20 m . contenU differenf o t t part plantaf so i a) Haloxylont bark » roots » leaves wood b) Astragalus) bark • leaves» roots c) Anabasis i wood « leaves Oldest organ richese sar uraniumn ti . Concluaient method la successful, and auoarior to radloaotric surveys. 11 Bowes, 1957 I.S.A. Ulgh-level meadow Peat bog 0.345o )pt S *y Juraaaic(? spriny b d )gfe Bo watera . gi VerU w b ylo a pp wit 0 h11 P Bales, u,o quartz gam» activity suggesting recent U emplacement. Ore Haselton J o diorite confines i d largel peae th t probabla o i bogyt d ,an y derived entirely frosprine mth g waters.

12 Breger 197t U.S.A., Araucarloxylon Kraus (Fossil conifer) Hax. 16.556 Dry rriaasio et Deals coallfiewitn i hU d logspresens i U . t mainly Colorado tocene in colloidal form, and probably introduced in an and Wyoming :lastics alkaline solutio complea s na x uranyl carbonate. Increase in U content of coal is generally accom- panied by an increase In Its reflectance. Paper la a comprehensive discussio relationshie th f no p between U and coallfied substances .

13 Breger, 1956 Data from Huffman (194 1942d 1 an quotede )a ar d ,an B Daul conclusion drawn is that planta absorb extremely email amount Mechanism. U f so transporU f so concontratiod tan i in dead organic substances are discueaed. Ref. Species Investigated Part Ash «* No. * of or v Inderlying Reference Year Location Environment Scientific Name Common Name plant U Cone. H Rocks Summary Code Dry u Brooks 972 Goner al JXcellent accoun-, of biogeochemical procedures with B abundant dat a- numerou s reference literaturo t s U n eo biogeochaaistry. Aflthocyanin forn ca ms stable complexes wit (anhU d other elements) therefory ma d an ,e produce a blue tin n Toweri t s thanormalle r ar pinkto d .yre Generally, the linger the root system of a plant, the les e uppee enrichmunth sth n e plantri th parU f f o t.o t

15 Brooks 979a General Good review paper of geobotanical indicators. No new R, G data on U. 16 Brooks 979b General Good review papoi of the biogeochemistry of many element; R,B a usefu t bu , l U datupdatw 1n ne o a f workero e d an s work being undertaken throughout the world.

17 Brooks, 982 anada, onperate foreat Picea rubans cd spruce T 1.5-10m 6pp Asl 1AA Cranodlorltf Re donl e sprucl t ys planewa o shot t wpositiva e responni B iolzbecher, ova Scotia (near U mineralizationLU o . Very high degre f correlatioeo n Hubert son, mineraliza- betwee levelU n d scintillometrin spruci san h as e e Ryan tion) readings) however, latte limitationss ha r n soili U s. PI ce» rubons nd npruce .15-.97 ppra Aal IM shorn no correlation with mineralization or radiomntry or (distant from U in plant ash. mineraliza- Conclusion! positive response to mineralization. tion) Acer pensylvanlcum trlpnd maple T Ac or rubrun id ample m pp T 5 « 1 Ash HM Do tula lutoa ollow birch T

18 Calve 197A Spain Discusse e rol th sf Runi eo c acid n precipitatini s . gU OC test effective wten pH is 4 to 5. Does not deal with living plants, orl relationshie yth o organit U f po c matter, pointin t theigou r geochemical affinity (but lac f chemicako l affinity. B) ultimatele d du )an H p o yt «mln. - near U mineralization Jurassic Indirect recognition of U ores by the Se indicator plant 19 Cannon 1952 U.S.A. 'emperate, semi- sandstones B ) Colorea d arid . no U mineralization Astragalus and S indicators. Leaves of Plants rooted in ore contain 2 to 100 ppm U| those rooted in barren Astragalus op. Poison vetch X 38-70ppra min »Ash F H n X O.ftppm sandstone and stule have less than 1 ppm U. Oryzopala hymenoides Rlcegrass X 30ppra min f Important référer ces to early works by plant physiolo- Atrlplox confertlfolla Shadscala m Xpp 6 2- min r gists i small adcitions of U stimulate plant growth, and n il it X 0.2ppm F very small concertration e essentiaar s r highefo l r planta Atriplex caneacens Saltbush X 0.7ppm F Level f toxiclto s abnormad yan l growth pattern e cltear s c X 8ppm min H F Amount of U absorbed by plants varies with the species, Bahia nudlcaulls f timplanto f yeart e o t , pa ,availabilit e th n i U f yo Chrysothamnus Rabbitbrush X 7ppm tt F viscidiflorus soil, and composition of underlying rocke. u n

c)Utah 'eraperate, Juniperus monosperma Juniper us 0.7ppm H H F Kaolin!e t semi-arid Atriplex eonfertifolia Shadscsla us 4.8ppra M M F n Juniperua monosperma Juniper us 66-100 1, H F Asphalt .ore Oryzopsis hymenoides Ucegrass us 20ppm M II F u » Stanleya pinnata Prince's plume us 37ppm n It F n n

d)New Hot, ami-arid Ptnue edulis Pinyon us 33ppm( II F Limestone Mexico Juniperus monosperma Juniper us 49ppm( :\) n F u 20 Cannon 1953 U.S.A., (lot, somi-nrid Juniperua monoaporma Juniper N 7-US ppra Aoh f Jurassic 'toaitive responss of Juniper and pine needles to under- B New Mexico n tt ti T(P)4 4 uo pt ppra H F Todilto lying uranlferouj limestone. Slight airborne contami- n n n R(p) 7 9 uo pt ppra tt F Limestone natioe nesdleath f no . it it it W 6 -43 ppm H F f treeo h limestonn so as Trun n i kU ewoom pp d 0 avér1 d a;e n Ptnus edulis Pinyon H 5 -41 ppm F with «0.1ÎÉ U,0a. n » n W 3-30 ppm It F Trunk wood avéra ;ed »20 ppm U in ash of trees on lime- - pe

22 Cannon 1959 U.S.A., Tmporate, semi- Juniporu. sp s Juniper X 1.74 PP» min Ash r Experimental woik involving growing plant n ploti s f so L Colorado arid n n » X n 0.3pp 3 — r desert soil witr controlled U concentrations showed Plnua ap. Wnyon X 1.31 PP» raln that more U was taken up by Descurainia (tansy mustard) « « " X 0.56 pp» — than Grindella than Verbesina (goldweed). Abies ep. Fir X 2.18 ppn min There was • negitive correlation between U and K. H l I it X 0.35 ppa — Generally more 1 in the roots than tops of plantai Plnue pondarosa Rander-os« pine X 1.28 ppn min brance howeverth n hi «cune tipU th , f so t bears• « n n n X 0.63 Ppn - ', definite relaticnahip to that available in the soil. Ref. 4 Speciea Investigatet P^ d Ash A No. * of or ë Underlying rvyjp Reference 'ear Location Environment Scientific N«me Common Name plan• * t y U ConeDr . Rocks Summary 23 Cannon 60« Review paper - no new data on U. R 24 C«nnon 960b U.S.A., 'onporate, seal- Astragalus pattorsoni Votch X up to 38 ppra sh r Roots with high cation exchange capacit absorn yca e bth B Colorado, arid preuasi X 0 ppr7 ao upt H r moat U. Utah albulus X up to 1.2 ppm H F U found to precipitate near the point of Intake in the cobrenais X up to 0.8 ppm H F root juniperf so . thonpsonaa m pp X6 3. o upt n F Data are given on the U content of roots of several aculeatus X up to 2.7 ppm n F species, compared to U in branch tips of the same plants. nuttalllanus X up to 0.6 ppra n F Iseful information is given on experimental work on the relative amount differentakey U b f sp o nu t plantsd ,an ,he physiological effects observed. In general, growt stimulates hwa additioe th y db f no carnotite to the soil. Unusual growth (extra branching, «»perfect flower«) resulted from the addition of strongly radioactive substances to the soil. Discussion on prospecting by means of indicator plants joints to Astragalus (a Se indicator) as an indirect .ndicato U/Se depositth U e o f associationrt o e sdu . Only certain species of Astragalus absorb substantial quantities of Sei notably A. pattersoni and A. preussi. •R-rootj A- aerial part 25 Cannon 964 U.S.A., Soni-arid specie8 3 s withie nth Maximn ai Mosorolc bmprehensive informatio compositioe th n no mineraf no - B Utah ;onerai mineralized sandstones lize unmineralized dan d bedrock, soils, water vegad san - Rround .ation. Useful discussio physiologican no l processes Irtemesla Sagebrush R ppm.(R0 2 , Aflt F p. 42)t an important conclusion is that plants with nd) igh- transpiration rates will transport most ions to Atriplex Shadscale A 100 pnm A»R) F their upper parts, whereas plants with high cation Jhrysothasmus Rabbit brush A M> ppm A»R, F exchange capacities at their roots will accumulate most Coleogyne A 10 ppm R,nc F rootse netalth t .sa Cowania Cliffrose A 51 ppm R,nd F All plants roote mineralizen di d ground contained more •phedra Mormon tea A 120 ppm A«R) F iranium than those rooted in unmineralized ground. Fraxinus ah R 9 ppm R>A F lota are presented (Table 16) on U, V, Se, Mo and Pb in Juniperus unlper R L60m 0pp R-A F 2A1 samples comprisin specie8 g3 s (root aeriad san l Qucrcus ak R 190 ppra R>A F larts) collected over mineralize unmineralized dan d Sarcobatus }reasouood R 39 ppm R-A' F [round. Highest value is 1600 ppm U from deep roots of Taraarlx Tamarisk A m pp 6 1 R,n< F runinarua monostwrma penetratin oregU morU . e concen- Yucca ïucca R 10 ppm R-A; F .rato rootn di s than aerial speciel partal n si s except SLyrnue did rye A 5 ppm R,m F .triplex. ChryeothajunuB Ephedrad .an summarA . y (Table Ililorla lalleta grass A 2 ppm R,nc F .7} shows average concentrations of U in classes of tryzapaia Icograss A 82 ppm R-A) F •agotatlon growing over mineralize unminerallzsd dan d »Ilium oniod (li n All 200 ppm F t •rounbe o dt »star later A 7 ppm (R,nd F Grasses (unmineralizedU /,. m !pp (mineralizedU m pp , )31 ) tstragalu species5 a( ) /etch R 370 ppm R»»A F Herbs 1.9 PP°i U (unmineralited) 21 ppm U (mineralized) lluhla R 20 ppm R-A F Trees and)0.9 ppm V (unmineralized) 8.7 PP™ U (miner- Caatilleja A 12 ppm R,nd F shrubsj alized) Cryptantha îryptanth A 3 ppm R,nd F Unpublished data from R. E. Gilbert (Utah)t B-logonura îuckwheat R 80 ppm R» A F Sagebrush 1.7 ppm U (unmineralized) 9.7 ppm U (minera- Grindelia tumweed A 20 ppm R,nc F lized) ^utlerrezla înakeweod A 2 ppr5 a R.nd F Juniper 1.6 ppm U (unmineralized) $.2 ppm U (minera- ledysarum A 3 ppm fR.nd F lized) Lepldlun , • R [ R m pp 6 7 « F (unmineralizedU m pp (mineraPinyo1 U m 2. pp n 2 -)2. 3olidago lock goldenrod A 10 ppm (R,nd n F lized) jphaeralcea A (R,nn pp d5 1 it F -p- Part Lsh ^ to Ref. Species Investigated / No. * of or C Underlying H fnHe Reference Year location Eh vireraient Scientific Name Common Name pinnt U Cone. )rv Rocka Summary Canon (Cont.) tanleya 's plum e A (R,nm pp 5 c II F Informatio s i ngive anomaloun no s growthU affecto t e du a bwnsendla A(R,nm pp d1 < II F and daughter product . 58)(p s i optimu concentratiomU n Zygadenua emus lily A (R,nm pp 2 d It F 'or growth la 1.3-2.0 ppm U. Spirogyra Ugae Allm pp 4 5 n F ialsola. gladiolas and sedums are the most tolerant to rradiation, whereas are the least. Veget- ables, fruits and cereals exhibit stimulated growth when rradlated. U conten f leaveo t varn ca sy greatly froa aide f mon eo tre anotheeto trea aid root(if reone of penetratson e ninerallzation ). Analyses suggest that durine gth growing season U content probably rises in some ever- reens, but falls In roost deciduous species. uniper roots foun t deptha d s "ouch greater". tham 2 n1 Junipe shadscald an r e appea o accumulatt r e similar e thereforar d an amount , eU consideref o s d Inter- changeabl r locatinfo e g shallow t deptha ore e m 6 Or .s> was better detecte Junipery db . Juniper on barren ground contains generally 0.5 ppm U. " mineralize " d ground contalna generall pp2 y> m , u Se indicator planta (Astragalus) successfully outlined U ninerallzation. e biogeochemicali l metho ineffectivs wa d t locatin* e gU ninerallzation deeper than $0 m. 26 Cannon 1971 General tevle f plantwo a indicativ f wateeo r conditions, soil R :onditions, bedrock mineralizationd an , specifiw ne o N c. .nforfflatio. U n o n

27 Cannon, 1956 U.S.A., Semi-arid Plant aah normally contalna 0.2-1.0 ppm U, but may range B, G KLoinhampl Colorado, from 1-10 wheU m n0 pp roote n oredi . Majo e depositor r s Jew Mexico ip to 25 m below the surface nay be detected by biogeo- :hemistry. Generally morn rooti U e s than aerial parts. Several conifers absorb about the same amounts of Ut Inua ponderoaa, PseudotsuRa texlfolia. Abies concolor, Inua edulis, Juniperus scopulorum . utahenaiaJ . . [. monosperma. tost consistent results obtained from sampling the last gear's growth of needles or branch tips collected from ,he entire periphery of the tree. For rapid raconnals- jance, sample spacing of 75 n la adequate) 15 o spacing •ecommended for anomalous areas, and 4 1/2 -9m across .alus-covered outcrop. Indicatoe IstS f so r plant givene sar .

28 Cannon, 1956 U.S.A., Arid to semi- Flnu. sp a Pinyon pine 0,1-2.3 ppmAsh F Cretaceoua Pinyon and juniper branches contain 0.1-2.3 ppm U (in B Starrett New Mexico arid Juniperu. sp s Juniper coals ash). [uranifer- Dead branches contain nor tha«V n unpeelellveim e 2 -1 d oua) sections from It quadrants of the tree were collected. Tree assays indicate that areas of uraniferoua coal may be fracture controlled and of relatively small magnitude. Conclusion) branch tips of pinyon and juniper show a positive U concentration response to uraniferoua coals.

