Successful Tests of Adaptive Optics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
8. Adaptive Optics 299
8. Adaptive Optics 299 8.1 Introduction Adaptive Optics is absolutely essential for OWL, to concentrate the light for spectroscopy and imaging and to reach the diffraction limit on-axis or over an extended FoV. In this section we present a progressive implementation plan based on three generation of Adaptive Optics systems and, to the possible extent, the corresponding expected performance. The 1st generation AO − Single Conjugate, Ground Layer, and distributed Multi-object AO − is essentially based on Natural Guide Stars (NGSs) and makes use of the M6 Adaptive Mirror included in the Telescope optical path. The 2nd generation AO is also based on NGSs but includes a second deformable mirror (M5) conjugated at 7-8 km – Multi-Conjugate Adaptive Optics − or a post focus mirror conjugated to the telescope pupil with a much higher density of actuators -tweeter- in the case of EPICS. The 3rd generation AO makes use of single or multiple Laser Guide Stars, preferably Sodium LGSs, and should provide higher sky coverage, better Strehl ratio and correction at shorter wavelengths. More emphasis in the future will be given to the LGS assisted AO systems after having studied, simulated and demonstrated the feasibility of the proposed concepts. The performance presented for the AO systems is based on advances from today's technology in areas where we feel confident that such advances will occur (e.g. the sizes of the deformable mirrors). Even better performance could be achieved if other technologies advance at the same rate as in the past (e.g. the density of actuators for deformable mirrors). -
A Tail Structure Associated with Protoplanetary Disk Around SU
Draft version February 28, 2019 A Preprint typeset using LTEX style emulateapj v. 12/16/11 A TAIL STRUCTURE ASSOCIATED WITH PROTOPLANETARY DISK AROUND SU AURIGAE EIJI AKIYAMA1, EDUARD I. VOROBYOV2,3, HAUYU BAOBABU LIU4,5, RUOBING DONG5,6, JEROME de LEON7, SHENG-YUAN LIU5, MOTOHIDE TAMURA7,8,9 1Institute for the Advancement of Higher Education, Hokkaido University, Kita17, Nishi8, Kita-ku, Sapporo, 060-0817, Japan; [email protected] 2Department of Astrophysics, University of Vienna, Vienna 1018, Austria 3Research Institute of Physics, Southern Federal University, Rostov-on-Don, 344090, Russia 4European Southern Observatory, Karl Schwarzschild Str 2, 85748 Garching bei M¨unchen, Germany 5Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei, 10617, Taiwan 6Department of Astronomy/Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 7Department of Astronomy, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan 8Astrobiology Center of NINS, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588, Japan 9National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588, Japan Draft version February 28, 2019 ABSTRACT We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the CO (J=2– 1) line emission from the protoplanetary disk around T-Tauri star SU Aurigae (hereafter SU Aur). Previous observations in optical and near infrared wavelengths find a unique structure in SU Aur. One of the highlights of the observational results is that an extended tail-like structure is associated with the disk, indicating mass transfer from or into the disk. -
Subaru Super Deep Field (SSDF) with AO
Subaru Super Deep Field (SSDF) using Adaptive Optics Yosuke Minowa (NAOJ) on behalf of Yoshii, Y. (IoA, Univ. of Tokyo; PI) and SSDF team: Kobayashi, N. (IoA, Univ. of Tokyo), Totani, T. (Kyoto Univ.), Takami, H., Takato, N. Hayano, Y., Iye, M. (NAOJ). Subaru UM (1/30/2007) SSDF project: What? { Scientific motivation 1. Study the galaxy population at the unprecedented faint end (K’=23-25mag) to find any new population which may explain the missing counterpart to the extragalactic background light. 