Internal Anal Sphincter

Total Page:16

File Type:pdf, Size:1020Kb

Internal Anal Sphincter Arch Dis Child: first published as 10.1136/adc.43.231.569 on 1 October 1968. Downloaded from Arch. Dis. Childh., 1968, 43, 569. Internal Anal Sphincter Observations on Development and Mechanism of Inhibitory Responses in Premature Infants and Children with Hirschsprung's Disease E. R. HOWARD and H. H. NIXON From The Hospitalfor Sick Children, Great Ormond Street, London W.C.1 The relative importance of the internal and obstruction to constipation alone. During this external sphincters to the maintenance of tone in study physiological abnormalities were observed in the anal canal has been shown in previous studies of the reflexes of premature infants, which showed anal physiology (Gaston, 1948; Schuster et al., 1965; similarities to those seen in patients with Hirsch- Duthie and Watts, 1965). sprung's disease. On repeated examinations over The external sphincter is a striated muscle, but several days, however, the physiological responses shows continuous activity on electromyography. were found to change until normal reflexes were Inhibition and stimulation is mediated by spinal eventually established. cord reflexes, through the pudendal nerves and In order to help determine the nervous pathway sacral segments of the spinal cord (Floyd and Walls, through which the reflexes of the internal sphincter copyright. 1953; Porter, 1961). Voluntary control is possible are mediated, we have examined normal bowel over this part ofthe anal sphincter. and aganglionic bowel from cases of Hirschsprung's The internal sphincter is made up of smooth disease by pharmacological and histochemical muscle fibres, continuous with the muscle layers of methods. the rectal wall, and under resting conditions pro- vides most of the tone of the anal canal (Duthie and Physiological Study Watts, 1965). Methods. Two methods were used to measure The internal sphincter is also under reflex pressures within the anal canal-an air-filled system http://adc.bmj.com/ control and a rise of tension in the rectal wall based on the principle of miniature balloons, and strain results in a decrease of tone-the relaxation reflex gauges mounted on thin strips ofberyllium copper. The of the internal sphincter (Gowers, 1878; Denny- extreme sensitivity of the latter method was especially Brown and Robertson, 1935). Recently, Lawson and useful in detecting any rhythmical activity in the sphinc- Nixon (1967) have emphasized that the internal ters with very low pressures found in some infants sphincter is characterized by rhythmical activity. during the neonatal period. Inhibition of this activity accompanies the decrease (a) Air-filled system. This method has recently been in tone seen during the recto-sphincteric relaxation described in detail (Lawson and Nixon, 1967). A on September 29, 2021 by guest. Protected reflex. cylindrical brass probe, 5mm. in diameter, contains 2 Reflex response of the internal sphincter is or 4 air-filled chambers each 0 8 cm. in length. The absent in Hirschsprung's disease, while the reflexes chambers are covered with thin Paul's tubing and of the external sphincter remain intact (Lawson and connected to pressure transducers (Solatron NT4-313 Nixon, 1967; Schnaufer et al., 1967). 10 p.s.i.) by thin nylon tubing. An inflatable rectal balloon is incorporated, and pressure changes recorded The possibility of using this abnormal response as on a modified Ofner 8 channel EEG recorder. A a routine diagnostic procedure for Hirschsprung's pressure change of 100 cm. H,O results in a potential disease was examined in the present study. The difference change of 3mV across each transducer. physiological responses of the internal sphincter This is amplified and fed into the pen recorder. were examined in 60 children who presented with evidence of bowel dysfunction. The symptoms (b) Strain gauge system. Two miniature silicon varied in severity from those of acute intestinal semiconductor strain gauges (Ether 2A-3A-120 P) were bonded to 0 * 008 cm. thick beryllium copper strips with Received April 30, 1968. a phenolic stoving cement (Bakelite cement J.11185). 569 Arch Dis Child: first published as 10.1136/adc.43.231.569 on 1 October 1968. Downloaded from 570 Howard and Nixon of lcm. lo I ., . _ a,I,- to$ _ - -- ----316cmiPhe . -0 II -I I -- 12.2r. 1 II A. ' 1+ ~~~~~~-3-6ctm. - 0-2 Co n. .-4c. b' *: II I I Co. II II _I ..._LjAajO----4__C= ;'!-- l-- -. - - r4-oi a Weryliu I I I I L~~~~ I Beryllium ... copper I c 1 1-3cm. Siliconrflgouge FIG. 1.