29 Dean 1966 Great Temperate Pinus aylvestria Pine N 0.6 ppm(unmln Ash «A d needleol d Ne r leavewan o s a were collecte n autumndi ) B Britain Range - average age of the sample wae 1.5 yra. Uraniferous and. 0.06-2.0 ppm H non-ureniferoua areas sampled. Data give r vegetationfo n Rar. Species Investigate^ P&ft /»h è Ho. i of or ë Underlying Carte Reference Year Location Environnent Scientific Name Common Harne pinnt U Conc. h-y •" Rocks Summary Denn (Cont.) Prunus lauroceraâua Laurel in mineralized area are from an old Corniah U mine. Ashed pine needles from 37 localities scattered through- m ^pp 2 0. Ash AA out the British Isles all yielded < 2 ppm U. uivnln» ) Conclusion: Plants growing in debris from a Cornish U hododendron ponticum Rhododendron O.OV-0.6 ppm) tt mine contained U 63-180 times higher than background. Cupreasu. ap a Cypreaa S> 0.5 ppm It Highest value sleavesk weroa n ei . Ice. aap Spruce N ).l ppm n axua ap. Yew m N pp 0 1. it ali. xap Willow ^(min.m pp 4 )6 tt 1 ppm tt It (unmin.) uercuB ep. Oak ;, .6(Hinm 0pp . n n m pp 9 0. tt it unmin. ) Bracken L 15 ppm (Hin. H it 0.5 ppm II n unmin.) 30 M.Latd.0, 1980 Canada, Arctic accinlum uliglnosum Bog blueberry ;, 0.4-98m 0pp Ash ? 'recambrian Very strong positive correlation betwee leaven i nU d san Xencz H.W.T. etamorphics tilln Ui s (<2u. ) m B Highest values obtained from shrubs collected close to a mineralized fault. Conclusion! Vaccinium ullglnosum can succsaafully be used for prospecting for U. 31 DOE News 1979 U.S.A., Temperate Peat Separatio organif no c acids shows that moa resideU t s OC (summary of Colorado in humic acid, with less in fulvic acid. ropor. J y tb Schmidt- Collerus) 32 Duncan, 1971 Canada, Uranium mine rhiobacillus ferrooxidans Bacterium Discussion of the bacterium Thiobaeillus ferrooxidans in Bb Bruynesteyn EUiott L. acidic mine waters, and its role in solubilizing uranium. By promoting bacterial growth there was an increase in uranium leaching. 33 Diinn 1979 Canada, Boreal forest .edurn groenlandicum Labradoa rte l 'recambrian Preliminary results of major project: see IXinn, 1981a. B Saskatch- ;hamaedaphne calyculata Leather leaf >1C- m <1 pp O Ash D Ithabasca ewan Icea marl ana Black spruce 3J. Dunn 1930 Canada, Boreal forest ricea mariana Black spruce T up to 15/t ppm Ash D 'recambrian Abstrac papef to r give symposiut na m (see 1981a). B Saskatch- M ii n ii W ~1 ppm tt D thabasca U mineralization 150 m beneath sandstone appears to be ewan Lodura groenlandicum Labrador tea S ~ 100 ppmIt D Sandstone reflecte plantse th discernibln o di N . e relationship u n M II R <5 ppm n D between U in plants and U in eoila. Cliamaedaphne calyculata Leather leaf S 0 -\ppr10 - a M D 35 Dunn 1980 Canada , Boreal forent Plcea mariana Black npruce T up to 800 ppm Aah D Precambrian a) Spruce tuiga proved easiest to collect and prepare, B Saskatch- Pinus bankoiana Jock pine T contai1 '(1 n Athabasca and contained more U than any part of any species. ewan Alnu. ap o Aider T about SOjs le f It D Sandstone year0 1 s growt practicas hwa l amoun colleco t t (?-A Larix larlclna Tamarack T U than spruce yea growtd rol h contain highese sth concentraU t - Botul. sp a Birch T it the same tions). jitea, b) Traverses over an area of several hundred square km Salix op. Willow T les£ 90 sU tt D roact expectee no hth d di U m d pp backgroun w fe a f o d than opruce, in spruce twig ash) 20 km west of the highest concen- Qrasa All 80£ leas U II D trations the mean concentration was 70 ppm U. All thon spruce, trees within an area of several hundred sq. km con- Bqulaetum Horsetail All 1 ppra It D tain »100 ppm U in their twigs. OJ Ref. Species Investigated Part Ash A of or S Underlying No. 4 H Reforancs Year Location Environment Scientific Name Common Home plant U Cone. Drv Rocks Summary Dünn (Cont,) ) Eight blogeochsmlcal profiles acros conductorH E s s did not help dsfine drill targets. d) Detailed sampling indicated that local variation of U in spruce twig ash is about + 15/C. systematio H ) e c difference betwee n twigi U n s from shor tald an lt spruc t adjacena e t sites. f) No systematic iifference between U in live and dead twigs. a spruc f o - lOOj ep 0 to 2 thagf ) e morn twigi th U et a s those near the bottom. systematio N ) i c iifferenc contenU n i e f twig o th t n o s north and souti sides of trees. 1) Spruce twigs usually contain about 10 times more U than needles0 tine10 sd moran , e than trunk wood. appareno N ) t correlationU betweed an n twii h U ngas in groundwaters. k) Anomalies transect terrains from wet muskeg to open woodland.

36 Dünn 981a Canada, Boreal forest RLcea mariano Slack spruce T (x - 84 ppra) 3h D frecambrian Aerial parts of Laarador tea have much more U than roots. Saskatch- 50-154 ppa Athabasca Spruce twigs are mast pronounced accumulators of U, and ewan « n K u N ppra4 1 x)- II D Sandstone ontain twics as nich as jack pine twigs. Conversely, 9-22 ppra he jack pine needles contain twice as much U as spruce tt n M n W . x0. 5 ppm) n D needles. 4-9.. < m 5pp Apparent relation p betweesli f sand o beneat U nm -0 h15 3.nus bankslana Jack pine H . x0. 9 ppm) ti D stone- and U anomalies in all vegetation, although anoma- 4-1.. < 9 ppra les ara above but laterally displaced from known minera- Ledum groenlandicum Labrador tea S x - 56 ppra) M D lization. 36-83 Ppm 1 tends to vary sympathetically with Track-Etch data, Fe, n ti n n L ppra2 3 ()- x » D 'b, Sm, and some tines Cd, Be and Zn. Commonly on inverse 17-51 ppm relationshi. p Hn betwes d an U n n ti it » R ppm3 (x. ) II D Ho relationship betwee n peai n plantsi r U U no t d an , 0.8-5.8 ppm soils. Charaaedaphne calyculata Leather leaf 0 ppm7 S= ) x ( n D Conclusion: Positive relationship of U in vegetation to 51-100 ppra ieeply burie leralizatioi m dU n (15. 0m) n it it n L (x . 51 ppm) M D 31-83 ppra Peat 'x • 6.2 ppm) 11 D 1-24 ppm

37 )unn L981b Canada, Boreal forest Plcea mariana Black spruce T L-2270 ppra A* D Precambrian Detailed and regioial surveys. Spruce twigs contain up tc Saukatch- Athabasc an virgii U 126m n 0pp fores knowo (n t n mineralization). owan Sandstone laasive "Hollaston blogeochemica anomalyU l " extends over an arcs of at lea: t 3600 aq. km, Pwigs show no systematic seasonal variation in U uptake » n ii n annual M " " " lecdle shoo d s w seasonal variatio uptakU n ni e (lowen i r juramer than sprin. g) Needle o shod s w aiJiual variatio uptakeU n i n . l!o relationshi n soilsi pU betweed . an n twi i h U ngas Moderately good relationship betweed an n twi i h nU gas acintillomete Tracu an r k Etch data. Across the Athabajca Basin background levels of U In spruce twig ash are about 3 ppm. In the Black Lake area ppmthe18 | nea - rang3 r UraniuIs e m rangCitythe is e 1-12 Carswele th 0n i ppmd l Structuran , - 148 e4 0 ppra. Ref. Species Investigated Part Ash à or Ü Underlying Mo. t of H r.nAr Reference Year Location Environment Scientific Name Common Harne plant y U Dr Cone. Rocks Summary Dünn (Cont.) Twigs appear ver; sensitive to changes in dissolved U in ;roundwaters. Suggested that siruce twigs may provide a "window" .hrough surface potentialeddjnentU e th f undero o t ls - ying rocks. 38 Dünn 9B2a Canada, toreal forest ^icea mariana Black spruce T up to 2270ppm Ash D Precambrian »escribes a largf U biogeochemical anomaly. The latest B Saskatch- Athabasca 0 yra1 . growt i spruco h e twigs contain, U o 227t m p 0pp u s ewan Sandstonn spruci centu m ( epp r o u etwigs0 1 ane )th d extendt a r fo s .east 3600 sq. kn . Intense local anomalies occur within this region. 39 Dünn 982b Canada, breal forest Hcea mariana Black spruce T Precambrian Summarizes data compiled by aame author between 1979- B Saskatch- Athabasca d informationadd.981w an ,ne s Wollastoe Th . n Uranium ewan Sandstone Biogeochemical Arjmaly foun t o extenleast da r tfo d 7000 n ashei U dm twigs)pp 0 >1 .( m k . sq äscussion on possible origins of the anomaly - concluded s probatli tha t i t hydrobiogeocheraicaya l effect. AO Xum 1982c :anada, Boreal foreat Picea mariana Black spruce T Precambrian Result f investigationo s s conducted duringe 1982Th . B Saskatch- Athabasca "JEB1 irlneralizatiozonU f eo n foun o havt d positiva e e ewan Sandstone) jiogeochemical expression. Aphebian legional study shows tha e Wollastoth t BiogeochemicaU n l metasedi- Anomal n ashei ppi Q U t>1 d ( y twigs) encompasse n area s a ments of 10,000 km . contouU Withim pp r 3 nextend5 thi e sr th , 300 fo s m 0k contouU m pp r 0 cover10 ann aree a s th d f . 100 ao km 0 The composition of underlying Aphebian bedrock is shown ;o hav a markee d Influence upo concentrationU n e th n i s trees. U Dyok, 1980 Canada, Boreal forest Slum sp. Water parsnip All 30 ppm}„ Precambrian First-year twigs ind leaves were collected from all trees B Boyle Saskatch- Betul. sp a Birch T+L £0 IT/ 805m metamor- studied, ewan Salix sp. Willow r+L /fro„ 6 3 mU phica larked radioactiv) disequilibrium occurs. The ratio of 3 3 ner otamogeton sp. tondweed nil 1155 0 " ( " - 1 - Ash F eU/U increase r latlg s approachinn yo mineralizationgU . uquleetu. mop Horsetail Ml 5 „ \aliz n Study reflect i relativel h t s y hig contena hR f planto t s Ujiu. sp s Alder r+L 850 " | growing clos Mineralizationo t e . lOStOC SP. Alga All 130 " \ Conclusion i High radioactive diseouilibrium in plants Ilippuri. sp a (forestall nu 63") indicates the pro dmity of U mineralization. B«tul. sp a Birch r+L 31 ")91 n Alnu. sp e Alder r+L Ash F Salix sp. Willow r+L % :J s«: u Detul. op a Eire h r+L iî-7 " 86-él m Ash F

Betul. op a lurch r+L 185 ppm (!*•(> l| F m from U) Ssllx sp. Ullow m 9 r+( Lm Pp 5 7 M F from U) Sali. xop lillow r+L 900 ppm (0.6 tt F m from U) Ref. Species Investigated Part Ash ^ of or S Underlying Ho. & Hocks Summary ?•"*•• Reference Year location Environment Scientific Name Common Name pjnnt" * Uy Dr Cone. 42 Büdna 970 U.S.A., breal forest - Pinuo contorta Lodgepole pine T+N 1-239m 6pp ah F Pcralkaline Lupina appear favouo t s r U-ric hareae th aol .n I l 6 Alaska ligh précipita- granite and Samples comprised 12-20 cm lengths of twigs plus leaves Ion Ice. aep ipruce T+N 2-315 ppm H F monzonlte or needles, weighing 100-200 g. Thuja pllcata 'eatern red T+L 1-2127 ppm II F (Hydrother- lenerally morn deaI U ed than live twig f pino s e [Compl- cedar mal U) .er'e notet this may be because needles and conea aeem 'auga heterophylla es t em hemlock T+N 2-901 ppm M F to have been included with the live twigs, and each plant 'unlperua ep. uniper T+N 2-159 ppm II F part may be expected to contain different concentrations 'acclniu. nsp Blueberry T+L 20-30 ppm II F of U]. Algae All 2-163m 3pp (1 F Ugh values wer l withial hundree w fe f min o na dm e work- Aiketkea pectinata All 923 ppm tl F outline.ngd an s d wel e regioth l f knowno minerallzaU n - «ycopodiura Club moss All < 20-37m 4pp II F ,lon. Cowberry All <20-832 ppm H F Conclusion i Lodgepole pine prove e mosdth t sensitive Alnua ap. Ider T+m Lpp 0 <2 » F liant to U mineralization, and was the most suitable medium for the area. 43 Ek 982 Sweden Boreal foreat x MaxU . B Plcea ables Norway spruce T+N 0?4 0.8 ppn Bh D 'hree mineralized areas chosen aa test areas. At each, H t I H n B 0.2 0.8 ppm M D samples were taken above mineralization, boulder trains, Inua aylveetris cotch pinen pp 7 1. B 5 0. n 0 md background l il ashe, d vegetatio lowed nconcenha U r - Dotula alba Birch n pp 9 1. B 9 0. H D trations than C-horlzo forestile d th an l f t o n litter. raecinium myrtlllus llueberry n pp 7 U.2. 1 6 0. " D to sample type showe a clead r tendenc o havyt e higheU r Vacciniun vitis-ldaea ingonberry Öl 0.9 7.4 PF" II D :oncentrations above mineralizatio r boulderno s than Calluna vulgarla eather pp3 112. m1 8 0. H D ibove background terrain. inclusio thin ni t s are e blogeochemlcaath l technique ihows no positive response to mineralization.

44 ErSraetB'd, 1971 Finland Boreal forest Cladonla arbuscula Lichen 6.1 ppn Ast MS Short paper describe e contenth s f severao t l metaln i s B (liruokanen n « 11 4*8 pptn " MS no 336lichensd 3an . Brief reference s madth i e o t e n n 1. alpestrla t 24 ppm MS content of U in plants recorded by others. Stereocaulon paschale " m pp 0 20 n MS 5. saxatlle 1.8 ppm il MS fephroma arctlcum u Allm Pp 9 3. H MS Cladonla arbuscula n 2.1 ppn tl MS C. rangiferina it 0.31 ppn n MS C. alpestrla » 3.6 ppn n MS :. arbuacula " 4.2 ppn n MS itereocaulon paachale n 1.3 ppm n MS Uadonia rangiferina it 3.1 ppm M MS "leurozium Schreberl Moss 2.1 ppm H MS n H ti m pp 2 3. tl MS ttcranum polysetum n 65 ppn " MS Uiacomltrlum n 4900 ppm tt MS lanuglnosum tllldlum ciliare 7.1 ppm n MS lylocomium splendens " 4.3 ppm ti MS acranum fuscescens " 1.7 ppm it MS 'leurozlum Schreberl H 4.5 ppn n MS Jicranum fusceacena " 3.5 ppm n MS ). acoparlum " All 6 »/| ppra it MS tolytrichum It n pp 2 3. ) n MS .luniperinum H )& 7.1 ppm it MS P. plllferum « 0.74 ppn ti MS ledwigla clllata n 4.5 ppm n MS ihacomltrlum ti 4.2 ppn M MS lanuglnoaun lylocomium aplendens M 1.9 ppn H MS Ref. Species Investigated P»«t Ash A 0. Il of or 6 Underlying P'V'" Reference Year Location Environment Scientific Name Common Hams Plant V Cone. DJ-V* * Rocks Summary B-Smetsd aan Pleurozium Schreberi n m pp 0 2. n MS liruokanen tylocotnium eplendeno u m pp 6 1. H MS Cont.) Polytrichum commune n All 1.3 ppm H m Pleurozium Schreberi n 5.0 ppm H MS ïhacomitrium n A. 6 ppm It MS lanuginosum H ft " 3.7 ppm 11 MS » Other samples froh mt s sltet uladonia alpestris Lichen i p 0 50 d Alan l 0 35 « HU Dicranum scoparium Moss MX) and 670 p] " XRF Folytrichum piliferum " 1700 ppm It XRF " Juniperinum n 240d Alan 0 l0 76 It XHF PJ Uiacomltrium n 17035d 0an 0 II XRF lanuginosum PI Brachythecium rutabulum ii 480m 0pp II XRF « dm& an, 1980 U.S.A. Semi-arid Artemisia tridcntata Big sagebrush S+L < 0.i,-3m pp .2 ah F Mainly Abstract of 1981 paper by tame authors. 6 Harrach (West) Tertiary tf Erdman , 1981 U.S.A. B Harrach («est) Semi-arid Artendsia tridentata Big sagebrush S+L

W 'aust L97° Worldwide Bibliography (with abstracts publicationf )o s R tandietti environmente th n i concernin h T d . an gU 50 •iaher 1978 U.S.A. Desulfovibrio liacterium ascteria foun n groundwaterdi s associated wit deposithV s Bb desulf Orleans are instrumenta controllinn li g redox reactions, which can mobilize and subsequently immobilize U. oo Ruf, Species Investigated Part Ash .c of or a Underlying Mo. k Reference Year location Scientific Name Common Name pinnt" * Vv Dr Cone. Rocks Summary Fmlc Bwlronment 51 Yoelich, 960 U.S.A., emi-arid Juniperus ap. unlper T+N 0.6-77 ppmfosh K Permo-Trias Plants sample d comparabldhi contentU e ) except locally, B tlelnhampl Utah elastics ,he bufraloberr mucd yha h mor . AnalyseU e e listear s f do Plnus cembroides "inyon pine T+N 0.6-7m 1pp 11 F 6 sample24 n I t s fro mlocalities6 . Shepherdia rotundifolia Roundleaf Um Spp 9 uo t p It F Intervalm 0 ( Samplin t a sg ovegwa r m outcro ; d pan buffaloberry n t er val s where locks not exposed. About 11 of branch tips (twig ne(dles+ s ) collecte t eaca d f 200o h 0 sites. [N.B. morU e n Samples containing >1 ppm U in plant ash were considered buffaloberry haï anomalou totae s th (approJ f lo population)$ 12 . . other species at n areas remote iron mines, anomalous concentrations were same site.] ..0-5. U ppm, compare a backgroun o t d . f U <0. o dm 6pp Near mines values of 6-115 ppm U were considered due in par o windblowt t n contaminatio absorptioy b n n through roots or leaves. Conclusion: biopeochemical anomalies occur at all ma.lor known deposits, plus some anomalies elsewhere. Buffalo- absorbs mor tha U e eothe nth r species sampled.