2. Study the morphological evolution of field galaxies in rest-frame optical wavelengths to find the origin of Hubble sequence. Æ high-resolution deep imaging of distant galaxies SSDF project: How? { Deep imaging of high-z galaxies with AO. z Improve detection sensitivity. Peak intensity: with AO ~ 10-20 times higher 0”.07 without AO z Improve spatial 0”.4 resolution FWHM < 0”.1 AO is best suited for the deep imaging study of high-z galaxies which requires both high-sensitivity and high-resolution. z SSDF project: Where? { Target field: a part of “Subaru Deep Field” (SDF) z Originally selected to locate near a bright star for AO observations (Maihara+01). z Optical~NIR deep imaging data are publicly available. { Enable the SED fitting of detected galaxies. Æ phot-z, rest-frame color, (Maihara+01) stellar mass… Observations { AO36+IRCS at Cassegrain z K’-band (2.12um) imaging with 58mas mode z providing 1x1 arcmin2 FOV AO36 IRCS To achieve unprecedented faint-end, we concentrated on K’-band imaging of this 1arcmin2 field, rather than wide-field or multi-color imaging. -
Modern Astronomical Optics 1
Modern Astronomical Optics 1. Fundamental of Astronomical Imaging Systems OUTLINE: A few key fundamental concepts used in this course: Light detection: Photon noise Diffraction: Diffraction by an aperture, diffraction limit Spatial sampling Earth's atmosphere: every ground-based telescope's first optical element Effects for imaging (transmission, emission, distortion and scattering) and quick overview of impact on optical design of telescopes and instruments Geometrical optics: Pupil and focal plane, Lagrange invariant Astronomical measurements & important characteristics of astronomical imaging systems: Collecting area and throughput (sensitivity) flux units in astronomy Angular resolution Field of View (FOV) Time domain astronomy Spectral resolution Polarimetric measurement Astrometry Light detection: Photon noise Poisson noise Photon detection of a source of constant flux F. Mean # of photon in a unit dt = F dt. Probability to detect a photon in a unit of time is independent of when last photon was detected→ photon arrival times follows Poisson distribution Probability of detecting n photon given expected number of detection x (= F dt): f(n,x) = xne-x/(n!) x = mean value of f = variance of f Signal to noise ration (SNR) and measurement uncertainties SNR is a measure of how good a detection is, and can be converted into probability of detection, degree of confidence Signal = # of photon detected Noise (std deviation) = Poisson noise + additional instrumental noises (+ noise(s) due to unknown nature of object observed) Simplest case (often -
Adaptive Optics: an Introduction Claire E
1 Adaptive Optics: An Introduction Claire E. Max I. BRIEF OVERVIEW OF ADAPTIVE OPTICS Adaptive optics is a technology that removes aberrations from optical systems, through use of one or more deformable mirrors which change their shape to compensate for the aberrations. In the case of adaptive optics (hereafter AO) for ground-based telescopes, the main application is to remove image blurring due to turbulence in the Earth's atmosphere, so that telescopes on the ground can "see" as clearly as if they were in space. Of course space telescopes have the great advantage that they can obtain images and spectra at wavelengths that are not transmitted by the atmosphere. This has been exploited to great effect in ultra-violet bands, at near-infrared wavelengths that are not in the atmospheric "windows" at J, H, and K bands, and for the mid- and far-infrared. However since it is much more difficult and expensive to launch the largest telescopes into space instead of building them on the ground, a very fruitful synergy has emerged in which images and low-resolution spectra obtained with space telescopes such as HST are followed up by adaptive- optics-equipped ground-based telescopes with larger collecting area. Astronomy is by no means the only application for adaptive optics. Beginning in the late 1990's, AO has been applied with great success to imaging the living human retina (Porter 2006). Many of the most powerful lasers are using AO to correct for thermal distortions in their optics. Recently AO has been applied to biological microscopy and deep-tissue imaging (Kubby 2012). -
Vanderbilt University, Department of Physics & Astronomy VU Station B 1807, Nashville, TN 37235 Phone: 615-322-2828, FAX: 61
