Normal Female Anatomy

Total Page:16

File Type:pdf, Size:1020Kb

Normal Female Anatomy Normal Female Anatomy Clitoris Urethra Puborectalis muscle Vaginal Tissue Bulbocavernosus muscle External Anal Sphincter muscle Internal Anal Sphincter muscle Rectal Tissue The clitoris is roughly the size and shape of a pea. It is highly sensitive area containing 8,000 nerve endings and is used for bringing about feelings of pleasure. The urethra is a tube coming from the bladder to the outside of the body. It allows urine to leave your body. The muscles that wrap around the urethra are called the urethral sphincter. These muscles squeeze tight to prevent leaking of urine especially when you cough or sneeze. Healthy Healing After Delivery Program - 1 - The Puborectalis muscle is a muscle that forms a sling around the rectum. Squeezing of the muscle helps to prevent urine and stool loss by squeezing the urethral and anal sphincters. Relaxing the muscle allows urine and stool to pass through. There are two muscles that surround the anus. These muscles are called the internal anal sphincter and the external anal sphincter. The internal sphincter muscle is said to be involuntary meaning that we cannot control the muscle. It keeps the canal closed most of the time. The external sphincter is responsible for 15-20% of control of stool leakage. This muscle is voluntary. We do have control over this muscle. These muscles work with the puborectalis muscle to close the anus to help prevent stool leakage when you cough, sneeze, exercise, etc. Disclaimer: This document is for informational purposes only and is not intended to take the place of the care and attention of your personal physician or other professional medical services. Talk with your doctor if you have Questions about individual health concerns or specific treatment options. ©2012 The Regents of the University of Michigan Last Revised 8/7/2012 Healthy Healing After Delivery Program Normal Female anatomy - 2 - .
Recommended publications
  • The Anatomy of the Rectum and Anal Canal
    BASIC SCIENCE identify the rectosigmoid junction with confidence at operation. The anatomy of the rectum The rectosigmoid junction usually lies approximately 6 cm below the level of the sacral promontory. Approached from the distal and anal canal end, however, as when performing a rigid or flexible sigmoid- oscopy, the rectosigmoid junction is seen to be 14e18 cm from Vishy Mahadevan the anal verge, and 18 cm is usually taken as the measurement for audit purposes. The rectum in the adult measures 10e14 cm in length. Abstract Diseases of the rectum and anal canal, both benign and malignant, Relationship of the peritoneum to the rectum account for a very large part of colorectal surgical practice in the UK. Unlike the transverse colon and sigmoid colon, the rectum lacks This article emphasizes the surgically-relevant aspects of the anatomy a mesentery (Figure 1). The posterior aspect of the rectum is thus of the rectum and anal canal. entirely free of a peritoneal covering. In this respect the rectum resembles the ascending and descending segments of the colon, Keywords Anal cushions; inferior hypogastric plexus; internal and and all of these segments may be therefore be spoken of as external anal sphincters; lymphatic drainage of rectum and anal canal; retroperitoneal. The precise relationship of the peritoneum to the mesorectum; perineum; rectal blood supply rectum is as follows: the upper third of the rectum is covered by peritoneum on its anterior and lateral surfaces; the middle third of the rectum is covered by peritoneum only on its anterior 1 The rectum is the direct continuation of the sigmoid colon and surface while the lower third of the rectum is below the level of commences in front of the body of the third sacral vertebra.