52 Goldsztein 957 "ranee arm temperate Pinus sp. Pine N pp0 n26 1. 4- ah F Permian Pin e beseth provete b samplin o t d g medium ashee Th d. B South) end-arid Callun. sp a Heather All 0.3 - 75 ppci II F volcanlcg rosheathed an e r :ontained similar amount , whereaU f o s s Cistus sp. ock rose All pp5 7 m0. 7- M F he pine needles [with a much higher LOI) contained sub- tantially higher concentrations. There was a good orrelation betwon U in vegetation and U In soils (1 - e ninoralize th 8 ppm) d an , d zonstrongls wa e y reflected y all sample media. .onclusiom Positive respons mineralizationo t e .

53 3ou$i, 1980 U.S.A. Semi-arid Artemisia tridentata g sagebrusil h StL 0.008-0.045 Drj F Tertiary oung tissue (< 2 yr. old) shows appreciable seasonal B Erdman Wyoming) ppm ifferences in U :oncentratlon, with lowest values recor- e summeth on i d r. This affec s i muct h less pronounced n older tissue seasonae Th . l variability appearsn i , >art, to be assoc .ated with variations in ash yield.

54 iough, L981 U.S.A., New )esert Hllaria Jamesii jalleta grass All 0.6-1.8 Ash F Cretaceous Mscusses backgro'ind values of many elements in three B Severson lexico ppm elasticd an s ipecies sampled from a 38,000 km area. San Juan Utriplex canescens 'ourwing salt < 0.4-0m pp .6 II F :oals The terminal 10-: O cm of stems and leaves of the salt- Basin) bush bush were collect ed. Samples were collected from one jutlerrezia sorothrae troom enokewood All < 0,4-3m pp .6 II p plant at each sit e, except for the galleta. U data are from ID galleta, 18 snakeweed and 10 aaltbuah samplest data quoted here are for U in ash. They are given on a dry-wight baoia In the publication. U and Mo were the only 2 (out of the 35) elements to show regional trends 'in galleta grass).

55 Grodzinsky 1959 USSR, Mono All uo 440pt 0 Ash Notes that ashed mosses have been recorded o t wit p hu B Ukraine ppm 4400 ppm U, but '.he range is usually 0.065-3.5 ppm U.

56 Grodzinsky, 196t USSR, Deals mainly with U and Ra in soils - discusses U uptake B Golubkova Ukraine of plants in general. 57 Harns, 1981 U.S.A., Semi-arid Mimosa biuncifera Catclaw mimosa L < 0.05-2. 6 Ash F Tertiary Method by laser-: nduced fluorometry found to be substan- A, B Ward, Texas ppra volcanic B tially more sens: tive than by conventional fluorometry. Q-dman and lacus plan4 -7 f Onlto sample6 y s (mostly catclaw mimosa) con- trine sedi- tained U in amounts above the of the ments conventional roetl.od (O.ii ppm In the ash). Ref. Species Investigated Part Ash A No. 4 of or S Underlying _Cod£ Reference fear Location Ehvlronment Scientific Name Common Name Plantn y U Dr Cone. Rocks Summary Harms, Ward The detectioe laseth y rb methoU f limino r fo td (0.05 and Erdman ppm) is about an order of magnitude lower than by the (Cont.) conventional e metiodth f o e ; thion t s bu resulte l al n i d plant sample /ina h sg detectabl highlA . yU e significant correlatio s rounnwa d betwee conten U e soil th e f th nso t and the associât îd plants. The laser-induced fluorescent method is described.

58 Hoffraan 941 Austria Algao All 9.1 ppmAsh F Short descriptl contenU f o f o livino i t g freshwater B algae.

59 Huffman 942 Austria Apricot W 7 PPm Ash F Non-uraniferous -egion near Vienna. B Birch W .06 ppm M F 3lum H .003 ppm n r1 Jrapevine W .005 Ppm n F Tobacco All .03 ppm n F Cornstalk .11 ppm ti F i>rn kernels .007 ppm M F 3eans .014 ppm M F Grasses .08 ppm II F

60 Huffman, 970 U.S.A. Artemesia ep. Sagebrush X 0.8-51.2 ppm Ash F Descriptio fluorometrie l t f no c metho f analysio d s A,B Rlley PinuB edulis ^nyon pine X 0- 6.4 ppm „ ? applied to plant ash. Pinus ponderosa tanderosa pine X 0- 6.4 ppm 11 r Locations of plait samples and parts analyzed were not Juniperu. sp a Juniper X 0-12.m 8pp n F specified. 6l Jayaram, 1974 India Bacteria Study concludes • hat considerable reconcentration of U Bb Dwivedy, cae broughb n x>u a tbacteriay b t e sampleOr . s showea d Bhurat, prolific growt f anaeroben h d scantan s y growt f chamauo h - Kulshrestha totrophic bacter a. Host rock showed the reverse.

62 Kleinhampl 1962 U.S.A., Hoist, high Pinus ponderosa "onderosa pine T+N «.2 - 8.5 ppmAsh ? Permo-Trias Biogeochomical p 'ospecting was restricted to the urani- B Utah dissected plateau Pinus edulis "inyon pine T+N «.2 - 3.2 ppm D r elastics ferous Triassic i:hinle Fm. Pseudotsuga menziesii Douglas fir pp0 mT+6. N- l *. i, r About 11 of brani h tips (including needles) was collected Abie. sp s White fir PP5 mT+1. N- l '. H ? t eaca h site fferenQ . t geometric datmeanU af o sexis t Juniperu. sp s Juniper T+N '.1 - 7.1 ppm M r for the species itudied (juniper and white fir were the Quercus gambelii Scruk boa US <.2 - 1.3 ppm II p same). Pines ap,>ea o havt r a greatee r rang n backi e - ground amounts o' U than the other species, and anomalous values highebegi1 . t a nr level inversn A . e relationship exists between U and ash content. Background values for oak leaves have in upper limit of 0.6 ppm U| for ponder- osa pines the lerel is 0.9 ppm I for pinyon pines 0.8 ppm, and for the firs and Junipers it is 0.7 ppm. Colluviu .hicm 5 km 0. restrict e effectivenessth f o s prospectin radioactivite l t y gb y method more thay nb plant analysis. Nine areas were sampled and later re- sampled for conf .rmation of results. Drilling confir e e presenc blot th manth a mf d U -i o y f o e geochemical anomilles. It proved impossible to predict reliably the gra le and precise extent of U deposits by plant analysis prospecting.

63 Kleinhampl , I960 U.S.A., feist, dissected Juniporus sp. Juniper r+N pp6 1 0.m 4- Kah F Permian to Discusaee the us > of Se (hence U) indicator plants (esp. B, G Koteff Utah ilateau Pinus edulis Flnyon Pine r+N pp7 0.m 2- D F Jurassic Astragalu d S.anleya)an s . elastics U values greater than 1 ppm in the ash of branch tips «re and propose o déft d mineralizee l i d e grounareath n .i d \O Ref. Species Investigated P«rt Ash £ No. oxidation of peat and is often accom- panied by high concentrations of U. Experimental work shows that U in jeata can only be in excess of 1000 ppm circulatine ifth . U b pp g les t 0 wateno 10 s s - thari 0 n1 However, investigations show that hig concentrationhU s may occur when circulating waters have about baakground levels of U (i.e. enrichment factors of 2 million). The Importanc .dation-réductiox o f eo n reaction fixe -th n si emphasizes i atioU theoreticae f no U th dr - fo i S l precipitation from peat wate -70nv s 7.5-7.ri H p t .A 8U dissolve stlmei3 i faster 5.5-6.0 H thap t n a condit e .Th - ions require accumulatioU r fo d pean ni t vary with climate and botanical composition.

65 Konstantinov 1963 USSR Arid, temperate Stipa heesingrlana Feather grass All ICO^u0 6 o pt Ash F rea 1 50-100e or Are U Hillt maI i m) beneaty 0 (relie5 o t h p fu B Carex ripariaeformla Sedge II lOOJUppm abov Faulted t surface. Plants lample intervalsm 5 t a d d soi,an l taken Artemisia sp. Sagebrush tt 1165J \deeply- netamorph- from depth of 15- -20cm. Soils contained background levels ïfchedra intermedia Mormon tea H lOOJSfburied U osed Lower of U (O.löppm) i ver the ore, but plants (300) contained Happula microcarpa 11 llOJUore body Cambrian backgroun whicU m hpp d increaselevel5 0. ppr0 f 6 !o a o dt Achyrophus H U3V( Back- felsite- above and immediitely surrounding the ore body (for 60m). grouns di porphyry & Ther wida s ei l.iogeochemical halo (extending 400n from ppm5 )0. tuffs. the orebody) witli concentrations 3-10 times background. • Above percent gee art irea 2 Area 2 t Rolling hills (relief up to 30m) i Biogeochemical concentration iaïëSonian background is 0.: S ppm U. An aureole with 3-10 times relative to porphyritic background U extnnded for 10 times the width of the ore Feather Grass pranodiorit tine0 2 widtee d abodth Augus n an Hayhi n y i , whict ta h n witi hU loww -ne tim -relieo etw f anomalies (3-100 tinea backgroum qtB-carborw- appeared. ate veins Conclusion: The lilogeochemlcal method showed a strong ' positive response to U mineralization at depth. In early summe technique rth closea s ewa r indicato mineralU f ro - ization tha :.*tn ni e summer that .A t tim biogeocheme eth - ical halo became diffuse and U concentrations were higher Ref. Species Investigated Part Ash * No. 4 of or SS Underlying Code Reference Year Location Environment Scientific Name Common Name Plant* * Uv Dr Conc. Rocks Summary 66 Kovalevsky 962 USSR letula sp. Birch T .05-.35ppm Ash F »lants analyzed :ane from close to a radioactive source. B «rix sp. Arch T .:0~./,5 » n F Uscusses radioactive disequilibrium (between U and Ra) Larix sp. arch N .45 " n F .n plants and shows that equilibrium varies greatly from 'also spiraea S .10-6.0 " tt F one specie anothero t s . Thi s becausi s e some plants (e.g. 'alse spiraea L 7.0 " n F dreh) absorb oo:-otherd thaan a e, R snU (spiraea, pine) Populus sp. Poplar T 05-.15 " H F tend to favour U Itiere is a large shift in equilibrium Salix sp. Willow T .1 " n F close to U mineralization. In general, the selective absorptio causea R radioactive f nth o s e equilibriumn i Concentrations Rel- e directio upsnliante th b excesn a n i o a tst R f f no o s ativ o Blrchet i .aotope he:t d .r decaan a y products. ietula sp. Birch 100J6 toncentrations o' U and Ra in various species, relative tapulu. sp s toplor 90* to birch gi"ene ar ,coefficiene ni . f radioactivo t e Lonicer. sp « [oneysuckle 75!« quilibriuo depends not only on the species of plant, but Filipendula 100* also on the radii m content! coefficients are usually >100, iibes sp. Currant 200* muce b hy lowema t rm wher n groundwatei U e s i absorber d /arlx op. arch 400)1 >y the plants. Inu. sp s Pine 550* Studies sho s cones>branchea>leave y i takewha' t b U ,p nu a 'alse spiraea 600* r needleo s [N.B. onlconeo ytw s were analyzed]. taurskly rhodo- Comparisons are i^ven of K, U, Ra, Th, Ac isotopes in dendron 500* several plants. Ibst gamm betd aan a activit plantn yi s si caused by K| rnos*. alpha activity is from Ra. Concentrations in ascussion also includes an evaluation of the relative plants growing in .onization due tu radioactive elements absorbed by plants uraniferous soll« alpha radiation ' i.e. almost entirely Ra) is responsible bpulus sp. bplar L .12 ppra sh F for 90* of the ionlzation. ATlx Sp. Larch T 1.6 " n F Betula sp. Birch T 0.1 " n F n t Filipendula T 0.1 " F Grasses All 24.0 " n F 67 Kovalevsky 1964 USSR, Boreal forest letula ap. Birch Discusses Ra an. U in plants. Ra 1.3 - 3 times higher B Siberia Icea sp. Spruce Group I plantn i f Grou timeso 0 2 I pthas- soilsn 5 ni d an , Abies sp. Fir higher in their rootlets. In plants of Group II the Meadow-sweet n soil i plantn a i s R a mucsi rati R o st hf oo lower . Yernik U usually occur: i in concentrations 10 - 100 times lower plantn i s than noils doet d migratan no s, r fros efa mit "opulua sp. Aspen source in the soils. U is not an essential element to Sali. xap tflllOW Populus ep. toplar plant growth. Acanthus A table shows element concentrations in different size Inus sp. Pine Group II e lesth sn i tha t fractionmos s microi n 5 1s : U t so nf o s Thuja sp. Cedar fraction. Juercus ep. )ok , Taxinus sp. Ush , Acer sp. laple

68 Kovalevsky 1965 USSR Boreal and temp- Discusses the rulative alpha activity of various trees, B erate forests. shrub lowed an s r plants from borea temperatd an l e forests Concentrations cf U are not given i most data refer to Ra. Fillpundula, rtxdodendrons and ledum have the highest alpha activities. 69 Kövalevsky 1966 USSR Quartz 96p. boo f whico k h onl e prefacyth obtaineds wa e i this B porphyry note e higth s adioactivithi time0 y(2 s backgroundn i ) both plants [gr< ases and others) and soils overlying a e body.or U Gooc correlation betwee d soilsan U n .