CURRICULUM VITAE: KEIVAN GUADALUPE STASSUN SENIOR ASSOCIATE DEAN FOR GRADUATE EDUCATION & RESEARCH, COLLEGE OF ARTS & SCIENCE Vanderbilt University, Department of Physics & Astronomy VU Station B 1807, Nashville, TN 37235 Phone: 615-322-2828, FAX: 615-343-7263 [email protected] DEGREES EARNED University of Wisconsin—Madison Degree: Ph.D. in Astronomy, 2000 Thesis: Rotation, Accretion, and Circumstellar Disks among Low-Mass Pre-Main-Sequence Stars Advisor: Robert D. Mathieu University of California at Berkeley Degree: A.B. in Physics/Astronomy (double major) with Honors, 1994 Thesis: A Simultaneous Photometric and Spectroscopic Variability Study of Classical T Tauri Stars Advisor: Gibor Basri EMPLOYMENT HISTORY Vanderbilt University Director, Vanderbilt Center for Autism & Innovation, 2017-present Stevenson Endowed Professor of Physics & Astronomy, 2016-present Senior Associate Dean for Graduate Education & Research, College of Arts & Science, 2015-18 Harvie Branscomb Distinguished Professor, 2015-16 Professor of Physics and Astronomy, 2011-present Director, Vanderbilt Initiative in Data-intensive Astrophysics (VIDA), 2007-present Co-Director, Fisk-Vanderbilt Masters-to-PhD Bridge Program, 2004-15 Associate Professor of Physics and Astronomy, 2008-11 Assistant Professor of Physics and Astronomy, 2003-08 Fisk University Adjunct Professor of Physics, 2006-present University of Wisconsin—Madison NASA Hubble Postdoctoral Research Fellow, Astronomy, 2001-03 Area: Observational Studies of Low-Mass Star Formation Mentor: Robert D. Mathieu University of Wisconsin—Madison Assistant Director and Postdoctoral Fellow, NSF Graduate K-12 Teaching Fellows Program, 2000-01 Duties: Development of fellowship program, instructor for graduate course in science education research Mentor: Terrence Millar HONORS AND AWARDS Presidential Award for Excellence in Science, Math, and Engineering Mentoring—2018 AAAS Mentor of the Year—2018 HHMI Professor—2018- Research Corporation for Science Advancement SEED Award—2017 1/29 Keivan G. -
GEORGE HERBIG and Early Stellar Evolution
GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study. -
A Review of Astronomical Science with Visible Light Adaptive Optics
A review of astronomical science with visible light adaptive optics Item Type Article Authors Close, Laird M. Citation Laird M. Close " A review of astronomical science with visible light adaptive optics ", Proc. SPIE 9909, Adaptive Optics Systems V, 99091E (July 26, 2016); doi:10.1117/12.2234024; http:// dx.doi.org/10.1117/12.2234024 DOI 10.1117/12.2234024 Publisher SPIE-INT SOC OPTICAL ENGINEERING Journal ADAPTIVE OPTICS SYSTEMS V Rights © 2016 SPIE. Download date 30/09/2021 19:37:34 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/622010 Invited Paper A Review of Astronomical Science with Visible Light Adaptive Optics Laird M. Close1a, aCAAO, Steward Observatory, University of Arizona, Tucson AZ 85721, USA; ABSTRACT We review astronomical results in the visible (λ<1μm) with adaptive optics. Other than a brief period in the early 1990s, there has been little (<1 paper/yr) night-time astronomical science published with AO in the visible from 2000-2013 (outside of the solar or Space Surveillance Astronomy communities where visible AO is the norm, but not the topic of this invited review). However, since mid-2013 there has been a rapid increase visible AO with over 50 refereed science papers published in just ~2.5 years (visible AO is experiencing a rapid growth rate very similar to that of NIR AO science from 1997-2000; Close 2000). Currently the most productive small (D < 2 m) visible light AO telescope is the UV-LGS Robo-AO system (Baranec, et al. -
Adaptive Optics
Adaptive Optics Ruobing Dong Large portion is adopted from Claire Max’s lecture in UCSC 03/30/2011 Why is adaptive optics needed? Turbulence in earth’s atmosphere makes stars twinkle More importantly, turbulence spreads out light; makes it a blob rather than a point Even the largest ground-based astronomical telescopes have no better resolution than an 8" telescope Atmospheric perturbations cause distorted wavefronts Rays not Patten changes parallel at time scale of ~10ms each small parallel beam makes a Index of diffraction limited Plane spot on the image refraction Distorted plane Wave variations Wavefront Characterize turbulence strength by quantity r0 Wavefront of light r0 Primary mirror of telescope • “Coherence Length” r0 : Diameter of the circular pupil for which the