EURECA, CRESST and EDELWEISS

EURECA, CRESST and EDELWEISS

EURECA, CRESST and EDELWEISS Johannes Blümer, Karlsruhe Institute of Technology (1) The cooperation of Forschungszentrum Karlsruhe GmbH | JohannesProjektbüro Blümer KIT | 22 July 2007 and Universität Karlsruhe (TH) EURECA, CRESST and EDELWEISS Johannes Blümer, Karlsruhe Institute of Technology (1) The cooperation of Forschungszentrum Karlsruhe GmbH | JohannesProjektbüro Blümer KIT | 22 July 2007 and Universität Karlsruhe (TH) European Underground Rare Event Calorimeter Array • Started March 2005; based initially on EDELWEISS and CRESST, with additional groups joining. • Target materials: Ge, CaWO4, etc (A dependence) • Mass: above 100 kg towards 1 ton • CRESST-II and EDELWEISS-II are EURECA R&D • Aligned with Roadmap Recommendations: Multiple targets and multiple techniques The Collaboration CRESST, EDELWEISS, ROSEBUD + CERN, others United Kingdom France Oxford (H Kraus, coordinator) CEA/IRFU Saclay Germany CEA/IRAMIS Saclay MPI für Physik, Munich CNRS/Neel Grenoble Technische Universität München CNRS/CSNSM Orsay Universität Tübingen CNRS/IPNL Lyon Universität Karlsruhe CNRS/IAS Orsay Forschungszentrum Karlsruhe Spain International Zaragoza JINR Dubna Ukraine CERN Kiev Physics Aims / Requirements Probe currently most favoured cross section in the region 10−8 pb to 10−10 pb. Requires a target mass of ~ 1000 kg for few events / year. Use cryogenic detectors (scalable, mature technology). Cryogenic detectors offer excellent discrimination nuclear / electron recoil, energy resolution and large potential for further background rejection. Use range of targets for positive identification of signal. Use complementary cryogenic detectors in common volume to reduce systematic uncertainty. Detection Techniques Ar, Xe ArDM, WARP, XENON, ZEPLIN, LUX NaI Ge DAMA HDMS LIBRA Genius-TF ANAIS IGEX NAIAD DRIFT CaWO Si, Ge 4 Al O 2 3 CDMS CRESST II CRESST I ROSEBUD EDELWEISS Detection Techniques Ar, Xe ArDM, WARP, XENON, ZEPLIN, LUX NaI Ge DAMA HDMS LIBRA Genius-TF ANAIS IGEX NAIAD DRIFT CaWO Si, Ge 4 Al O 2 3 CDMS CRESST II CRESST I ROSEBUD EDELWEISS EURECA CRESST in LNGS CRESST – Detectors heat bath normal- ] thermal link Ω conducting thermometer δR (W-film) Resistance [m super- δT conducting absorber crystal Width of transition: ~1mK Signals: few µ K Stability: ~ µ K Particle interaction in absorber creates a temperature rise in thermometer which is proportional to energy deposition in absorber Temperature pulse (~6keV) Phonon – Scintillation Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light reflecting cavity ] 140 ee Silicon W-SPT 120 absorber 100 CaWO4 absorber 300g 80 γ and β 60 n 40 Pulse Height in Light Detector [keV 20 W-SPT 0 20 40 60 80 100 120 140 0 Pulse Height in Phonon Detector [keV] Phonon – Scintillation Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light reflecting cavity ] 140 ee QF γ, β =1 Silicon W-SPT 120 absorber 100 CaWO4 absorber 300g 80 γ and β 60 n 40 Pulse Height in Light Detector [keV 20 W-SPT 0 20 40 60 80 100 120 140 0 Pulse Height in Phonon Detector [keV] Phonon – Scintillation Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light reflecting cavity ] 140 ee QF γ, β =1 Silicon W-SPT 120 QF =5 absorber α 100 CaWO4 absorber 300g 80 γ and β 60 n 40 Pulse Height in Light Detector [keV 20 W-SPT 0 20 