Ref. Species Investigated * Ash £ to Ho. & Par or Ü Underlying GnrttJ Reference Year location Environment Scientific Name Common Name p]ant U Cone. Drv Rocks Summary 70 Kovalsvsky 1972 USSR Boreal forest Plnu. asp Pine X Figure 1 shows tlat the correlation between U in plants B Siberia Rhododendro. nsp Rhododendron X m pp Irnuc 0 10 . Ash and U in soils it good only up to 10 ppra (in ash} t Sorbus ap. fountain ash t ) further increas soiln i U s f edoe o result n a sno n ti plus others (not increased uptake in plants. Plants (in thia region) listed) appear to have a physiological barrier to U uptake. [However, Ra reteins a perfect correlation between Ra in soils and Ra in Fiants up to at least 1% Raj. Therefore, considereis ti d tha shoultU rejectee db basia s da c biogeochemical irdicator of U mineralization) it is only secondara theit a e yr ar indicatorhighes a R d tan .U levels (esp. 2 tc 6 yr. old growth) from the fall to the spring. It is recommended that in prospecting for U the following ehould be collected! 1. 2 - 8 yr. old cuttings of branches,) for determination bark and wood) j of Pb,As,Ag,Bl. 2. leaves, cones and green shoota. ) Ra, U and thoron should also be determined. Conclusions! Bloc eoehemical prospectin moss i tU r gfo effective wheni basie th uses i cs a d ) elemen1 U (ana . R t dno t indicat- whils, association or i t1 n with non-radioactive element indicator plantn si secondarusea s s i a da y indicator. mineralU e Th . s2 sough readile tar y soluble (e.g. pitchblende) . Overburde. 3 this ni n (usually yna lest bu s , tham 0 n1 be considère bly more). Ther. A leachee ear d lithogeochemical haloes. 71 Kovalevsky 1973 USSR Discusse "physiologicae sth l barrier absorptioo st t no B element plantsy sb " (FBPR), whic muce har h more signif- icant in the aerial portions of plants than roots. FBP absens Ri rootn ti highef so sigw rlo -plantf o d aan nificanc lowee th rn ei plants unaffectes i a .R FBPRy db , whilst V and K are moderately affected. Ra la concentrat- erootse d th mainlbare f th .ko n Plantyi s growinn gi soils with 0.3-3. quit U hav U e m eth 3 pp evenl y distrib- uted, whereas in soils with 10-100 ppm U, the higher plants exhibit an Insignificant increase of U in their aerial portions, ind the lower plants and roots of higher plants may have 10 to 100s times the content of U ' in the soils. Wltnin the roots U distribution is uneven, being enriched up to 1000 tines in the bark. Mosses, lichens tnd roots of higher plants in contact hal a diffey it ona d thein ran i e concentrrU wit or hU - ations from background value 10,00o st 0 times greater.

72 Kovalevsky 1978 Review paper which stresses the role of "physiological R barriers" to biogeochemical prospecting in general. U is considere "loda t barrier" «lament (1.0. only small quan- tities can be taken up by the higher plantai Element absorption by plants ia, on average, 3000 times more vigorous from aqieous solutions than from the solid phase of soils. Ref. Species Investigated P«*1 Ash £ of or t> ftiderlylng Ho. * Summary Pftflf Référença ear location Environment Scientific Name Common Name plant" « Uy ConeDr . Rocks Kovalevaky 979 Good review of fundamental theories and techniques foll- 73 owe n biogeoch«nicai d l prospectin wida r egfo rangf eo ore deposits. Sur «arizes • great deal of research and ease histories (lorld-wide, but with an emphasis on the Russian literature). United discussion of U, but some useful summary di.t n table«ai .

74 oval sky, 970 USSR Cool temperate Bacteria Study of the adajiatlon of micro-organisms to different Bb «tunova content n laki U e f sedimeno a t oozes. Some bacteria have a mechanism whlcl inhibits successive uptake of U into the cells {'adapted1 strains), wherea othern i s e th s mechanism ia absint thus inhibiting growth and decreas- .ng their biomasi . The adapted strain plays an important and more active role in the biogenic migration of U than ihe unadapted stiains.

75 ioval sky, 966 USSR, Arid Caragana laeta All max. 23 ppm Ash Compare provincU e th sf Khirghieo Tyan-Shad an z n with B 'orotnltakaya Khirghiz normal backgroun e areblacd th an a r k fo csoil f so [urskiii U in thn plants of the uraniferous area ia 5-85 tines greater than background caused an , s morph- ological changes (e.g. albinism and vari-colored flowers .n Caragana . ReferlaetiU) m o numerout .s pp wit 3 h2 s plants, organism! fisd han , with referenc e passagth o t e e of U through the food chain. There is a decrease in U accumulatio s i.hna e food chai s ni ascended o t e du , barrier mechanis. tis

76 fovalsky, 1966 USSR fevers some of tlie information given in the paper in B rorotnitskaya, Russian by Kbvaliiky and Vorotnitakaya (1966) - e.g. ,ekarev morphological chunge increased an s contendU n planti t s of uraniferous areas accessiblU . o plantet n ca s readily penetratn into exchangeresuln thea io s na f o t , or in a complex < ombination with organic acids given off )y the plant rool.s. The amount of U taken up from a soil s relateI natursoile n th th f .o eo dt Som e planty sna accumulate U without showing any morphological change.

77 fovalsky, 1973 USSR, Short note discussing the passage of U through the food B /orotnitskaya Issyk-kul chain. No U data Lekarev 78 Kronfeld, 1982 Israel Arid, hot Phoenix dactylifera Desert pain L 0.1m 2pp Dry A Granite Highes concentrationU t s were foun n paini d s growinn gi B Zafrir granitic terrain:i. The palas reflect the U isotopic dis- equibria of t hell' associated water sources, and the ratio f U-23o s U-23o 4'. n definini 8 g target arear fo s prospecting. In '.he southern Sinai the leaves do not closely reflect '.he waters' U concentration, but do mirror the U iso-.ope ratios.

79 Larsson 197 Sweden, Temperate forent Dead organic it - 22 ppn) As XRF Mainly Organic stream bunk sediments (dead organic debrid an s B, P Pajala naterial granitic roots of Carex) lomprised the material collected for a regional survey. Bihanced values of U all occurred in areas underlai granitey n]. . Multi-element analysie th f o s sample performeds e datwa s th ad thean , n subjecteo t d computer manlpuli tion.

Ul OJ

Ref. Species Investigated Ash x

t No. A rar or ü Underlying M p Reference Year location Environment Scientific Name Common Name Plant U Cone. Pry H Rocks Summary 80 Lecoq, 958 Africa tesert, Savanna, Compositae Granite with No specific biogeochemistryU dat n o i . Only referencs ei B Bigotte, [.Central quatorial forest Chenopodlaceaa U veins p.?6l: of 21 species recognized none seemed peculiar to Hinaul t, Cornuca uraniferous zones, but Cornuca seemed capable of accum- Leeonte Crass, crucifer X ulating a little U. 81 Leroy, 962 USA, Colored Temperate Parmalia congpersa Lichen All Max. 20 ppo Mi S Sandstone Four species of lichen collected from Mesozoic sandstone B Kokaoy Jmbilicaria hyperborea it "m pp 1 3 •' " S outcrops yielded from 1-31 ppm U, whereas the s/stns >canora rubina n n " 10 ppm » S all had less than 1 ppm U. Caloplaca elegans tt m pp it3 " « S

82 Lexow, 948 Argentina Seal-arid, warm Larrea divaricate Creosote buah X Cannon (1964, p. 55) quotes this paper, and notes that B Haneschi, Schinopsia lorentzll X these species hare unusually hig contentshU . Sa 1 °1et) Usitain, 967 USSR Peag tbo Peat Fixatioorganin o U f cno matte discusseds ri wels ,a s la P Kruglov, hydrogeochemical factors. The possibility of peat to bear Panteleev, U is not regional, but local. U accumulation is directly Sidel'nikova relateconditione th o dt peaf so t formation. Oxidation and reduction fa:tors are important contrôla. 84 Lopatklna 967 USSR Peat bogn si Peat Hax.6000 ppra 7 ? Various 200 marshy areas were sampled, plus 4 bogs in detail. U P,L humid regions concentration governee compositioe sar th y e db th f no (low moor g) groundwaterse th f o peatcontînU H p e d ,th , tan ratef so groundwater flow, and the total dissolved salt content of the water. Khsre the salt content is high, the U tend: to remain in solitlon and not be absorbed by peat. Laboratory expérimenta showed that from pH 6 to 7.2 nearly all the U in solution was precipitated by the peat At pH 8.3 none wie precipitated.

85 Lopatkina, 1970 USSR Humid, Cool Betula ap. Birch T+L 0.1-0.m 9pp Ash 7 Granite The U content of the plants bore no relationship to the B KomaroY, E. Siberia Temperate. Marshy Ledun op. Ledum T+L 0.1-1. It « U content of the soils. The soils ranged in content from Sergeyev, flood plaind san Alnus ap. Alder T+L 0.4 '/herea, U 200- m 1 0pp s onl herbse yth , mossesd ,an Andreyev terraces Sali. xsp Willow T+L 0.2-2.0 cotto Highes« nU grasm oved pp contenttU sha r3 s tended Lari. xsp Larch T+L 0.6-0.9 to occur in root ij it is believed that U is adsorbed Betula nana Dwarf birch T+L 0.2-2.5 upon root surfac is. Mosses (8 species examined) accum- Car ex Sedge All 0.2-1.0 ulated more U thin the higher plants. Dead larch needles Herbs All 0.2-19.5 contained mor thaeU n live. Briophoru. nap Cotton grass Upr. 2.5 Conclusions! expised parts of trees and grasses contained n n H Lwr. 10.5 one tenth to one thousandth of the U absorbed by the t, H n Roots 45.0 hydromorphic soi . in which the plants grew, regardless Hasses All 1.7-210. contenU groundwaterse e th o fth f to . Highest concentr- - ations of U occu- in plant roots, dead plants and mosses. 86 Magne, 1974 France Laboratory teats Thiobacillus Bacterium Laboratory tests of bacterial cultures show that micro- L,Bb Berthelin, (and other micro bial activity increases the aolublllzatlon of U by 2 to Doranergues organisms) times7 9 pmcessee .Th blosynthesee sar complexinf so g or chelating com;»unda involving soil microflord aan bacteria. U attached to organo-compounds is released by biodégradation. 'Sms bacteria may be instrumental in mobilizin depositsgU . Ref. Species t InvestigateP« d tsh £ of or v Underlying No. t U Conc. H Summary """'• Reference ear location Environnent Scientific None Common Name plant *y Rocks 87 Halyuga 964 USSR arious Arteraisia Sagebrush All Book which describe controle sth internaf so l factorf so B ) In déserta) Salsola Thistle n dispersio chemicaf no l elements abov depositse eor ) Astragalus Vetch It external factors of migration] conditions required for Anabasis Itsegek n the accumulation of heavy metals in planta) and gives a Halo xy Ion Saxaul n critical evaluation of the biogeochemical method of pro- specting chaptee .On r deals wit biogeochemicae hth l exploratio undeU r rnfo desert conditions founs wa dt .I that higher accumulations of U occur in roots than in aerial parts. SS famulea, 967 umanla '«operate forest Quercu. ssp Oak X 100-320 ppra sh 7 Results indicate that beech accumulates U more strongly B äuracu Fagus sp. Beech X 160-320 ppra N thabettes i nm oakrel thad ,an n fernsconcludes .i t .I d Ulmu. ssp Elm X HO ppm n thabiogeochemicae tth l superiomethoe b y dma radioo rt - Xppr4 8 a - 72 M metric, hydrogeochemlca lithogeochemicad lan l methodn si the exploration for U. Results obtained «ce interpreted a functiosa loca. nof l geology. 89 4anskaya, 956 USSR Laboratory testa Peat Deals wit bindine hth transfed differeny b gan U f ro t P,OC Qrozdova natural organic compounds - fulvic acids, humic acids, Bnelianova and melanoidlnes levelH )p s gover formatioe nth f no uranyl fulvate humâted san s from uranyl salt fulvid san c and hustle acids probabls i .U y boun pea o coat d tan s l a an organic complex. U accumulates in the chitin envelope of organisms. 90 Manskaya, 968 USSR arious Chapter 6 describes the association of U with fossil c Drozdova organic matter summarized ,an biogeochemicae sth l studies conducte othey db r workers.

91 Massingill 1979 USA, Colora* end-arid, temper Astragalus pattersoni Poison vetch Clastics Summary of geobotanical prospecting for U using Se G ate Astragalus preussl n n Indicator plants (based mainly upon Cannon's work)o .N new data. Commo indicatore nS illustratede sar . Notes that the best Indirect indicators of U are Astragalus pattersonl and A. preussit these develon beat where ore contains more t nan 0,001% Se and lies at less than 70 ft (20 m) beneath the surface. Botanical studies made in 10 districts of the Colorado Plateau have located 5 or« bodies.

92 toiseenko 1959 USSR Boreal forest, Scorpidium scorplodes toss All Max. 189 ppm Ash F J mineral- Samples were taken fro aren ma a with radioactive soils B (European taig bogsd aan . Calliergon giganteum « " 115 ppm F ization over know bodiese 2.5kmx nor m k ..5 Are0. 0.2 s x awa 5 m k tt-epanocladus fZultans if m pp 4 5 11 F Relates the U content of the ashed plant to the V content Polytrich™ commune n " 19 ppm F soilse ofth . Host mosse similad sha contenrU e th o t Sphagnum centrale n ppr9 a " F associated soil. Herbs had consistently lower U levels Carox caespltoaa Sedge m pp 9 9 " F otha fU soil e n th whic n si h they grew. Tree similad sha r AegopodluJti podagraria (Horb) " 67 ppra F U conten soile th ,o t excep locar tfo l enrichmentn si Lycopodlum annotlnum Club moss m pp 0 2 " F spruce needles and willow leaves. Filipendula ulnaria » 11 ppm F 110e th Man5 f yo sample s collecte greated dha r than nor- Crepla paludoaa m pp 9 " F mal U contents for plants, with 70 samples containing Doscharapaia caespitoaa tt " 7 ppm F more tha designatee nth d 'anomalous are'e leveth a r lfo Prunolla vulgar lo ti " 7 ppm F of 5 ppm. Aconltum excelsum m Mpp 6 » F The study showed that in a given area, mosses concentrât« Picoa excelsla Spruce " 400 ppm F more U than grasses and trees, and herbs contain more w it n l»£ " 7 ppm F than the trees. It is noted that there is an inconsistent H n II m pp 0 R1 " F relationship plantsn betweei U soiln i d «nU san Proba >ly not fron t e une tree V/l Ref. Species Investigated Part Aah A of or 1 Underlying »o. 4 H Endt Reference Year Locstlon Environment Scientific (tame Common Name pinnt Uy ConeDr . Rocks Summary toiaeenko Yangula alnua Buckthorn X max. 3^ W Ash F (cont.) Alnua Incana Alder L u pprl a « n F Sallx caprea Willow L " W» ppm H F ietula pubescens Birch L " 6 ppm H F Sorbus aucuparia (fountain aah m Lpp 6 « n 1 93 oore 95t USA Laboratory testa Coals, wood and Describes the fixing of U by peat, lignite and coal. Low L,C, peat rank coals were more effectiv extractint ea soln i g-U P ution than any other material teated. The association organid an V cf o materia naturn lI resuly ema t froe mth abilit thesf yo e aubatance removo st froeU n natural aolutiona by the formation of a chelate. Qlacuaaea the possibility of using coal, lignite and peat bo extract U from solutions derived from »-processing industrial planta. 94 urakaml, 958 Japan 'operate forest PlnUB ap. Pine X 93 ppm (min- Aah F Conglomer- Pine, cypress and Cryotomeria were (in decreasing order) B •ujlwara, mount ainoufl) eralized area] ates effective in accumulating U. They showed a good positive Sato, 2 ppm n F response to U mineralization. The other species were lea a hashi .barren area) effective. Cupressu. ssp Cypreaa X 23 ppra (min- n F eralized area O.fc ppm n F [barren area) îryptomeria Shibu Saaa albo-marglnata Plnua ponderoaa tonderosa pine H 0.4-20m 0pp Aah F Precambrian First year growth of needles was collected from mineral- 95 Naeh, 1977 USA 'omperate forent n B Ward Washington H tl It H C 6.0-WtO ppm F Togo Fra. ized and barren areas. Table lists all U analyses! 358 State Pseudotsuga menzlesii Douglas fir H <:O.V- 26 ppm H F pine needle Dougla9 ,2 s fir pin A con5 ,3 d e ean needl e duff (i.e. forest litter) samples. Some samples may have been contaminated fro minesU ope n5 t investt npi ,bu - igations suggest that contamination was not a major problem. believeIs ti d that pine needles tak similap eu r amounts needler fi e sconclusive)th t (datno o t oe fU aar . Planta with cell sap of leas than pH 5*2 absorb relative)) large amount. U f so Cones and duff appeared to have more U than needles. U concentrations were relatively high near mineralized zones. 96 Norris, 1973 General Sandatone-type U Review distributio e papeth f ro microf no macrod -an - R,C Bimond depoaita plant fossilvicinite th n si sandstone-typf yo depeU - oaita. Dlacuaaes the role of palynomorphs, lignin, humic substances and carbonaceous sediments In mobilizing and fixing U. Ertenaive bibliography. 97 Peter Bon 1971 General information on the accumulation of chemical R element liviny sb g organisas. Herbs, mosses, lichend san others are included. Common accumulator plants for U are quoted. Ref. Species Investigated P«vt Ash J Ho. 4 or •> Underlying (îirtf Reference Year uocation Bwlronraent Scientific Name Common Name Plant U Cone. Dry «" Rocks Summary 98 Prleter, 970 Laboratory teats 3orn Results showed that U is accumulated in plant tissues, L Priater Beans especially in the roots. $0 ppm U in water proved fatal to beans and corn. 99 Rackley, 966 General toll-front dep- lostrldiun eelluloo«- Bacterium Sandstone Biochemical reactions cause thesy db e bacteri dise aar - Bb Shockey, sits dossolvena cussed, with particular attention to the pH/Eh changes Dahlll esulfovlbrlo n which take place. Thiobacillus can survive at pH of zero, 111068011103 ferrooxidan! n and thrive highla n si y oxidizing environmeno t p (u t 760 fflv), Bus to these reactions there is bacterial zoning associated with metal zoning across the edge of a roll-front deposi. U f to 100 tobertson 975 United Plant debris A theoretical situatio describes ni d where granits ei C Ingdon overlai clastiy nb c sediments. Wales) The relationshi phunie betweeth cd componentan nU f so coal clastid san c rock describeds si usiny .B g palyno- logical techniques the lateral persistence of organic concentrate accuratele b n sca y predictedU a n .I province where free circulatio groundwaterf no takn sca e place, accumulation of prospective urano-organic com- plexes may be predicted. 101 Rogers, 969 Brief accoun worf to othersy kb . Mentiont no s thas i tU R Adens known to be of importance for the process of any organism. The concentration of U in plants is not easily understood occuy ma chelatess .rU a . 102 Rowntree, L976 Australia Tropical scrub Eucalypte (gum, Sandstones Results showe widda e variatiocontenU e e th th f to n ni B Hasher I. Territory malled ean and meta- species sampled, even within known anomalous areas. The stringy bark) sediments eucalypts showed encouraging results and could be useful, In this environment, however, augur drillins gwa preferred to biogeochemistry.

