<<

EURECA, CRESST and EDELWEISS

Johannes Blümer, Karlsruhe Institute of Technology

(1) The cooperation of Forschungszentrum Karlsruhe GmbH | JohannesProjektbüro Blümer KIT | 22 July 2007 and Universität Karlsruhe (TH) EURECA, CRESST and EDELWEISS

Johannes Blümer, Karlsruhe Institute of Technology

(1) The cooperation of Forschungszentrum Karlsruhe GmbH | JohannesProjektbüro Blümer KIT | 22 July 2007 and Universität Karlsruhe (TH) European Underground Rare Event Calorimeter Array

• Started March 2005; based initially on EDELWEISS and CRESST, with additional groups joining.

• Target materials: Ge, CaWO4, etc (A dependence) • Mass: above 100 kg towards 1 ton • CRESST-II and EDELWEISS-II are EURECA R&D • Aligned with Roadmap Recommendations: Multiple targets and multiple techniques The Collaboration

CRESST, EDELWEISS, ROSEBUD + CERN, others

United Kingdom France Oxford (H Kraus, coordinator) CEA/IRFU Saclay Germany CEA/IRAMIS Saclay MPI für Physik, Munich CNRS/Neel Grenoble Technische Universität München CNRS/CSNSM Orsay Universität Tübingen CNRS/IPNL Lyon Universität Karlsruhe CNRS/IAS Orsay Forschungszentrum Karlsruhe Spain International Zaragoza JINR Dubna Ukraine CERN Kiev Physics Aims / Requirements

Probe currently most favoured cross section in the region 10−8 pb to 10−10 pb. Requires a target mass of ~ 1000 kg for few events / year. Use cryogenic detectors (scalable, mature technology). Cryogenic detectors offer excellent discrimination nuclear / electron recoil, energy resolution and large potential for further background rejection. Use range of targets for positive identification of signal. Use complementary cryogenic detectors in common volume to reduce systematic uncertainty. Detection Techniques

Ar, Xe ArDM, WARP, XENON, ZEPLIN, LUX

NaI Ge DAMA HDMS LIBRA Genius-TF ANAIS IGEX NAIAD DRIFT

CaWO Si, Ge 4 Al O 2 3 CDMS CRESST II CRESST I ROSEBUD EDELWEISS Detection Techniques

Ar, Xe ArDM, WARP, XENON, ZEPLIN, LUX

NaI Ge DAMA HDMS LIBRA Genius-TF ANAIS IGEX NAIAD DRIFT

CaWO Si, Ge 4 Al O 2 3 CDMS CRESST II CRESST I ROSEBUD EDELWEISS EURECA CRESST in LNGS CRESST – Detectors

heat bath normal- ] thermal link Ω conducting

thermometer δR (W-film)

Resistance [m super- δT conducting absorber crystal Width of transition: ~1mK Signals: few µ K Stability: ~ µ K Particle interaction in absorber creates a temperature rise in thermometer which is proportional to energy deposition in absorber

Temperature pulse (~6keV) Phonon – Scintillation

Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light

reflecting cavity

] 140 ee

Silicon W-SPT 120 absorber

100 CaWO4 absorber 300g 80 γ and β 60 n

40 Pulse Height in Light Detector [keV 20 W-SPT 0 20 40 60 80 100 120 140 0 Pulse Height in Phonon Detector [keV] Phonon – Scintillation

Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light

reflecting cavity

] 140 ee QF γ, β =1 Silicon W-SPT 120 absorber

100 CaWO4 absorber 300g 80 γ and β 60 n

40 Pulse Height in Light Detector [keV 20 W-SPT 0 20 40 60 80 100 120 140 0 Pulse Height in Phonon Detector [keV] Phonon – Scintillation

Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light

reflecting cavity

] 140 ee QF γ, β =1 Silicon W-SPT 120 QF =5 absorber α

100 CaWO4 absorber 300g 80 γ and β 60 n

40 Pulse Height in Light Detector [keV 20 W-SPT 0 20 40 60 80 100 120 140 0 Pulse Height in Phonon Detector [keV] Phonon – Scintillation

Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light

reflecting cavity

] 140 ee QF γ, β =1 Silicon W-SPT 120 QF =5 absorber α QF O-recoils=9 100 CaWO4 absorber 300g 80 γ and β 60 n

40 Pulse Height in Light Detector [keV 20 W-SPT 0 20 40 60 80 100 120 140 0 Pulse Height in Phonon Detector [keV] Phonon – Scintillation

Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light

reflecting cavity

] 140 ee QF γ, β =1 Silicon W-SPT 120 QF =5 absorber α QF O-recoils=9 100 CaWO 4 QF =40 absorber W-recoils 300g 80 γ and β 60 n

40 Pulse Height in Light Detector [keV 20 W-SPT 0 20 40 60 80 100 120 140 0 Pulse Height in Phonon Detector [keV] Phonon – Scintillation

Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light

reflecting cavity

] 140 ee QF γ, β =1 Silicon W-SPT 120 QF =5 absorber α QF O-recoils=9 100 CaWO 4 QF =40 absorber W-recoils 300g 80 γ and β 60 n

40 Pulse Height in Light Detector [keV 20 W-SPT 0 20 40 60 80 100 120 140 0 Pulse Height in Phonon Detector [keV] CRESST – Detector Module

CaWO4: h = 40mm, ∅ = 40mm m = 300g CRESST – Detector Module

CaWO4: h = 40mm, ∅ = 40mm m = 300g CRESST Upgrade CRESST Upgrade CRESST Energy Resolution

Energy Spectrum of one (1) CRESST detector (“Verena”) – external 57Co calibration

350 122keV

300 Counts

250

200

∂E ≈ 1 keV @ 46.5 keV to identify 150 210-Pb contaminations

100 Kβ Kα1 Kα2 136keV 50 Kα 0 0 20 40 60 80 100 120 140 Recoil Energy [keV] CRESST – Run 30 Result Exclusion Plot Edelweiss / EURECA in LSM Edelweiss in LSM

Large cryostat: 100 detectors (320g each). Currently: 27, of which 7 7 have active surface 40 t Pb shield against gamma, 40 t polyethylene shield against bg rejection (next) neutron. Muon veto, Clean room, selection of material, deradonized air. EDELWEISS Detectors 2008

New surface event rejection detector 12 * 400g detectors in fabrication and operated by end 2008

NTD 300g detectors EDW1 22.7 kg.d Interdigit Electrodes 200g 4 kg.d Edelweiss in LSM

1 t liquid scintillator installed last week to measure CR-induced neutron background EURECA in LSM

Deepest site in Europe (4800 mwe) Clean Infrastructure 24 years experience Central location within Europe EURECA in LSM

second tunnel ⇉ extension opportunity A Possible Facility Layout

A Benoit Neel Institute Grenoble

12m prep water physics run cryo

12m 30m Readout Systems and DAQ

Optical Cold electronics Boîtier fibres Fibre Optics Boîtier CPU numériseurBoîtier Receivers numériseurBoîtier acquisition numériseurBoîtier numériseur Level 1 numériseurBB box Trigger

Calorimeters Front End Electronics Phonon / Ionisation Low-impedance CPU Phonon / Scintillation High-impedance acquisition

Cryostat EDELWEISS Approach CPU Control Cryostat / Slow Control event builder Monitoring of Environment

Archive Timeline

2008 Grant applications / first financial support arrives. Low-cost studies ongoing. 2009/10 Design Study Phase 2011 Begin construction in home institutes and test in temporary underground space 2014 Bring experiment into LSM

Current (summer 2008) effort: how to fit EURECA into LSM extension – shielding / cryostat design. Science Results and Aims

~1 evt/kg/day

~3 evt/kg/year

~30 evt/ton/year