-Diagram of strain gauge probe, with exploded view to show gauge connexions. Each strip measured 12 mm. x 2 mm. These were Electromyography. Surface electrodes and stain- mounted across 1 cm. gaps cut in an 8 cm. length of less steel clips were used to record action potentials ofthe brass tubing of 5 mm. diameter. One end of each extemal sphincter. These were amplified, shown on an strip was bonded to the brass with epoxy-resin (Araldite), oscilloscope screen, and written out by the Ofner pen and a potential difference of 4j volts was applied across recorder. each gauge (Fig. 1). The probe was covered with To obtain satisfactory tracings of intemal sphincter Paul's tubing and suspended in an air-tight chamber activity in infants and small children, it is essential to connected with a water manometer and sphygmomano- reduce stimulation to a minimum. We therefore copyright. meter hand pump. Calibration was performed at omitted the electromyograph electrodes during the different pressures by measuring resistance changes in first part of each recording. Restlessness obscures the each gauge through a Wheatsone bridge circuit and rhythmical activity and responses of the intemal voltmeter. sphincter. Sedation was not used. A pressure of 100 cm. H2O resulted in a potential difference change of approximately 60 mV across each Results. Recordings of 60 infants and children gauge. suspected of having Hirschsprung's disease were As in the air-filled system, a rectal balloon was made using either the balloon or strain gauge systems incorporated to lie approximately 5 cm. from the anal 2 http://adc.bmj.com/ verge. The output from the Wheatstone bridge (Fig. and Table I). At the beginning of the study circuit was amplified and fed into an Ofner EEG machine. both probes were used on several patients for com- Both types of probe were designed to measure rectal parison purposes. Pressure measurements were and anal canal pressures synchronously without moving found to be similar, but during the investigation of the probe. the very low pressures found at times in the smaller Organic 9 obstruction on September 29, 2021 by guest. Protected -Normal 28- Constipationonly 13 Obstruction 3 _ Neonatal 6 _ Ganglaonic colostomy Perforat ion 3 biopsy later Anal sphincter response to rectal distension - Hirschsprung 24 confirmed with histolojy in 60 patients { Premature 5 - Atypical 8- Meconium I - Full term 3 ileus (all 2 days Hirschsprung 2 of age) FIG. 2.-Results of studies of anal sphincter responses in patients with bowel dysfunction. Arch Dis Child: first published as 10.1136/adc.43.231.569 on 1 October 1968. Downloaded from Internal Anal Sphincter 571 TABLE I on the relative sizes of the probes to the diameters Ages of Patients in Anal Sphincter Studies of the anal canals at different ages may account for this difference in response. Normal responses 6 days to 14 years Of the younger children in this group, 9 presen- (28) ted with vomiting and constipation within the Hirschsprung responses .. 4 days to 9 years (24) first few weeks of life. Subsequent diagnoses of an Atypical responses (a) Premature, 2 days to 10 days organic cause for their symptoms were made at (8) (5) (b) Full term, 2 days barium examination or operation and included (3) meconium ileus, ileal atresia, ileo-caecal dupli- cation, and hiatus hernia (Table II). Examinations were made of 13 children because infants the greater amplification possible with the of constipation from early infancy. Internal sphinc- strain gauge method allowed easier recognition of ter responses were within normal limits, though any rhythmical activity that might be present. changes of rectal inertia were often present (Cal- Results fell into the following groups. laghan and Nixon, 1964). Six children had undergone laparotomy and Normal sphincter physiology. 28 patients showed colostomy during the neonatal period. All had a normal internal sphincter response to rectal presented with intestinal obstruction, and at distension. Their ages ranged from 6 days to 14 laparotomy cones typical of Hirschsprung's dis- years. All these recordings showed resting sphinc- ease had been found, but biopsies taken at sites ter pressures greater than 30 cm. H20 and rhyth- selected for colostomy were ganglionic. 4 of mical activity of 12-16 contractions per minute these children were admitted to hospital 1 year which could be inhibited by rectal distension. later for definitive surgical treatment, but physio- This inhibition of rhythmical activity was accom- logical examination revealed normal anal reflexes, panied by a fall in pressure for 10-15 seconds in the and subsequent rectal biopsies were ganglionic. 2 older child (Fig. 3), but in smaller infants the mean patients were examined a few days after enter- copyright. pressure of the sphincter did not show a change on ostomies had been fashioned. Normal physiology many occasions. Mechanical factors dependent was shown, and biopsies indicated normal myenteric http://adc.bmj.com/ on September 29, 2021 by guest. Protected 30ml. air (Rectal inflation) FIG. 3.-Normal anal sphincter response to rectal distension by air in a boy of 1O years. E.S. shows the external sphincter contraction corresponding to increased EMG activity. I.S. shows internal sphincter inhibition in the upper two-thirds of the anal canal. Units of pressure are cm. H20 in Fig. 3-5. Arch Dis Child: first published as 10.1136/adc.43.231.569 on 1 October 1968.