    [Show full text]
  • Fecal Incontinence/Anal Incontinence
    Fecal Incontinence/Anal Incontinence What are Fecal incontinence/ Anal Incontinence? Fecal incontinence is inability to control solid or liquid stool. Anal incontinence is the inability to control gas and mucous in addition to the inability to control stool. The symptoms range from mild release of gas to a complete loss of control. It is a common problem affecting 1 out of 13 women under the age of 60 and 1 out of 7 women over the age of 60. Men can also be have this condition. Anal incontinence is a distressing condition that can interfere with the ability to work, do daily activities and enjoy social events. Even though anal incontinence is a common condition, people are uncomfortable discussing this problem with family, friends, or doctors. They often suffer in silence, not knowing that help is available. Normal anatomy The anal sphincters and puborectalis are the primary muscles responsible for continence. There are two sphincters: the internal anal sphincter, and the external anal sphincter. The internal sphincter is responsible for 85% of the resting muscle tone and is involuntary. This means, that you do not have control over this muscle. The external sphincter is responsible for 15% of your muscle tone and is voluntary, meaning you have control over it. Squeezing the puborectalis muscle and external anal sphincter together closes the anal canal. Squeezing these muscles can help prevent leakage. Puborectalis Muscle Internal Sphincter External Sphincter Michigan Bowel Control Program - 1 - Causes There are many causes of anal incontinence. They include: Injury or weakness of the sphincter muscles. Injury or weakening of one of both of the sphincter muscles is the most common cause of anal incontinence.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • 48 Anal Canal
    Anal Canal The rectum is a relatively straight continuation of the colon about 12 cm in length. Three internal transverse rectal valves (of Houston) occur in the distal rectum. Infoldings of the submucosa and the inner circular layer of the muscularis externa form these permanent sickle- shaped structures. The valves function in the separation of flatus from the developing fecal mass. The mucosa of the first part of the rectum is similar to that of the colon except that the intestinal glands are slightly longer and the lining epithelium is composed primarily of goblet cells. The distal 2 to 3 cm of the rectum forms the anal canal, which ends at the anus. Immediately proximal to the pectinate line, the intestinal glands become shorter and then disappear. At the pectinate line, the simple columnar intestinal epithelium makes an abrupt transition to noncornified stratified squamous epithelium. After a short transition, the noncornified stratified squamous epithelium becomes continuous with the keratinized stratified squamous epithelium of the skin at the level of the external anal sphincter. Beneath the epithelium of this region are simple tubular apocrine sweat glands, the circumanal glands. Proximal to the pectinate line, the mucosa of the anal canal forms large longitudinal folds called rectal columns (of Morgagni). The distal ends of the rectal columns are united by transverse mucosal folds, the anal valves. The recess above each valve forms a small anal sinus. It is at the level of the anal valves that the muscularis mucosae becomes discontinuous and then disappears. The submucosa of the anal canal contains numerous veins that form a large hemorrhoidal plexus.
    [Show full text]
  • Progress Report Anal Continence
    Gut: first published as 10.1136/gut.12.10.844 on 1 October 1971. Downloaded from Gut, 1971, 12, 844-852 Progress report Anal continence Anal continence depends on an adaptable barrier formed at the ano-rectal junction and in the anal canal by a combination of forces. These are due in part to the configuration of the region and in part to the action of muscles. The forces are activated in response to sensory information obtained from the rectum and the anal canal. In order to understand some of the concepts of the mechanism of anal continence, some of the features of the anatomy and physiology of the region will be discussed. Anatomy (Fig. 1) The lumen of the rectum terminates at the pelvic floor and is continued, downwards and posteriorly, as the anal canal, passing through the levator ani muscle sheet and surrounded by the internal and external anal sphincters. The anal canal is 2.5 to 5 cm in length and 3 cm in diameter when distended. The axis of the rectum forms almost a right angle (average 820) with the axis of the anal canal. It has been established by radiological studies that the anal canal is an antero-posterior slit in the resting state.' The former concept of http://gut.bmj.com/ the anal canal being surrounded successively craniocaudally by the internal anal sphincter and then the external anal sphincter has been replaced by the knowledge that the two muscles overlap to a considerable extent with the external sphincter wrapped round the internal sphincter2'3.