40 60 80 100 120 140 0 Pulse Height in Phonon Detector [keV] Phonon – Scintillation Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light reflecting cavity ] 140 ee QF γ, β =1 Silicon W-SPT 120 QF =5 absorber α QF O-recoils=9 100 CaWO4 absorber 300g 80 γ and β 60 n 40 Pulse Height in Light Detector [keV 20 W-SPT 0 20 40 60 80 100 120 140 0 Pulse Height in Phonon Detector [keV] Phonon – Scintillation Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light reflecting cavity ] 140 ee QF γ, β =1 Silicon W-SPT 120 QF =5 absorber α QF O-recoils=9 100 CaWO 4 QF =40 absorber W-recoils 300g 80 γ and β 60 n 40 Pulse Height in Light Detector [keV 20 W-SPT 0 20 40 60 80 100 120 140 0 Pulse Height in Phonon Detector [keV] Phonon – Scintillation Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light reflecting cavity ] 140 ee QF γ, β =1 Silicon W-SPT 120 QF =5 absorber α QF O-recoils=9 100 CaWO 4 QF =40 absorber W-recoils 300g 80 γ and β 60 n 40 Pulse Height in Light Detector [keV 20 W-SPT 0 20 40 60 80 100 120 140 0 Pulse Height in Phonon Detector [keV] CRESST – Detector Module CaWO4: h = 40mm, ∅ = 40mm m = 300g CRESST – Detector Module CaWO4: h = 40mm, ∅ = 40mm m = 300g CRESST Upgrade CRESST Upgrade CRESST Energy Resolution Energy Spectrum of one (1) CRESST detector (“Verena”) – external 57Co calibration 350 122keV 300 Counts 250 200 ∂E ≈ 1 keV @ 46.5 keV to identify 150 210-Pb contaminations 100 Kβ Kα1 Kα2 136keV 50 Kα 0 0 20 40 60 80 100 120 140 Recoil Energy [keV] CRESST – Run 30 Result Exclusion Plot Edelweiss / EURECA in LSM Edelweiss in LSM Large cryostat: 100 detectors (320g each). Currently: 27, of which 7 7 have active surface 40 t Pb shield against gamma, 40 t polyethylene shield against bg rejection (next) neutron. Muon veto, Clean room, selection of material, deradonized air. EDELWEISS Detectors 2008 New surface event rejection detector 12 * 400g detectors in fabrication and operated by end 2008 NTD 300g detectors EDW1 22.7 kg.d Interdigit Electrodes 200g 4 kg.d Edelweiss in LSM 1 t liquid scintillator installed last week to measure CR-induced neutron background EURECA in LSM Deepest site in Europe (4800 mwe) Clean Infrastructure 24 years experience Central location within Europe EURECA in LSM second tunnel ⇉ extension opportunity A Possible Facility Layout A Benoit Neel Institute Grenoble 12m prep water physics run cryo 12m 30m Readout Systems and DAQ Optical Cold electronics Boîtier fibres Fibre Optics Boîtier CPU numériseurBoîtier Receivers numériseurBoîtier acquisition numériseurBoîtier numériseur Level 1 numériseurBB box Trigger Calorimeters Front End Electronics Phonon / Ionisation Low-impedance CPU Phonon / Scintillation High-impedance acquisition Cryostat EDELWEISS Approach CPU Control Cryostat / Slow Control event builder Monitoring of Environment Archive Timeline 2008 Grant applications / first financial support arrives. Low-cost studies ongoing. 2009/10 Design Study Phase 2011 Begin construction in home institutes and test in temporary underground space 2014 Bring experiment into LSM Current (summer 2008) effort: how to fit EURECA into LSM extension – shielding / cryostat design. Science Results and Aims ~1 evt/kg/day ~3 evt/kg/year ~30 evt/ton/year.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    32 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us