Recommended publications
  • The Anatomy of the Rectum and Anal Canal
    BASIC SCIENCE identify the rectosigmoid junction with confidence at operation. The anatomy of the rectum The rectosigmoid junction usually lies approximately 6 cm below the level of the sacral promontory. Approached from the distal and anal canal end, however, as when performing a rigid or flexible sigmoid- oscopy, the rectosigmoid junction is seen to be 14e18 cm from Vishy Mahadevan the anal verge, and 18 cm is usually taken as the measurement for audit purposes. The rectum in the adult measures 10e14 cm in length. Abstract Diseases of the rectum and anal canal, both benign and malignant, Relationship of the peritoneum to the rectum account for a very large part of colorectal surgical practice in the UK. Unlike the transverse colon and sigmoid colon, the rectum lacks This article emphasizes the surgically-relevant aspects of the anatomy a mesentery (Figure 1). The posterior aspect of the rectum is thus of the rectum and anal canal. entirely free of a peritoneal covering. In this respect the rectum resembles the ascending and descending segments of the colon, Keywords Anal cushions; inferior hypogastric plexus; internal and and all of these segments may be therefore be spoken of as external anal sphincters; lymphatic drainage of rectum and anal canal; retroperitoneal. The precise relationship of the peritoneum to the mesorectum; perineum; rectal blood supply rectum is as follows: the upper third of the rectum is covered by peritoneum on its anterior and lateral surfaces; the middle third of the rectum is covered by peritoneum only on its anterior 1 The rectum is the direct continuation of the sigmoid colon and surface while the lower third of the rectum is below the level of commences in front of the body of the third sacral vertebra.
    [Show full text]
  • Fecal Incontinence/Anal Incontinence
    Fecal Incontinence/Anal Incontinence What are Fecal incontinence/ Anal Incontinence? Fecal incontinence is inability to control solid or liquid stool. Anal incontinence is the inability to control gas and mucous in addition to the inability to control stool. The symptoms range from mild release of gas to a complete loss of control. It is a common problem affecting 1 out of 13 women under the age of 60 and 1 out of 7 women over the age of 60. Men can also be have this condition. Anal incontinence is a distressing condition that can interfere with the ability to work, do daily activities and enjoy social events. Even though anal incontinence is a common condition, people are uncomfortable discussing this problem with family, friends, or doctors. They often suffer in silence, not knowing that help is available. Normal anatomy The anal sphincters and puborectalis are the primary muscles responsible for continence. There are two sphincters: the internal anal sphincter, and the external anal sphincter. The internal sphincter is responsible for 85% of the resting muscle tone and is involuntary. This means, that you do not have control over this muscle. The external sphincter is responsible for 15% of your muscle tone and is voluntary, meaning you have control over it. Squeezing the puborectalis muscle and external anal sphincter together closes the anal canal. Squeezing these muscles can help prevent leakage. Puborectalis Muscle Internal Sphincter External Sphincter Michigan Bowel Control Program - 1 - Causes There are many causes of anal incontinence. They include: Injury or weakness of the sphincter muscles. Injury or weakening of one of both of the sphincter muscles is the most common cause of anal incontinence.