    [Show full text]
  • Gastrointestinal Motility Disorders of the Small Intestine, Large Intestine, Rectum, and Pelvic Floor
    IFFGD International Foundation for PO Box 170864 Functional Gastrointestinal Disorders Milwaukee, WI 53217 www.iffgd.org Lower GI Motility (162) © Copyright 2001 by William E. Whitehead. Published here with permission. Gastrointestinal Motility Disorders of the Small Intestine, Large Intestine, Rectum, and Pelvic Floor By: William E. Whitehead, Ph.D. Center for Functional GI and Motility Disorders, University of North Carolina, Chapel Hill, NC Each part of the gastrointestinal tract has a unique function to perform in digestion, and as a result each part has a distinct type of motility and sensation. When motility or sensations are not appropriate for performing this function, they cause symptoms . IFFGD PO Box 17086 kee, WI 53217 Gastrointestinal Motility Disorders of the Small Intestine, Large Intestine, Rectum, and Pelvic Floor By: William E. Whitehead, Ph.D., Director, Center for Functional GI and Motility Disorders; Professor, Division of Gastroenterology and Hepatology; and Adjunct Professor, Department of Obstetrics and Gynecology, School of Medicine, University of North Carolina, Chapel Hill, NC Normal Gastrointestinal Motility and Function Between meals, the intestine shows cycles of activity “Motility” is a term used to describe the contraction of the that repeat about every 90–120 minutes. These are easiest to muscles in the gastrointestinal tract. Because the see at night when there is a longer period between meals, gastrointestinal tract is a circular tube, when these muscles because meals suppress these cycles. The cycle consists of a contract, they close off the tube or make the opening inside short period of no contractions (Phase I), followed by a long smaller – they squeeze.
    [Show full text]
  • Studies of the Reflex Activity of the External Sphincter Ani in Spinal Man
    STUDIES OF THE REFLEX ACTIVITY OF THE EXTERNAL SPHINCTER ANI IN SPINAL MAN By J. MELZAK, M.D. National Spinal Injuries Centre, Stoke Mandeville Hospital, Aylesbury and N. H. PORTER, F.R.C.S. Department of Surgery, Guy's Hospital, London INTRODUCTION IN normal man, the anus remains closed unless faeces or wind are to be evacuated. Anal closure is maintained by the tone of the anal sphincters. The importance of the internal and external anal sphincters in maintaining anal closure has for long been a controversial subject. Gowers (I877) made classical contributions to the understanding of visceral reflexes and sphincter activity. He postulated a complex lumbar reflex centre controlling the function of the rectum and anal sphincter. He demonstrated tonic contraction of the anal sphincter in paraplegic patients, pro­ vided the lumbar segments of the cord and the corresponding motor and sensory nerves were intact. Starling (I900) considered that both sphincters were tonically contracted. Frankl-Hochwart and Frohlich (I900) found that 60 per cent. of the tonic closure of the anus in dogs was due to the activity of the external sphincter. Matti (I 909, I9I 0) considered that both sphincters were tonically contracted in man and dogs. Denny-Brown and Robertson (I935) concluded from their studies that the postural tone of the internal anal sphincter was a local phenomenon and related to the peripheral nervous plexus. They also held the view that the external sphincter on the other hand was not tonically contracted. The external anal sphincter has repeatedly been the subject of electromyo­ graphic investigation. In I930, Beck, using steel needle electrodes and a string galvanometer, observed action potentials on contraction and relaxation of this muscle in a number of dogs and in one man.