103 Schiller, 1975 Wild sour cherry (minm Xpp -9 2 As>i 1U Discusse planf o A tsNA materia included lan se datth n ao A, B Skalova eralized area analysis of two species. Grass All m (minlipp t - n JAA eralized area n n 0.5 ppm n 1AA barren area)

10t Schmidt- 1979 General Report (availabl microfichn eo e only investigationf )o s R,OC Collerus and an extensive literature survey and compilation of information concerning the relationship between organic natter and U ore formation. The emphasis is on humic and fulvic acids and their U complexes in uraniferoua peat bogs. Both acids play a significant role in the form- ation of economic secondary U ore deposits. 105 Scott 196 1Utah, USA , Temperate grass- Araucarioxylon Fossil conifer up to 8.55É As Sandstone depositn i U Colorade Hesozoith f s o n o oe plateacag s ui C Colorado lands often associated with fossil wood and other organic debris contenU e . Th organi f to c matter variea n si single mineralized zone, hence the possibility that wood: of differing systematic affinities might have different capacities for localizing U is examined. Various organic materials have the ability to effect fixation, and evid- ence does not suggest thst different plants had a algnlf- leant bearing on the localization of ore. Ref. Species Investigated Part ;Lsh £ oo No, * of or 8 Underlying Reference car jacatlon Environment Scientific Name Common Name Plant U Conc. try H Rocks Summary 106 hacklette 96; N.America 'anperate to •£ilobiun anguatifolium Fireweed F Discusses geobotanical aspects of fireweed (Indian brush) G Arctic which ia found in large numbers in temperate and arctic regions (particularly disturbed areas). Studie f fireo s - weed population n mani s y areas show that variation ni colou a rarei r . However, therdistinca s ei t changn i e colour of planta growing close to a U minei the plants palee ar r than elsewhere. Factors causing mutatione ar s briefly discussed.

'anperate foreat Pohli. ap a Moss All 11-1600 ppm* Ash UA3 Volcanica t aryophytes were collected from sites where springs (22) 107 Shacklette, 982 USA, Idaho u Erdman Brachythecium rivulare H 11-1800 ppm elastics emerg t rock-unia e e sprinth t f contactao g H waterp e Th .s tniura punctatum n tl 31 ppra II u ranged fron 7-4-Ö.4, and the U contant of the waters torchantia polymorpha J. verwort It 8 ppm H n ranged from 0.08-6.5 ppb. The water with 6.5 ppb U gave Cratoneuron filicinum toss II 8 ppra II n e mooriath so et wit e higheshth contenU t t (1800 ppm). n Philonotla fontana n It ppr7 6 i,5a- n Spectrographi cmos 8 analysi2 se e sampleth on f so d an s Bryu. mop » II 18 ppm it n liverwort indicated unusually high concentrations, locallj Brachythecium lamprochr- of As, Be, Cd, and Pb. yaeum n n 6l- 180 ppm n n Conclusion: Mosses absorb U from spring watera, but are Aulacomnium palustre " II 11 ppn n n better indicator f mineralizatioso n thae waternth s Drepanocladua fluitana n ppr0 70 an - 16 n n because l)they concentrat ) the2 | yU Integrat e eth e eth Cratoneuron falcatum n n 87 ppm n n fluctuatin valuee watergU th f o aa ove a lonr g periof do ßtchodontium pellucid- time. ium n M tOO ppra ti n »All data normalized a "aediment- o t f •ee1 basis.

108 Sheppard 1980 General A review of the literature on U and Th. Many aspects are discussed e.g. concentration plantsn i s , solld ean R organisms, and analytical methods. Information la given n naturee i chemistr th h T n s welo d a , s an f a loyo U n concentrationelementso h T tw d e an th U . n plantsi a , plant transfer coefficients, concentrationa in soil organisme methodd an , f detectioo s e summarizednar .

109 Sheppard, 1981 Canada Cool temperate Lycopodium obacurum Club moss (groun 1 All <3-150 ppm Ash NAA Precambrian Three uranlferoua areas were studied to determine the sine) Shield relationship of U, Th, Ra, and As in rocks and aoils to B Olchowy, (Ontario à foreat n Mayoh Manitoba) Polytrlchu. msp toss tf 60 ppm tha n planti t animalssampled B k an a n i sU . frot m3 Sphagnum ap. n n 3.5 ppra n n plant species show concentration factors (compareo t d Pleuroziu t Dlcra. map - soils) of 0.03 - 3.0. Preliminary data Indicate that the nu. msp n n <3 ppn it lower plant forms were able to accumulate U better than Cladoni. ap a Lichen M 3- 30 ppra n e higheth r planta. Aroun e Bancrofth d minU t e planta Carex op. Sedge II " PF <3 n containe . 'ppNea 0 e BruiU nth 15 dr - nfro 3 Lake/EUisom< n Gramineaa Grass H <3 ppm n Lake mine all plants had concentrationa of U at or below Pteridiun aquilinum Bracken fern n 32 ppm n the detection limit of 3 ppm. The Black Lake occurrence, n f£llobium angustlfoliun Fireweed H <3 PF» which has not been nlned, has U in planta from *3 - 60ppn Typha sp. Cattails n 3 ppm n Solidago canadensia Goldenrod n 3 ppra H Thuja occidentalia White cedar UT Iß ppra II Acer sp. Maple UT W> ppm n Acer op. Maple W 20 ppra it Alnus rugosa Speckled alder UT ^ 3™1 AO ppu n Alnus rugosa n « W 3 ppr< a it Betula papyrlfera Paper birch ppr5 U2 aT - <3 n Picea glauoa White apruce UT 3 ppr< a H Larix laricina larch UT <3 ppn H Ref. Species Investigated Part Ash .c of or » Underlying No. 4 location Bnrironment H y U Dr Cone. Rocks Summary _COdE Reference Year Scientific Name Common Name plant Sheppard etui 981 Una. op s Sumac UT pp3 m« Ash NU (cont.) tubus idaeus Red rasberry UT < 3 ppm tf n Prunus virginiana Chokecherry L » PF <3 n n n u W m pp 3 < n Jalus sp. ipple Fr *3 ppn » Populus balsaraifera ialsam poplar LtT * 5 ppm it Populua tremuloldes Yembling aspen UT 3-10 ppm it Salix sp. Willow UT 3 Ppm tt Anaphalia margarlt«cea 'early everlast- ing UT <3 ppm n fragaria bankaiana Strawberry All "3 ppm H /accinium myrtilloides ttueberry UT 3 Ppm M Pinus banksiana Fackpine UT m 3-ipp O H Arctostaphylos uva-uroi Bearberry UT m <3-1pp 0 tt Abies balsamea Balaar mfi UT 3 PI» II Ricea mariana &ack spruce UT 3 ppra M Juniperua communia Funiper UTm pp 3 « M Ledum groenlandicum ^bradea te r UT «3 ppm ti Chamaedaphne calyculata Leatherleaf UT <4 ppm H

110 Szalay 1958 Hungary Humus, peat and Experiments showed that hunic acids are responsible for P, OC coal the enrichment of U in coals and other decayed organic matter. Thi reversibla s a l fixinU f go e cation-exchange process with a geochemieal enrichment factor of about 10,000i 1. Comparison is given between laboratory experiment enrichmenU d an s n naturei t .

111 Szalay 1968 Hungary Peat Laboratory experiment field an sd tests. Humic acids derived from peat and plant residues were found respons- L, P e geochemieath ibl r efo l fixatio. U f no

112 Talipov, 1974 USSR Mountainous, Ephedra shobllaceae Wormwood Ail Schists anpreferentialle founs b d Uo wa t d y concentrate n rootsdi . B Khatanov Temperate Hhannus coriacea intrusives The distributio concentratiod nan f otheno r elements Precambriar is discussed. 113 Thibault, 1980 Canada U mine tailings Plnua sylvestris Scots pine R x 346 ppm Dry NW Laboratory experiment n whici s h seedling f pinso e were L Sheppard (seedlings) S » 9 ppm II tt planted in soil from U tailings, and also in a non-uran- m pp NU " II II iferous control soil. distincThera s ewa t acropetal (tipward) gradient for U and Th. U showed a strong concentration in roots, with up to 609ppm U in one dry root sample s concludeI t I . d thaseedlinge th t s growing treaten i d soils eventually die chemicay db l and/or radiological toxicity. High levels of U and As seemed to cause stunting.

Tlmperley, 1970 New Zealan Temperate forest Nothofagus fusca Red beech L x 5.6 ppm Aah F Investigations showed that trace elements essentiao t l in n B Brooks, Qutntinla acutifolia 'ive fingers L " 7.8 ppm F plants gave different statistical distribution patterns Peterson Wulnmannia racomoaa Kamahl L3 pp3. m " ii F non-essentiao t l element lattese (e.gTh . r tenU) . o t d have a wider spread in values. High plant/soil ratios of elements indicate non-essentialit consequend yan t suitability for biogeochemical prospecting.

115 Tltaeva 1967 USSR Humid, cold Peat U is more mobile than Ra In surface waters containing P (taige. perma- small amounts of calcium bicarbonate. In peat, U is assoo frost) lated with the alkali-soluble fraction (humlc and fulvic acids), laboratory experiments showed that U Is aorbed VO Ref. Species Investigated ****• tIah r. of or « Underlying No. t U Conc, H Rocks Sunna ry Code Refer one o Year location Environment Scientific Name Common Name plant fry Titaeva (cont better than Ra for weakly acid solutions under static conditionsn I . 6 highess uptaki e H p .U Th t f a teo waters with a low salt and Ca content U can migrate con- siderable distances, and can be concentrated from water isuitablna e geochemical setting. 116 Titaeva, 1978 USSR Humid zones Describes the migration of Isotopes of U, Th, Ra, and Po B Taskaev, and their radioactive decays in the soil-plant chain. A Ovchenkov, separatio isotopef no individuan a f so l elemens twa Alexakhin, observed. Data are given on isotope concentrations in Shuktomova numerous high and low-order plants. 117 Ualk 1969 General Festland» Peat Review of geochemical and geobotanical prospecting P method pean si t lands extensivn .A e compilatiof no references is given. 118 Verkhovskaya, 1967 USSR, norti Taiga Betula ap. Fluffy birch B x 0.1m 1pp Aah F The radioélément dat Gruzdef ao v (1965), fro radioma - B Vavllov, n n W " 0.0m 8pp F active occurrence, are quoted. [N.B. data given on an Maalov H II T 0.4m pp 1 F ashed basi more saccorar n e i d with levels usually found n n L 0.1n pp 0 F on a dry basis above U mineralization]. It appears that Picea obovata Siberian apruce B 0.09 ppn F twigs preferentially concentrat accumulatioe Th . eU n n « n W 0.07 ppm F coefficient (plant i soil fros )i m 0.05-0.01, wherean si n n ti T 0.33 PP<» F moss the coefficient is close to 1. n n M H 0.05 ppm F radioélémen Date givee th aar n no t conten speciek f o t s Sorbua aucuparia Mountain ash B 0.1m 6pp F of Lyrurus—typ e birds. U concentrations up to 18.6 ppm n n n W 0.05 ppn F (raw body weight, excluding craws and gizzards) are n I I M L 0.09 ppm F recorded. Mineral particles extracted from craws and gizzards contained up to 510 ppm U in the summer. emphasizes Iti d tha contene tth radioélémentf o t s entering plants does not correspond to their ratios in soil plantl .Al s sho aeropetan wa l gradiene th n ti distributio radioélémentsf no . 119 Vine, 1968 USA Carbonaceous Distinguishes k types of carbonaceous matt er i indigenous C,0 Swan son, natter humLc matter (-rich plant remains); redeposlted Bell hunic extracts; indigenous sapropelic matter (hydrogen- rich plan animad tan l remains); redeposlted bitumens. commonle Onlar firse yo th ttw y associated withU deposits. Humic acids In solution readily assimilate U to form uranyl humâtes, which can be precipitated by lowering the pH or increasing divalent cation concentr- ations.

120 Vostokova 1957 USA, USSR Brief worreviee Cannof th ko f otherd wo nan U n so R geobotan biogeochemistryU d yan . Deformitie vegetf so - higo atiot concentrationU he ndu discussede sar . Geo- botanexploration a s ya n too recommendes li usee b do t d o reconnaissancna e scale. 121 Walker 197* Canada, Boreal forait Preliminary outlin studf eo y conducted over knownU B Saakatchew mineralization. 19 species collected, but analytical data not givan (see Walker, 197 detalla).Valu«r 9fo 7 - 4 f so ashen i pp mU d plant zonee s or ove ,e rcompareth leso dt s than 1 ppa U local background. Ref. Spectea Investigated Par' / ah J Ho. t or I Underlying rnde Reference Year Location Jhvironment Scientific Name Common Name Plant U Conc. )rv ** Rocks Summary 122 Walker 979 Canada, Bareal forest Inus banksiana Jack pine Var. i 0.1-162 ppm ah D Precaob. element2 1 Dat n o ae give ar sr variounfo s plant organs Saskatchewa Icea marlana Black spruce It l H n Athabasca and soil horizons. Hoody plante partth f aso contain Sandstone e mos . th TherU t e enhancear e d concentrationn i U f so Facciniun myrtilloides Blueberry tf 0.5-32.Appa » n * w planta abov orebodyU a e . Trunkwoo s i dconsidere da «edun groenlandicun Labrador tea tl 0.5-71. 6pt» useful sampling medium.