diffraction limited image and the seeing limited image have the same angular resolution. (r0 ~ 15 - 30 cm at good observing sites • Pupil larger than r0, images are seeing dominated. Real time sequence from a A much larger small telescope with telescope, aperture aperture the size of r0 contains many r0 Schematic of adaptive optics system Feedback loop: next cycle corrects the (small) errors of the last cycle How does adaptive optics help? (cartoon approximation) Adaptive optics increases peak intensity of a point source Lick Observatory" No AO" With AO" Intensity" No AO" With AO" AO produces point spread functions with a “core” and “halo” Definition of “Strehl”: Ratio of peak intensity to that of “perfect” optical system" " Intensity x" When AO system performs well, -
The Origin of Tail-Like Structures Around Protoplanetary Disks? Eduard I
A&A 635, A196 (2020) Astronomy https://doi.org/10.1051/0004-6361/201936990 & © ESO 2020 Astrophysics The origin of tail-like structures around protoplanetary disks? Eduard I. Vorobyov1,2,3, Alexandr M. Skliarevskii2, Vardan G. Elbakyan2,4, Michihiro Takami5, Hauyu Baobab Liu5, Sheng-Yuan Liu5, and Eiji Akiyama6 1 University of Vienna, Department of Astrophysics, Vienna 1180, Austria e-mail: [email protected] 2 Research Institute of Physics, Southern Federal University, Rostov-on-Don 344090, Russia 3 Ural Federal University, 51 Lenin Str., 620051 Ekaterinburg, Russia 4 Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, 22100 Lund, Sweden 5 Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC 6 Institute for the Advancement of Higher Education, Hokkaido University, Kita17, Nishi8, Kita-ku, Sapporo 060-0817, Japan Received 25 October 2019 / Accepted 24 January 2020 ABSTRACT Aims. We study the origin of tail-like structures recently detected around the disk of SU Aurigae and several FU Orionis-type stars. Methods. Dynamic protostellar disks featuring ejections of gaseous clumps and quiescent protoplanetary disks experiencing a close encounter with an intruder star were modeled using the numerical hydrodynamics code FEOSAD. Both the gas and dust dynamics were taken into account, including dust growth and mutual friction between the gas and dust components. Only plane-of-the-disk encounters were considered. Results. Ejected clumps produce a unique type of tail that is characterized by a bow-shock shape. Such tails originate from the supersonic motion of ejected clumps through the dense envelope that often surrounds young gravitationally unstable protostellar disks. -
Making a Sky Atlas
Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it. -
HST/STIS Observations of the RW Aurigae Bipolar Jet: Mapping the Physical Parameters Close to the Source
A&A 506, 763–777 (2009) Astronomy DOI: 10.1051/0004-6361/200811567 & c ESO 2009 Astrophysics HST/STIS observations of the RW Aurigae bipolar jet: mapping the physical parameters close to the source S.Yu Melnikov1,2,J.Eislöffel1, F. Bacciotti3, J. Woitas1,andT.P.Ray4 1 Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany e-mail: [email protected] 2 Ulugh Beg Astronomical Institute, Astronomical str. 33, 100052 Tashkent, Uzbekistan 3 INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy 4 Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland Received 22 December 2008 / Accepted 20 July 2009 ABSTRACT Context. We present the results of new spectral diagnostic investigations applied to high-resolution long-slit spectra obtained with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) of the jet from the T Tauri star RW Aur. Aims. Our primary goal is to determine basic physical parameters (electron density ne and electron temperature Te, hydrogen ionisa- tion fraction xe, total hydrogen density nH, radial velocity vr and the mass outflow rate M˙ j) along both the red- and blueshifted lobes of the RW Aur jet. Methods. The input dataset consists of seven long-slit spectra, of 0. 1 spatial resolution, taken with the STIS slit parallel to the jet, and stepped across it. We use the Bacciotti & Eislöffel (1999, A&A, 342, 717) method to analyse the forbidden doublets [O I] λλ6300,6363, [S II] λλ 6716,6731, and [N II] λλ 6548,6583 Å to extract ne, Te, xe,andnH. Results. We were able to extract the parameters as far as 3.