    [Show full text]
  • Macrophage Density in Pharyngeal and Laryngeal Muscles Greatly Exceeds That in Other Striated Muscles: an Immunohistochemical Study Using Elderly Human Cadavers
    Original Article http://dx.doi.org/10.5115/acb.2016.49.3.177 pISSN 2093-3665 eISSN 2093-3673 Macrophage density in pharyngeal and laryngeal muscles greatly exceeds that in other striated muscles: an immunohistochemical study using elderly human cadavers Sunki Rhee1, Masahito Yamamoto1, Kei Kitamura1, Kasahara Masaaki1, Yukio Katori2, Gen Murakami3, Shin-ichi Abe1 1Department of Anatomy, Tokyo Dental College, Tokyo, 2Department of Otorhinolaryngology, Tohoku University School of Medicine, Sendai, 3Division of Internal Medicine, Iwamizawa Asuka Hospital, Iwamizawa, Japan Abstract: Macrophages play an important role in aging-related muscle atrophy (i.e., sarcopenia). We examined macrophage density in six striated muscles (cricopharyngeus muscle, posterior cricoarytenoideus muscle, genioglossus muscle, masseter muscle, infraspinatus muscle, and external anal sphincter). We examined 14 donated male cadavers and utilized CD68 immunohistochemistry to clarify macrophage density in muscles. The numbers of macrophages per striated muscle fiber in the larynx and pharynx (0.34 and 0.31) were 5–6 times greater than those in the tongue, shoulder, and anus (0.05–0.07) with high statistical significance. Thick muscle fibers over 80 μm in diameter were seen in the pharynx, larynx, and anal sphincter of two limited specimens. Conversely, in the other sites or specimens, muscle fibers were thinner than 50 μm. We did not find any multinuclear muscle cells suggestive of regeneration. At the beginning of the study, we suspected that mucosal macrophages might have invaded into the muscle layer of the larynx and pharynx, but we found no evidence of inflammation in the mucosa. Likewise, the internal anal sphincter (a smooth muscle layer near the mucosa) usually contained fewer macrophages than the external sphincter.
    [Show full text]
  • Anatomy of Anal Canal
    Anatomy of Anal Canal Dr Garima Sehgal Associate Professor Department of Anatomy King George’s Medical University, UP, Lucknow DISCLAIMER: • The presentation includes images which are either hand drawn or have been taken from google images or books. • They are being used in the presentation only for educational purpose. • The author of the presentation claims no personal ownership over images taken from books or google images. • However, the hand drawn images are the creation of the author of the presentation Subdivisions of the perineum • Transverse line joining the anterior part of ischial tuberosities divides perineum into: 1. Urogenital region / triangle- ANTERIORLY 2. Anal region / triangle - POSTERIORLY Anal canal may be affected by many conditions that are not so rare, not necessarily serious and endangering to life but on the contrary very INCAPACITATING Haemorrhoids Anal fistula Anal fissure Perianal abscess Learning objectives At the end of this teaching session on anatomy of Anal canal all the MBBS 1st Year students must be able to correctly: • Describe the location, extent and dimensions of the anal canal • Enumerate the relations of the anal canal • Enumerate the subdivisions of anal canal • Describe & Diagrammatically display the special features on the interior of the anal canal • Discuss the importance of pectinate / dentate line • Write a short note on the arterial supply, venous drainage, nerve supply & lymphatic drainage • Write a short note on the sphincters of the anal canal • Describe the anatomical basis of internal
    [Show full text]
  • Sigmoid-Recto-Anal Region of the Human Gut
    Gut: first published as 10.1136/gut.29.6.762 on 1 June 1988. Downloaded from Gut, 1988, 29, 762-768 Intramural distribution of regulatory peptides in the sigmoid-recto-anal region of the human gut G-L FERRI, T E ADRIAN, JANET M ALLEN, L SOIMERO, ALESSANDRA CANCELLIERI, JANE C YEATS, MARION BLANK, JULIA M POLAK, AND S R BLOOM From the Department ofAnatomy, 'Tor Vergata' University, Rome, Italy and Departments ofMedicine and Histochemistry, RPMS, Hammersmith Hospital, London SUMMARY The distribution of regulatory peptides was studied in the separated mucosa, submucosa and muscularis externa taken at 10 sampling sites encompassing the whole human sigmoid colon (five sites), rectum (two sites), and anal canal (three sites). Consistently high concentrations of VIP were measured in the muscle layer at most sites (proximal sigmoid: 286 (16) pmol/g, upper rectum: 269 (17), a moderate decrease being found in the distal smooth sphincter (151 (30) pmol/g). Values are expressed as mean (SE). Conversely, substance P concentrations showed an obvious decline in the recto-anal muscle (mid sigmoid: 19 (2 0) pmol/g, distal rectum: 7 1 (1 3), upper anal canal: 1-6 (0 6)). Somatostatin was mainly present in the sigmoid mucosa and submucosa (37 (9 3) and 15 (3-5) pmol/g, respectively) and showed low, but consistent concentrations in the muscle (mid sigmoid: 2-2 (0 7) pmol/g, upper anal canal: 1 5 (0 8)). Starting in the distal sigmoid colon, a distinct peak oftissue NPY was revealed, which was most striking in the muscle (of mid sigmoid: 16 (3-9) pmol/g, upper rectum: 47 (7-8), anal sphincter: 58 (14)).