123 Wenrich- 979 tose HI 1500 pp» Ish Mosses concentrat noreU a strongly than algae. B Varbeek Algae ti 70 ppm n 124 ifliltehead, 969« New Zealand 'emparât« rain Itoss All pp6 m0.8 7- iah r Granitic Eight species of bryophyte present) on average 5 species Tte Brooka orest (inountain- breccia at each of the sampling sites. Species were not separata; .0(1 us . Pb d an , Cu Dat, e presenteBe ar a , U r dfo Conclusion: High U in bryophytes occurs in radioactive areas, hence it is considered that the analysis of bryophytea may be useful «a a preliminary assessment of areaw ne . a

125 Whitehead, 969b New Zealand Temperate rain T 0 specimen10 f leaveo s olded «an r wood were collected B Brooka forest | mountain- A fron 4 representative spool ss, then dried and ashed. ous B Analytical analyse t givee plantno th ne f o s(sear s a S Hhitehea Brooksd dan , 1969c). Comparisoe s th madni f o e fluorometrlc method of analysis with radio-article counting resultd an discussede , sar s concludei t I . d that fluorometr s superioi y othee th ro t rmethods .

11 1969c New Zealand 'asperate rain larchantia berteroana liverwort All 670*ppra Ash F Granite In addition to the analysis of several "non-ubiquitous 126 Hhitehead, M B Brooka forest) mountain- nechnum capense Fern 705» " F breccia species, four common species (Weinmannia, Nothofagus. ous Dicksonia lanata Fern n 238» " F Quintini Coprosmd aan a australisjwere teste o assesdt a Cordyline banksii L 18> F their suitabilit r biogeochemicayfo l prospecting. There Jncinia leptostachya Sedge All 25100 " F was a highly significant correlation between the alpha Carpodatua serratus L 291» " F f activiteaco e leah alphe th as th planf f yd ao an t Coproama arborea I, 987 » F activit e correspondinth f yo g soil similarlA . y strong C. auatralia L 150» » F correlatio observea nwa d dan n leabetweei h as U f e nth Syathodes fasciculate L W5 " F n soilUi .

A similar suite of plants to those listed under White- 127 Whltehead, 1971 Hew Zealand Temperate rain Brook», forest) mountain- head and Brooka (I969c) were isotopically analyzed by gamma-apectrometry. Isotopes include, Ra d , thosPb f eo Coole >U9 . DatU ad Biobtainean f d were use o calculatt d e eth contributio f eacno h radionuclid s daughterit d ean o t s the alpha-activity of the plants.

128 Hhitehead, 1971 New Zealand Temperate rain Coprosroa auatralis L 1.J.-H6 ppn Aeh F Granite 65^ of U in leaves was present as a U-RNA complex) B,0 Brooka, forest; mountain- moleculaw lo breccie th n ri aforma wa )U 10Jf o C Peteraon ous presens wa » U-protei U s 2$a tf %o n complex. At least 50$ of the total U was bound to proteins. to Ref. Species Investigated P«rt Aah à lia. & of or S Underlying Tnrlf Reference Year location Environment Scientific Ham« Common Name plant U Conc. Drv H Rock» Summary 129 Yakovleva 963 USSR Cool temperate jflrix op. Larch T 0.2- 5.2 ppm Aah F yr-olTablo tw ed showan growt e s on htha ha e th t B Jetula ap. Birch T 0.2- 6.0 ppm n F considerably leas U than the 3-4 yr-old growth. Wild rosemary T 1.5-110 ppm n F Rowan T 2.0- 60 ppm n F 130 Yllruokanen 975 Finland Boreal forest ^lytrichum coranune Moss All 0 ppr16 maxa . Aah MS Granite, Samples were collected from scattered granitic localltie: B Sphagnum Moss II 900-2800 ppra M MS pegmatite, that were rich in U and REE. Highest concentrations were Lichen n 0 ppr3 maxa . 11 MS mylonite found in mosses and ahrubs. One 10 yr-old spruce grow- /accinium vitia-idaea Blueberry T+L 90 ppm n MS ing in a mylonitic ore pile had (in ash) 700 ppm U in 1, nyrtilloides Blueberry T+L 3-15» pp 0 N MS its roots, 50 ppm U in the trunk, BO ppm U in twigs Calluna vulgas ri Heather T+L 30-27m 0pp n MS e youngesth n i (pluU t m sshoots pp needles 6 1 .d an ) Betula alba White birch T+L 1- 3 ppm n MS =lcea abies Spruce m T+pp N 5 1 max. n MS Pinus sylvestria Une T+N max. 5 ppm n MS INDE COMMOF XO N NAMES

Name Referenc . (seNo e e Table)

Acanthus...... 6? Alder...... 5,35,41,42,85,92,109 Alga...... 19,25,41,42,50,123 Angusta...... 19 Apple...... 109 Apricot...... 59 Ash...... 19,25,67,70,92,118 Aspen.«...... 8,67 Aster...... 25

Bacterium...... 32,50,61,74,86,99 Balsam fir...... 8,109 Bean...... 59,98 Bearberry...... 109 Beech...... 88,114,126 Birch...... 5,8,17,35,41,43,59,66, 67,85,92,109,118,129,130 Blueberry...... 30,42,43,109,122,130 Bracken...... 29,109 Buckthorn...... 92 Buckwheat...... 25 Buffaloberry...... 51 Catclaw mimosa...... 48,57 Cat-tails...... 109 Cedar...... 8,A2,67,109 Cherry...... 103 Chokecherry...... 109 Cliffrose...... 25 Club moss...... 42,92,109 Corn...... 59,98 Cotton grass...... 85 Creosote bush...... 82 Crowberry...... 42 Crucifer...... 80 Cryptanth...... 25 Currant...... 66 Cypress...... 29,94 Dogbane...... 19 ELm...... 88 Encina...... 7 Eucalypts...... 102 Fern...... 88,109,126 Filipendula...... 66,67,92 Fir...... 8,22,27,62,95,109 Fireweed...... 106,109 Five fingers...... 114,126

63 Galleta grass...... 25,54 Goldenrod...... 25,109 Goldenweed...... 19 Grapevine...... 59 Grass...... 25,35,52,59,65,66,80,05, 103,109 Greasewood...... 19,25 Ground pine...... 42,92,109 Gum...... 102 Gumweed,...... 25 Heather...... 43,52,130 Hemlock...... 42 Honeysuckle...... 66 Horsetail...... 35,41 It segek...... 10,87

Juniper...... 3,19,20,22,25,27,28,42, 51,60,62,63,109 Kamahi...... 114,126 Labrador tea...... 33,34,36,109,122 Larch...... 35,66,85,109,129 Laurel...... 29 Leather leaf...... 33,34,36,109 Lichen...... 44,81,109,130 Lily (Camus)...... 25 lingonberry...... 43 Liverwort...... 107,126 Mallee...... 2 .10 Maple...... 17,67,109 Marestail...... 41 Meadow-sweet...... 67 Mesquite...... 2 Mimosa...... 3,48,57 Mormo ea...... 25,6t n 5 Moss...... 44,55,85,92,107,109,123, 124,130 Mountain ash...... 70,92,118

Oak...... 2,7,19,29,62,67,88 Onion...... 25 Palm...... 78 Parsnip (water)...... 41 Pearly everlasting...... 109 Peat...... 5,6,11,31,36,79,83,84, 89,93,110,111,115,117

64 Pine...... 3, 8, 19, 20, 22,26, 29,35, 36,42,43,60,62,66,6?, 70,94,95,109,113,122,130 60,62,63 Plum...... 59 Pondweed...... 41 Poplar...... 9 10 , 67 , 66 ., 8 Prince's plume...... 19,25 Rabbitbrush...... 19,25 Rasberry ...... 109 Rhododendron ...... 29,66,70 Ricegras s...... 1 29, 5 Rock goldenrod...... 25 Rose (rock) ...... 52 Rosemary (wild) ...... 129 Rowan...... 129 Rye (wild) ...... 5 ..2 Sagebrush...... 10,19,2, ..3 5 ,45,46,47,53, 60,65,80,87 Saltbush...... 19, 54 Saltwort ...... 10 , 87 Sedge ...... 85,92, 109, 126 Shadscale ...... 19 , 25 Snakeweed...... 25, 54 Spikenard (wild ...... ). . 19 Spikerush...... 19 Spiraea (false ) ...... 66 Spruce...... 8, 17, 29,33, 34,35,36, 37 38,39,40,42,43,67,92, 109,118,122,130 Strawberry...... 109 Stringy bark...... 2 .10 Sumac...... 109 Tamarack...... 5 ..3 Tamarisk...... 25 Thistle...... 7 ..8 Tobacco ...... 59 Vetch ...... 10, 19,24,25,87,91 Willow...... 5, 29, 35, 41, 66, 67, 85, 92, 109 Wormwood...... 112 Yernik...... 67 Yew...... 29 Yucca...... 5 ..2

65 INDE SCIENTIFIF XO C NAMES

Genus Reference No. (see Table) Abies...... 8,22, 27, 62, 109 Acer...... 17,67, 109 Achyrophus...... 5 ..6 Aconitum...... 92 Allium...... 25 Alnus...... 5,35,41,42,85,92,109 Anabasis...... 10, 87 Anaphali s...... 109 Apocynum ...... 19 Araucarioxylon...... 12, 105 Arctostaphylos...... 10. 9 Artemisiâ...... 10, ..3 , 19,25,45,46,47,53, 60,65,80,87 Aster...... 25 Astragalus ...... 1, 9 24., 10 , 25 81 , 79 , Atriplex ...... 19 , 25 , 54 Aulac omnium...... 107

Bahia...... 19,25 67,85,92,109,118,129,130 ELechnum ...... 6 .12 Brachythecium...... 44,107 Bryum...... 7 .10 Calliergon...... 2 ..9 Caloplaca...... 81 Caragana ...... 80 Carex...... 65 , 85 , 92 , 109 Carpodetus ...... 126 Castilleja...... 25 Chamaedaphne...... 33 ,34,36 , 109 Chrysothamnus...... 19,25 Cistus ...... 52 Cladonia...... 44, 109 Cleome ...... 9 1 Clostrideum...... 9 ..9 Coleogyne...... 25 Coprosma ...... 126 , 128 Cordyline...... 126 Cornue a...... 0 .8 .. Cowania...... 5 ..2 Cratoneuron ...... 107 Crépis...... 92 Crypt antha...... 25 Cryptomeria ...... 94 Cyathodes ...... 126

66 Deschampia...... 93 Desulfovibrio...... 50,99 Dichodontium...... 10? Dicksonia...... 126 Dicranum...... 44,109 Drepanocladus...... 92,107 ELeocharis...... 19 ELymus...... 25 Ephedra...... 25,65,112 Epilobium...... 106,109 Equisetum...... 35,41 Eriogonum...... 25 Eriophorum...... 05 Fagus...... 00 Filipendula...... 66,67,92 Fragaria...... 109 Frangula...... 92 Fraxinus...... 19,25,6? Grundelia...... 25 Gutierrezia...... 25,54 Haloxylon...... 10,87 Haplopappus...... 19 Happula...... 65 Hedwigia...... 44 Hedysarum...... 25 Hilaria...... 25,54 Hippuris...... 41 Hylocomium...... 44 Juniperus...... 3,19,20,22,25,27,28,42 51,60,62,63,109 Larix...... 35,66,85,109,129 Larrea...... 82 Lecanora...... 81 Ledum...... 33,34,36,85,109,122 Lepidium...... 25 Lonicera...... 66 Luketkea...... 42 Lycopodium...... 92,109 Malus...... 109 Marchantia...... 107,126 Mimosa...... 3,48,57 Mnium...... 10? Myrsine...... 126

67 Nephroma...... 44 Nostoc ...... 41 Nothof agus ...... 6 11412 ,

Oryzopsis...... 19, 25 Parmelia...... 1 ..8 Philonotis...... 10? Phoenix...... 78 Picea...... 8,17,29,33,34,35, 36,37 38,39,40,42,43,67,92, 109,118,122,130 Pinus...... , 29 , 28 ., 3,826 , ,22 19, ,20 35,36,42,43,51,52,60, 62,63,66,67,70,94,95, 109,113,122,130 Pleurozium...... 449 ,10 Pohlia...... 107 Polytrichum ...... 44,92, 109, 130 Potamogeton...... 41 Prosopis ...... 2,3 Prunella...... 2 ..9 Prunus...... 29, 109 Pseudot suga ...... 5 9 , 2 6 , 6 2 , . 8 Pseudowintera...... 126 Pteridium...... 109 Ptilidium...... 44 Quercus ...... 2,7, 19,25,29,62,67,88 Quintinia ...... 6 11412 , Rhamnus ...... 112 Rhacomitrium...... 44 Rhododendron...... 29,66,70 Rhus...... 109 Ribes...... 66 Rubus...... 109 Salix...... 5, 29,35, 41, 66, 67, 85, 92, 109 Sal sola...... 10,87 Sarcobatus...... 19,25 Sasa...... 94 Saxaul...... 10,87 Schinopsis...... 82 Scorpidium...... 92 Shepherdia...... 51 Shibu ...... 94 Slum...... 41 Smilacena...... 9 1

68 Solidago...... 25,109 Sorbus...... 70,92,118 Sphaeralcea...... 25 Sphagnum...... 92,109,130 Spirogyra...... 19,25 Stanleya...... 19,25 Stereocaulon...... 44 Stipa...... 65 Tamarix...... 25 Taxus...... 29 Thiobacillus...... 32,86,99 Thuja...... 8,42,67,109 Townsendia...... 25 Tsuga...... 42 Typha...... 109 Ulmus...... 88 Umbilicaria...... 81 Uncinia...... 126 Vaccinium...... 30,42,43,109,122,130 Weinmannia...... 114,126 Yucca...... 25 Zygadenus...... 25

69 SUPPLEMENT

Preface

A meetina te Projec th f o gStud5 t y Grou Helsinkn i p 1 Augus(3 i t 1983), Dr. Alexander Kovalevskii kindly presented us with a list of additional references on uranium biogeochemistry. Many of these papers are in Russian werd ,an e previousl e than W y. Kovalevski unknowDr k. us o t nr fo i his important contribution which we have reproduced here as Supplement "A", edited to conform with the main compilation. We do not have access o thest e papers; hence, thee listear y titles a d referenced an s s only, with no comment on content.

Supplement "B" is a list of additional papers in languages other than Russian. Again, most were in a list presented to us by Dr. Kovalevskii, but we have taken this opportunity to include a few other papers recently broughr noticeou o t , plus those publishe n 1983i d .