    [Show full text]
  • Internal Anal Sphincter
    Arch Dis Child: first published as 10.1136/adc.43.231.569 on 1 October 1968. Downloaded from Arch. Dis. Childh., 1968, 43, 569. Internal Anal Sphincter Observations on Development and Mechanism of Inhibitory Responses in Premature Infants and Children with Hirschsprung's Disease E. R. HOWARD and H. H. NIXON From The Hospitalfor Sick Children, Great Ormond Street, London W.C.1 The relative importance of the internal and obstruction to constipation alone. During this external sphincters to the maintenance of tone in study physiological abnormalities were observed in the anal canal has been shown in previous studies of the reflexes of premature infants, which showed anal physiology (Gaston, 1948; Schuster et al., 1965; similarities to those seen in patients with Hirsch- Duthie and Watts, 1965). sprung's disease. On repeated examinations over The external sphincter is a striated muscle, but several days, however, the physiological responses shows continuous activity on electromyography. were found to change until normal reflexes were Inhibition and stimulation is mediated by spinal eventually established. cord reflexes, through the pudendal nerves and In order to help determine the nervous pathway sacral segments of the spinal cord (Floyd and Walls, through which the reflexes of the internal sphincter copyright. 1953; Porter, 1961). Voluntary control is possible are mediated, we have examined normal bowel over this part ofthe anal sphincter. and aganglionic bowel from cases of Hirschsprung's The internal sphincter is made up of smooth disease by pharmacological and histochemical muscle fibres, continuous with the muscle layers of methods. the rectal wall, and under resting conditions pro- vides most of the tone of the anal canal (Duthie and Physiological Study Watts, 1965).
    [Show full text]
  • Aandp2ch25lecture.Pdf
    Chapter 25 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © McGraw-Hill Education. Permission required for reproduction or display. 1 Introduction • Most nutrients we eat cannot be used in existing form – Must be broken down into smaller components before body can make use of them • Digestive system—acts as a disassembly line – To break down nutrients into forms that can be used by the body – To absorb them so they can be distributed to the tissues • Gastroenterology—the study of the digestive tract and the diagnosis and treatment of its disorders 25-2 General Anatomy and Digestive Processes • Expected Learning Outcomes – List the functions and major physiological processes of the digestive system. – Distinguish between mechanical and chemical digestion. – Describe the basic chemical process underlying all chemical digestion, and name the major substrates and products of this process. 25-3 General Anatomy and Digestive Processes (Continued) – List the regions of the digestive tract and the accessory organs of the digestive system. – Identify the layers of the digestive tract and describe its relationship to the peritoneum. – Describe the general neural and chemical controls over digestive function. 25-4 Digestive Function • Digestive system—organ system that processes food, extracts nutrients, and eliminates residue • Five stages of digestion – Ingestion: selective intake of food – Digestion: mechanical and chemical breakdown of food into a form usable by
    [Show full text]