Coli . DünnE n , Regina John Ek, Uppsala Jan Byman, Lulea

December, 1983

71 SUPPLEMENT A Reference paperso st Russiann i , supplie Alexande. Dr y db r Kovalevskii

Baranov, V.l., 1939. Ob usvoenii radioaktivnykh elementov rasteniyami (On the accumulation of radioactive elements in plants). Doklady Akad. Nauk SSSR (Reports Acad. Sei. USSR), 24:2, p. 945-949. Baranov, V.l., Kunasheva, K.G., 1954. Soderzhanie radioaktivnykh elementov torievovo ryad rasteniyakv a h (The conten f thoriuo t m and associated radioactive elements in plants). Trudy Biogeokhim. Lab. (Proceedings of the Biogeochemical Lab.), 10, p. 94-98. Baranov, V.l., Titaeva, N.A., 1973. Radiogeologiya (Radiogeology). Izhdatel'stvo Moscow. Univ., 242 pp. Biogeochemical prospecting for uranium 204-206. ,p . Belova, L.N., 1975. Zony okislenia hidrotermal'nykh mestorozhdenii urana (Oxidation Zone f Hydrothermaso l Uranium Deposits). Nedra, Moscow, 158 pp. Bibliograficheskii ukazatel1, 1967. Geokhimicheskie metody poiskov rudnykh mestorozhdenii (1925-1963), vypusk 2. Biogeokhimicheskii i geobotanicheskii metody poiskov rudnykh mestorozhdenii (Bibliographical Index: Geochemical Methods of Prospecting for e DepositOr - 1925-1963- s . Biogeochemica2 . ,v Geobotanicad an l l Methods of Prospecting for Ore Deposits). Nauka, Moscow, 96 pp. Bibliograficheskii ukazetel', 1969. Radiometricheskie metody poiskov i razvedki mestorozhdenii radioaktivnykh elementov -- 1958-1966. S annotatsiyami (Bibliographical Index: Radiometrie Methods of Exploration and Prospecting for Radioactive Element Deposits — 1958-1966. With abstracts). By I.P. Sabaneeva. Biogeochemical Methods, p. 205-213. Ministerstvo Geologii SSSR, Leningrad. pp 1 33 , Brunovskii, B.K., 1932. Kontsentratsia radiya organizmami (Radium concentration by organisms). Trudy Biogeokhim Lab., 2_t p. 9-25. Brunovskii, B.K., Kunasheva, K.G., soderzhani0 1930. i radiyv a nekotorykh rasteniyakh (On the radium content of some plants). Doklady Akad. Nauk SSSR (Reports Acad. Sei.), ser. A., No. 20, p. 527-529. Brunovskii, B.K., Kunasheva, K.G., 1935. Nekotorye dannye o soderzhaniyakh radiy rasteniyakv a h (Som e radiu th dat n o am content of plants). Trudy Biogeokhim. Lab., _3, p. 21-43. Cherepnin, V.K., 1966. Geokhimiy tipi a y mestorozhdenii urana (Geochemistry and Types of Uranium Deposits). Tomsk, 313 pp.

73 Drobkov, A.A., 1958. Mikroelementy i estestvennye radioaktivnye elementy v zhizni rastenii i zhyvotnykh (Microelements and Radioactive Element Plann i sd Anima an t l Life). Acad. Nauk, Moscow, SSSR, 208 pp. Evseeva, L.S., Perel'man, A.I., Ivanov, K.E., 1974. Geokhimiya uran v zone hipergeneza, 2-e izdanie (Uranium Geochemistry in the Hypogene Zone, 2nd issue). Atomizdat, Moscow, 280 pp. Glico, O.A., 1971. Ra'oniroyani o landshaftnyp e m usloviyam poiskov i pochvam (Prospectin r minerafo g l deposit y usinb s g plantd an s soils). Trudy Biogeokhim. 3-27. Lab.p , .10 , Grodzinskii, D.M., 1965. Estestvennaya radioaktivnost' pochv i rastenii (Natural Radioactivity of Soils and Plants). Naukova Dumka, Kiev, 216 pp. Gulyakin, I.V., Yudinzeva, V.V., 1962. Radioaktivnaya produkty deleniya v pochve i rasteniyakh (Radioactive Disintegration Products in Soils and Plants). Atomizdat, Moscow, 276 pp. Ibraev, P.A., Syromyatnikoy, N.G., 1966. Ob urano-molibdenometricheskom metode poisko i izotopnov m metode interpretatsii vtorichnykh oreolov rasseyaniya uranovykh mestorozhdenii aridnoi zonn (O y f uraniuo e d molybdenuus an me th n prospectingi m e th d an , interpretation from isotopes of secondary dispersion haloes of uranium deposit n arii s d zones). Izvestiya Akad. Nauk Kazakh. SSR, ser. geol. (Acad. Sei. Kazakh. SSR News, ser. geol.), 4-, p. 75-85. Kazhdan, A.B., Solov'ev, N.I., 1982. Poiski i razvedka mestorozhdenii redkikh i radioaktivnykh metallov (Exploration and prospecting for rare and radioactive metals). Nedra, Moscow, 280 pp. Kovalevskii, A.L.J 1960. estestvennyk0 h radioaktivnykh elementakv h rasteniyakh (On the natural radioactive elements in plants). : MikroelementIn v ysel'sko m khozya'stve, biologi meditzini i e TMïcroelements in Agriculture, Biology and Medicine). Sib. Otdelenie Akad. Nauk SSSR, Novosibirsk . 36-38p , . Kovalevskii, A.L., 1963. Nekotorye voprosy teorii i practiki biogeokhimicheskovo metoda poiskov mestorozhdenii (Some questions concerning the theory and practice of biogeochemical prospecting for deposits). Geologiya i Geofizika, (Geology and Geophysic) 68-77. p , ,£ .

e maiIth nn tex f thio t s report e hav,w e adopte e spellinth d g Kovalevsky — in this supplement Dr. Kovalevskii has used the optional spelling, which we have maintained throughout this section.

74 Kovalevskii, A.L., 1963. 0 nekotorykh zakonomernostyakh nakopleniya rasteniyami elementov vtoroi gruppy periodicheskoi sistemy D.I. Mendeleeva (Some regularities of the accumulation by plants of D.I. Mendeleev's second group of chemical elements). Izvestiya Sib. Otdeleniya Akad. Nauk SSSR (Siberian Dep. Acad. Sei. USSR News), ser. biol.-med. . 53-61, issunaukp 4 , . 1 e.No , Kovalevskii, A.L., 1965 radioaktivno0 . m ravnovesi rasteniyakv i h (Radioactive equilibriu n plants)i m ; MikroelementIn . i y estestvennaya radioaktivnost. Chast1 3 (Microelements and Natural Radioactivity, par. Petrozavodsk3) t . 21-22,p . Kovalevskii, A.L., 1965. Al'fa-aktivnost1 pochv i rastenii Sibiri (Alpha-activity of Siberian soils and plants). In: Microelement d Naturaan s l Radioactivity 25-27. ,p par . .3 t Kovalevskii, A.L., 1967a. Nekotorye zakonomernosti poglotcheniya estestvennykh radioaktivnykh elementov rasteniyami (Some regularities of the accumulation by plants of naturally radioactive elements) ; MikroelementIn . v ybiosfer h ik i e primenenie v sel'skom khozya'istve i medizine Sibiri i Dal'nevo Vostoka (Microelement e Biospherth n i sn i d Thei an e Us r Siberian and Far Eastern Agriculture and Medicine). Buryat, knizhnoe izdatel'stvo, Ulan-Ude, p. 93-98. Kovalevskii, A.L., 1967b. K metodike opredeleniya estestvennoi radioaktivnosti rastenii (On the method of determining the natural radioactivity of plants). In; Microelements in the and Their Use in Siberian and Far Eastern Agriculture and Medicine). Buryat, knizhnoe izdatel'stvo, Ulan-Ude. p , 616-620. Kovalevskii, A.L., 1968. 0 svyazi biogeokhimii rastenii s mineral'nym sostavom e connectiogornykth n (O h d poron ru betweei d n plant biogeochemistry wite compositioth h f oreo d nroc an sk forming minerals). In: Mineralogo-petrograficheskie ocherki Zabaikal'ya "CMineralogical-Petrographical Essayn o s Transbaikal). Buryat, knizhnoe izdatel'stvo, Ulan-Ude, p. 148-153. Kovalevskii, A.L., 1969a. Zakonomernosty poglotcheniya khimicheskikh elementov rasteniyami kak vazhny1 factor v razrabotke biogeokhimicheskovo metoda poiskov (Regularities of the accumulation of chemical elements in plants as an important facto biogeochemican i r l prospecting) ; BiogeokhimIn . . poiski rudnykh mestorozhdenii (Biogeochemical Prospectine Or r fo g Deposits). Buryat. Filial Sib. Otdeleniya Akad. Nauk SSSR, Ulan-Ude, p. 66-82. Kovalevskii, A.L., 1969b biogeokhimicheskik0 . h parametrakh rastenii i nekotorykh osobennostyakh izucheniya ikh (On plant biogeochemical characteristics and some peculiarities of their investigation). In: Biogeokhimiya Rastenii (The Biogeochemistry of~Plants). Buryat, knizhnoe izdatel'stvo, Ulan-Ude, p. 196-214.

75 Kovalevskii, A.L., 1969c. 0 real'noi tochnosti issledovaniya i optimal'noi pogreshnosti analizov biogennykh materialov (Precision and analytical errors in the investigation of biogenic materials). Agrokhimiya (Agrochemistry), j>_, p. 136-139. Kovalevskii, A.L., 1970a. Radiometricheskie, hidrokhimicheskie i biogeokhimicheskie poiski urana v merzlotnykh landshaftakh Sibiri (Radiometrie, hydrochemical and biogeochemical prospectin r uraniufo g n Siberia)i m : GeokhimIn . . poiskv i oblastyakh kriogeneza (Geochemical Prospectin Permafrosn i g t Regions). Leningrad 81-84. p , . Kovalevskii, A.L., 1970b. 0 poglotchenii urana i radiya rasteniyami, proizrastayutchim v odinakovyki h usloviyak e uraniuth d n an (O mh radium accumulatio y plantb n s growing under identical conditions) ; MaterialIn . VsesoyuznovI y o simpoziumo p a radiobiologii rastitel'novo organizma (Proceedings of the First All-Union Symposiu n Plano m t Radiobiology). Naukova Dumka, Kiev, p. 193-194. Kovalevskii, A.L., 1970c. Ob intensivnosti biologicheskovo poglotcheniya estestyennykh radioaktivnykh elementov rasteniyami (On the biological accumulation of naturally occurring radioactive element y plants)b s ; ProceedingIn . e Firsth f to sAll-Unio n Symposium on Plant Radiobiology. Naukova Dumka, Kiev, p. 195-196. Kovalevskii, A.L., 1971. 0 fiziologicheskikh bar'erakh poglotcheniya khimicheskikh elementov rasteniyami (On the physiological barrier e accumulatioth o t s f chemicao n l element y plants)b s . jn_; Mikroelementy v biosfere i ikh primenenie v sel'skom khozyaistv medizini e e Sibir i Dal'nevi o Vostoka (Microelements in the Biosphere and Their Use in Siberian and Far Eastern Agriculture and Medicine). Buryat. Filial Sib. Otdeleniya Akad. Nauk SSSR, Ulan-Ude, p. 134-144. Kovalevskii, A.L., 1973a. Vozmozhnosti effektivnovo primeneniya biogeokhimicheskikh poiskov v Sibiri (The possibilities of effective biogeochemical prospectin n Siberia)i g ; In . Vtorichnye oreoly rasseyaniya i ikh ispol'zovaniye pri poiskakh rudnykh mestorozhdeni a territorin i i Sibiri (Secondary Haloes and Their Use for Prospecting in Siberia). Buryat, knizhnoe izdatel'stvo, Ulan-Ude, p. 225-252. Kovalevskii, A.L., 1973b. 0 fiziologicheskikh bar'erakh poglotcheniya u rasteni o otnosheniyp i k bolshiu m konzentraziyam uranv a pitayutche ie physiologica th sred n (O e l accumulation barrierf o s plant o higt s h uranium concentration e nutritivth n i s e medium). : "TeoreticheskiIn practicheskii e e aspekty deistviya malykh ïïôz ioniziruyutchikh isluchenii (Theoretical and Practical Aspectw DoseLo f Ionizinso f so g Radiation)". Syktyvkar. ,p 92-94.

76 Kovalevskii, A.L., 1974. Usloviya primeneniya biogeokhimicheskikh poiskov rudnykh mestorozhdenii (Conditions for successful use of the biogeochemical method of prospecting for ore deposits). Doklady Akad. Nauk SSSR, 218:1 . 199-202,p . Kovalevskii, A.L., 1975. Osobennosti formirovaniya rudnykh biogeokhirnicheskikh oreolov (Peculiarities of the Formation of Biogeochemical Haloes Around Ore Bodies). Nauka, Novosibirsk, 115 pp. Kovalevskii, A.L., 1976. Biogeokhlmicheskie metody poiskov mestorozhdenii zvetnykh metallov. Obzor. (Biogeochemical Prospecting for Nonferrous Metals. Review). VJEMS, Moscow. pp 1 ,6 Kovalevskii, A.L., 1978. Bezbar'ernye biogeokhimicheskie poiski rud i ikh vozmozhnosti (Non-barrier biogeochemical prospectinr fo g ores, and its possibilities). In: Voprosy prikladnoi geokhimii i petrofiziki (Questions of AppTTed Geochemistry and Petrophysics). Vysshaya Shkola, Kiev, p. 3-14. Kovalevskii, A.L., 1979. Opyt razrabotki fitogeokhimicheskovo metoda poiskov rudnykh mestorozhdenii (Phytogeochemical prospectinr fo g ore deposits). In; Geokhim. poiski rudnykh mestorozhdenii (Geochemical Prospectin r Minerafo g l Deposits). Proceedingf o s e All-Unioth n Seminar. Nedra, Moscow . 188-198,p . Kovalevskii, A.L., I982a. 0 kartakh primenimosti poiskovykh metodov v razlichnykh landshaftakh (Landscape maps and their use in various prospecting methods), jji; Geokhimiya landshaftoi pr v poiskakh mestorozhdenii poleznykh iskopaemykh i okhrane okruzhayutchei sredy (Landscape Geochemistry in Prospecting for Mineral Deposits and Environment Monitoring). Rostov-na-Donu, p. 82-84. Kovalevskii, A.L., 1982b. 0 kolichestvennoi svyazi biogeokhimicheskikh oreolo s rudnymv i telampervichnymh ik i i i oreolame th n (O i quantitative relationship of biogeochemical haloes to ore bodies and their primary haloes) ; GeokhimIn . . metody poiskov mestorozhdenii poleznykh iskopaemikh, tor 4 (Geochemican l Prospecting for Mineral Deposits, v. 4). IMGRE, Moscow, p. 33-35. Kovalevskii, A.L., Chimitdorzhieva, G.D., 1968 podvizhnyk.0 h formakh khimicheskikh elementov v rasteniyakh. In: Inform. Bull. 'Microelementy v Sibiri1 (Inform. Bull. ^Microelements in Siberia . 6 Buryat . 1),No , knizhnoe izdatel 'stvo, Ulan-Ude. ,p 48-65. Kovalevskii, A.L., Kovalevskaya, O.M., 1969 .vozmozhnost0 i ispol'zovaniya polevykh metodov ozoleniya rastenii pri biogeokhimicheskikh poiskakh (On the possible use of field ashing methods in biogeochemical prospecting). In: Biogeokhim. poiski rudnykh mestorozhdenii (Biogeochemical Prospecting for Ore Deposits). Buryat. Filial Sib. Otdeleniya Akad. Nauk SSSR, Ulan-Ude 252-265. ,p .

77 Kovalevskii, A.L., Tomskii, I.V., Serikov, I.V., 1977 b opredeleniO . i elementov-indikatoro v zhyvykv h rasteniyak neozolennykh ik i h h probakh (On the determination of indicator elements in living plants in unashed samples). In: Povyshenie effektivnosti geokhim. poisko a terrn v i toriT~pritrassovoi polosM BA y (Increased Effectivenes Geochemican i s l Prospectine th n i g Vicinity of the Baikal-Amur Main Line). Ulan-Ude, p. 27-28. Kovalsky, V.V., Vorotnitskaya, I.E., Lekarev, V.S., Nikitina, E.V., 1968. Uranovye pitcheyye zepi v usloviyakh Issyk-Kul'skoi kotloviny (Uranium Nutritive e GrainIssyk-Kulth n i s ' Depression, USSR). Trudy Biogeokhim Lab., J£, p. 5-122. Krasnikov, V.l., 1965. Osnovy razional'noi metodiki poiskov rudnykh mestorozhdenii, 2-e izd. (The Basis for Rational Methods of Prospecting for Ore Deposits, 2nd issue). Nedra, Moscow, 399 pp. Krasnikov, V.l., 1964. Geologicheskie predposylki poiskov mestorozhdenii urana (Geological Principles of Prospecting for Uranium Deposits). Atomizdat, Moscow. pp 5 18 , Kunasheva, K.G., 1939 raspredeleni0 . i uran radiyi a rasteniiv a , vyratchennom v srede s razlichnoi kontsentratsiei etikh radioelementov (On the uranium and radium distribution in plants cultivate medin i d a with different concentration f thesso e elements). Trudy Biogeokhim. Lab., !5, p. 197-200. Kunasheva, K.G., 1944. Soderzhanie radiy rastitel'nykv a zhivotnyki h h organizmakh (Radium conten f planto t d animals)an s . Trudy Biogeokhim. . 98-105Lab.p , ,_7 . Kunasheva, K.G., 1949. Raspredelenie radiya v otdel'nykh chastyakh rastenii, vyratchennykh y srede s razlichnoi kontsentratsiei radiya (The radium distributio varioun i n s part f planto s s cultivate medin i d a with different radium concentration). Trudy Biogeokhim. Lab., 9_, p. 157-159. Makarov, M.S., Kalabin, A.I., 1965. Emanirovanie rastitel'novo materiala (Particulate emanations from plants). j_n: Voprosy rudnoi geofiziki (Question e Geophysics)Or f so Nedra. ,5. , Leningrad 25-32. ,p . Malyshev, V.l., 1981. Radioaktivnye i radiogennye izotopy pri poiskakh mestorozhdenii urana (Radioactiv d radiogeniean c isotopen 1 s prospectin r uraniufo g m deposits). Energoizdat, Moscow, 157 pp. Mukhin, I.I., Pavlova, Zh.K., Nagovizina, L.I., 1965. Zavismost' soderzhaniya urana v ovotchakh i zernovykh kulturakh ot kontsentratsii evo v pochve (The dependence of the uranium conten f vegetableto d coran sn culture n soio s l concentrations). Voprosy Pitaniya (Dietary Questions), 24:2, p. 11-14. ~~

78 Nikiforova, E.M., 1969. Torii i radii v stepnykh landshaftakh Yuzhnogo Zabaikal'ya (Thorium and radium in the steppe landscapes of the South Transbaikal, USSR). Vestnik Mosk. universiteta. Geografiya (Moscow Univ. News. Geography), No. 2, p. 48-56. Nikiforova, E.M,, 1971. Soderzhani raspredelenii e e toriya radiotoriya, radiy i auran v rasteniyaka h Zabaikal'ya (The e contenth d an t distribution of thorium, radiothorium, radium and uranium in the plant f Transbaikalo s , USSR) ; MikroelementIn . y biosfery i e primenenie ikh v sel'skom khozyäTstve i medizine Sibiri i Dal'nego Vostoka (Microelements in the Biosphere and Their Use in Agricultur d Medicinean r East)Fa Siberin e ei . th d aan Buryat. Filial Sib. Otdeleniya Akad. Nauk SSSR, Ulan-Ude. p , 156-160. Novikov, G.F., Kapkov, Yu.I, 1965. Radioaktivnye metody razvedki (Radioactive Prospecting Methods). Nedra, Leningrad, 759 pp. Pertzov, L.A., 1973. Prirodnaya radioaktivnost1 biosfery (The Natural Radioactivity of the Biosphere). Atomizdat, Moscow, 286 pp. Pertzov, L.A., 1973. loniziruytchie izlucheniya biosfery (lonization Radiatio Biosphere)e th f o n . Atomizdat, . Moscowpp 6 ,28 Popova, O.N., 1963. Ros razvitii t e Vicia v usloviyakfab . L a h povyshennovo soderzhaniya urana i radiya (Growth and development of Vicia faba L. in high concentrations of uranium and radium). Radiobiologiya (Radiobiology), _3_:1, p. 132-138. Popova, O.N., Kodaneva, R.P., Vavilov, P.P., 1964 .voprosK o u raspredelenii radiya, poglotchennove pochvz th i o n (O y distribution of radium accumulated from the soil). Phiziologiya rastenii (), J_l_:3 . 436-441p , . Popova, O.N., Kyrchanova, A.K., 1971. Opyty po frakzionirovaniyu radiya iz rastitel'novo materiala (Experiments on radium leaching from plant material) : Materialin , y radioekol. issledovaniiv prirodnykh biogeozenozakh (Materials of Natural Biogeocenosis Radioecological Investigations). Syktyvkar, p. 91-97. Rusanova, G.V., 1964. 0 povedenii radiya i kal'ziya v sistenme pochva-rastenie (On the radium and calcium relationship in the soil-plant system). Pochvovedenie (), ,3^ p. 63-69. Saukov, A.A., 1976. Geokhimicheskie ocherki (Geochemical Outlines). Nauka, Moscow. pp 6 ,55 Sultanbaev, A.S., 1974. Soderzhanie estestvennovo urana v pochve i vynos ego urozhaem (The natural uranium content of soils and its accumulation in outcrop). Trudy Kirgizskovo Nauchno-Issledovatel'skovo Instituta Zemledeliya (Proceedingf o s the Kirgiz. Sei. Institute of Agriculture), 12, p. 197-207.

79 Taskaev, A.U., Testov, V.V., Popova, O.N., 1974. Osobennosti postupleniya Ra-226, Ra-224, Rn-22 rasteniyv 2 a (The peculiaritie f Ra-226o s , Ra-224, Rn-222 accumulatio y plants)b n : BiolIn . . issledovaniya na severo-vostoke Evrop. Chasti SSSR (Biol. Investigation Northeasn i s e USSRth ,f to European Part). Syktyvkar . 109-116p , . Titaeva, N.A., Vlasoya, E.V., 1968 .form0 e nakhozhdeniya radiy torfv a e (On the radium forms in peat). Geokhimiya (Geochemistry), ^, p. 384-387. Vavilov, P.P., Popova, O.N., Kodaneva, R.P., 1964. voprosK upovedenio i radiya v rasteniyakh (On the behaviour of radium in plants). Doklady Akad. Nauk SSSR, 107;4, p. 992-995. Vavilov, P.P., Verkhovskaya, I.V., Kodaneva, R.P., Popova, O.N, 1963. Rost i razvitie Vicia faba L. v usloviyakh povyshennovo soderzhaniva uran radiyi a a (The growt d developmenan h f Vicio t a hign i fab h. L aconcentration f uraniuo s d radium)an m . Radiobiologiya (Radiobiology), ,3:1, p. 132-138. Vernadskii, V.l., 1930. 0 kontsentratsii radiya rastitel'nymi organizmam e concentratioth n (O i f radiuno y planb m t organisms). Doklady Akad. Nauk SSSR, ser. A., No. 20, p. 539-542. Verkhovskaya, I.N., Vavilov, P.P., Maslov, V.l., 1967. Migratsiya estestvennykh radioaktivnykh elemento v prirodnykv h usloviyaki h raspredeleni o komponentap h ik e m sredy (Migratio f naturallo n y radioactive elements, and their spatial distribution). Izvestiya Akad. Nauk SSSR (Acad. Sei. USSR News), ser. biol., 270-285. p No, .2 . Vershinin, A.S., 1969. Osobennosti metodiki biogeokhimicheskikh poiskov uranovykh mestorozhdenii v zone humidnovo klimata (The peculiarities of biogeochemical prospecting for uranium deposits in humid climates) ; BiogeokhimIn . . poiski rudnykh mestorozhdenii (Biogeochemical Prospecting for Ore Deposits). Buryat. Filial Sib. Otdeleniya Akad. Nauk SSSR, Ulan-Ude, p. 150-156. Vinogradov, A.P., 1954. Poiski rudnykh mestorozhdeni o rasteniyap i i m pochvam (Prospectin r minerafo g l deposit y usinb s g plantd an s soils). Trudy Biogeokhim. Lab., 10, p. 3-27. Yakzhin, A.A., 1961. Poisk razyedki i a uranovykh mestorozhdenii (Exploration and Prospecting for Uranium Deposits). Gosgeoltekhizdat, Moscow, 480 pp. Yakovleva, M.N., 1969 .landshaftnyk0 h usloviyakh primeneniya biogeokhimicheskovo metoda poiskov rudnykh mestorozhdenin (O i the use of landscape conditions for biogeochemical prospecting e deposits)or r ; fo BiogeokhimIn . . poiski rudynkh mestorozhdenii (Biogeochemical Prospecting for Ore Deposits). Buryat. Filial Sib. Otdeleniya Akad. Nauk SSSR, Ulan-Ude, p.127-137. Yakovleva, M.N., Kovalevskii, A.L., 1969. Biogeokhimicheskaya s'emka (Biogeochemical surveying) ; MetodIn . y poiskov uranovykh mestorozhdenii (Prospecting Method r Uraniufo s m Deposits). Nedra, Moscow 231-248. ,p .

80 SUPPLEMENTB Additional references in languages other than Russian

Anon, 1955. Finding uranium through plants. Dezert, J8^:4, p. 43. Armands, 6., 1961. Geochemical prospecting of a uraniferous bog deposit at Masugnasbyn, Northern Sweden. Atom. Energy Rept. 36, 48 pp. Boyle, R.W., 1980. Geochemical prospecting for uranium and thorium deposits. Atom. Energy Rev. 81:1, p. 3-72. Boyle, R.W., 1982. Geochemical Prospecting for Thorium and Uranium Deposits. Developments in Economic Geology, 16. Elsevier Scient. Publ. Co., Amsterdam-Oxford-Ne. w pp York 8 ,49 Brierley, J.A., Brierley, C.L., 1982. Biological accumulatio f somo n e heavy metals -- biotechnological applications. In: "Biomineralization and Biological Metal AccumulaFTon" (Eds. P. Westbroe E.Wd an k. deJong) . ReideD . l Publ. Co., Dordrecht, Boston, London 499-509. ,p . Cannon, H.L., 1952. Geobotanical reconnaissance for uranium in the Marysvale area, Piute County, UtahReportE DO . , TEM-483. Reissued in 1978. Cannon, H.L., 1960. Geochemistr f sandstoneo y related an s d vegetation in the Yellow Cat Area of the Thompson District, Grand County, Utah. U.S. Geol. Surv. Bull., 400B 96-97. ,p . Cannon, H.L., 1979. Advances in botanical methods of prospecting for minerals. Par— advanceI t geobotanican i s l methods: In . "Geophysic d Geochemistran s e Searc th r Metallin fo i hy c Ores" (Ed. P.O. Hood). Geol. Surv. Can., Econ. Geol. Rept. 31, p. 385-395. Cannon, H.L., Durrell, M.E., 1952. Geobotanical reconnaissance for uranium in the Great Divide Basin, Sweetwater County, Wyoming. DOE Report, TEM-484. Reissued in 1978. Cannon, H.L., Kleinhampl, M.E., 1956. Botanical methods of prospecting r uraniumfo ; "UniteIn . d Nations Conf. Peaceful Uses Atomic Energy", Vienna, p. 801-805. Cannon, H.L., Papp, C.S.E., Anderson, B.M., 1972. Problems of sampling and analysis in trace element investigations of vegetation. New York Acad. Sei. Annals, 199, p. 124. Cannon, H.L., Stillman, R.M., 1952. Geobotanical reconnaissancr efo uraniue Templth n i me Mountain district, Emery County, Utah. DOE Report, TEM-481. Reissued in 1978.

81 Dünn, C.E., 1983a. 10. Uranium biogeochemistry of the NBA/IAEA Athabasca Test Area; "UraniuIn . m Exploratio Athabascn i n a Basin, Saskatchewan, Canada" (Ed. E.M. Cameron). Geol. Surv. Can., Paper 82-11, p. 127-132. Dünn, C.E., 1983b. 22. Detailed biogeochemical studies for uranium in the NEA/IAEA Athabasca Test Area. Jji: "Uranium Exploration in Athabasca Basin, Saskatchewan, Canada" (Ed. E.M. Cameron). Geol. Surv. Can., Paper 82-11 259-272. ,p . Dünn, C.E., 1983c. Biogeochemical investigation northern i s n Saskatchewan: Preliminary data on tungsten, gold, platinum, rare-earth d uraniuman s : "SummarIn . f Investigationo y s 1983, Saskatchewan Geological Survey". Sask. Energy and Mines, Misc. Rept. 83-4 ,106-122. p . Huffman , 1943,J. . Bioelement Ura Pflanzen i n d Tierischean n n sowin i e menschlichen Organismus. Biochem. Zeitschrift, 313:5/6, p. 377-387. —— Huffman , 1949J. , weiteren .Ei r Beitra r Verteilunzu g n Uran vo gi n pflanzlichen Stoffen. Bodenkund Pflanzennahrungd un e 295. p ., ,£ Kirchmann, R., Roncucci, R., Monsny, J., 1965. Absorbtion et localisation du 226 Ra dans pjsum satiyum L. In; "Isotopes and Radiation in soi l- studies". IAEA, Vienna, p. 277-300. Kirchmann , BoulangerR. . , LafontaineR. , , 1968,A. . Absorbtiou d n 226 Ra dans les plantes cultivées. In; 1st Intern. Congress of radiation protection. Pergamon Press, Oxford-New York, p. 1045-1051. Kovalevskii, A.L., 1979. Elaboration and application of non-barrier biogeochemical prospectin r ore fo gSiberian i s , USSR. Jji: Method f Geochemicao s l Prospecting, Geol. Surv., Prague, Czechoslovakia, p. 142-145. Kovalevskii, A.L., 1980. Biogeochemical methods of classification by their exploration informativity. Abstracts Eighth Intern. Geochem. Expl. Symp., Hannover, p. 136. Kovalevskii, A.L., 1981e evaluatioth e n informativit.O th f o n f o y geochemical exploration data. Erzmetall, 34_:10 . 562-565,p . Mann, H., Fyfe, W.S., 1983. Algal uptake of U, Ba, Co, Ni and V from dilute solutions: implication r metafo s l fixation froe th m . Abstract, Geol. Assoc. Can. annual meeting, Victoria, p. A45. Moffett, D., Tel lier, M,, 1977. Uptake of radioisotopes by vegetation growing on uranium tailings. Can. J. Soil. Sei., 57, p. 417-424. Rüssel, R.S., 1966. Radioactivity and Human Diet. Pergamon Press, Oxford.

82 Smith, K.A., 1971 e comparativ.Th e uptak translocatiod an e y plantb n s f calciumo , strontium, bariu d radiuman m. Triticu II . m vulgäre (Wheat). Plan Soild an t , 34:3 643-651. ,p . Stoklasa, J., Penkava, J., 1932. Biologie des Radiums und der Radioaktiven Elemente. Berlin, 958 pp. Taylor, G.H., 1979. Biogeochemistry of uranium minerals. In: "Biogeochemical Cycling of Mineral-Forming Elements11' (Eds. P.A. Trudinge D.Jd an r . Swaine), Elsevier, Amsterdam 485-514. p , . Wogman, N.A., Brodzinski, R.L., Middlesworth, L.V., 1976. Radium accumulation in animal thyroid glands: a possible method for uraniu d thoriuan m m prospecting. ERDA Energy Res. Abst. J^-8, Abst. no. 12570. Wolfe, W.J., 1971. Biogeochemical prospectin glaciaten i g d terraif o n the Canadian Precambrian Shield. Can. Inst. Min. Metall., Bull. 64, p. 72-80.

83