    [Show full text]
  • Mouth Esophagus Stomach Rectum and Anus Large Intestine Small
    1 Liver The liver produces bile, which aids in digestion of fats through a dissolving process known as emulsification. In this process, bile secreted into the small intestine 4 combines with large drops of liquid fat to form Healthy tiny molecular-sized spheres. Within these spheres (micelles), pancreatic enzymes can break down fat (triglycerides) into free fatty acids. Pancreas Digestion The pancreas not only regulates blood glucose 2 levels through production of insulin, but it also manufactures enzymes necessary to break complex The digestive system consists of a long tube (alimen- 5 carbohydrates down into simple sugars (sucrases), tary canal) that varies in shape and purpose as it winds proteins into individual amino acids (proteases), and its way through the body from the mouth to the anus fats into free fatty acids (lipase). These enzymes are (see diagram). The size and shape of the digestive tract secreted into the small intestine. varies in each individual (e.g., age, size, gender, and disease state). The upper part of the GI tract includes the mouth, throat (pharynx), esophagus, and stomach. The lower Gallbladder part includes the small intestine, large intestine, The gallbladder stores bile produced in the liver appendix, and rectum. While not part of the alimentary 6 and releases it into the duodenum in varying canal, the liver, pancreas, and gallbladder are all organs concentrations. that are vital to healthy digestion. 3 Small Intestine Mouth Within the small intestine, millions of tiny finger-like When food enters the mouth, chewing breaks it 4 protrusions called villi, which are covered in hair-like down and mixes it with saliva, thus beginning the first 5 protrusions called microvilli, aid in absorption of of many steps in the digestive process.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • 48 Anal Canal
    Anal Canal The rectum is a relatively straight continuation of the colon about 12 cm in length. Three internal transverse rectal valves (of Houston) occur in the distal rectum. Infoldings of the submucosa and the inner circular layer of the muscularis externa form these permanent sickle- shaped structures. The valves function in the separation of flatus from the developing fecal mass. The mucosa of the first part of the rectum is similar to that of the colon except that the intestinal glands are slightly longer and the lining epithelium is composed primarily of goblet cells. The distal 2 to 3 cm of the rectum forms the anal canal, which ends at the anus. Immediately proximal to the pectinate line, the intestinal glands become shorter and then disappear. At the pectinate line, the simple columnar intestinal epithelium makes an abrupt transition to noncornified stratified squamous epithelium. After a short transition, the noncornified stratified squamous epithelium becomes continuous with the keratinized stratified squamous epithelium of the skin at the level of the external anal sphincter. Beneath the epithelium of this region are simple tubular apocrine sweat glands, the circumanal glands. Proximal to the pectinate line, the mucosa of the anal canal forms large longitudinal folds called rectal columns (of Morgagni). The distal ends of the rectal columns are united by transverse mucosal folds, the anal valves. The recess above each valve forms a small anal sinus. It is at the level of the anal valves that the muscularis mucosae becomes discontinuous and then disappears. The submucosa of the anal canal contains numerous veins that form a large hemorrhoidal plexus.
    [Show full text]
  • Sphincter of Oddi: ERCP Plus Sphincterotomy – Yes Or No
    Sphincter of Oddi: ERCP Plus Sphincterotomy – Yes or No Note: For debate purposes, the pro and con positions for patient management will be taken by the invited authors. However, actual decisions regarding patient care must involve discussion of the risks and benefits of each treatment considered. Case Presentation – Case developed by Ihab I. El Hajj, MD, MPH, Indiana University, Indianapolis, IN A 57-year-old Caucasian female with history of smoking and COPD, was in her usual state of health until two years ago, when she experienced recurrent “attacks” of right upper quadrant pain, nausea and occasional vomiting, suggestive of biliary colic. The patient was evaluated by her primary care physician and initial work- up, which included basic blood work, liver chemistries and transabdominal ultrasound, were negative. The patient responded partially to prn Zofran and omeprazole 40 mg once then twice daily. With the persistence of her symptoms, the patient was referred to a gastroenterologist. Esophagogastroduodenoscopy (EGD) with gastric biopsies revealed chronic inactive gastritis without Helicobacter pylori. HIDA scan suggested biliary dyskinesia with an ejection fraction of 22%. An elective laparoscopic cholecystectomy was performed. An intra- operative cholangiogram showed no filling defect in the common bile duct (CBD) and pathology demonstrated chronic cholecystitis with no gallstones. The patient was symptom-free for six months after surgery. She subsequently developed vague upper abdominal pain, intermittent nausea and irregular bowel movements. Labs, colonoscopy and repeat EGD were ASGE Leading Edge — Volume 4, No. 4 © American Society for Gastrointestinal Endoscopy normal. The patient was treated for suspected irritable bowel syndrome. She failed several medications including hyoscyamine, dicyclomine, amitriptyline, sucralfate, and GI cocktail.
    [Show full text]
  • Progress Report Anal Continence
    Gut: first published as 10.1136/gut.12.10.844 on 1 October 1971. Downloaded from Gut, 1971, 12, 844-852 Progress report Anal continence Anal continence depends on an adaptable barrier formed at the ano-rectal junction and in the anal canal by a combination of forces. These are due in part to the configuration of the region and in part to the action of muscles. The forces are activated in response to sensory information obtained from the rectum and the anal canal. In order to understand some of the concepts of the mechanism of anal continence, some of the features of the anatomy and physiology of the region will be discussed. Anatomy (Fig. 1) The lumen of the rectum terminates at the pelvic floor and is continued, downwards and posteriorly, as the anal canal, passing through the levator ani muscle sheet and surrounded by the internal and external anal sphincters. The anal canal is 2.5 to 5 cm in length and 3 cm in diameter when distended. The axis of the rectum forms almost a right angle (average 820) with the axis of the anal canal. It has been established by radiological studies that the anal canal is an antero-posterior slit in the resting state.' The former concept of http://gut.bmj.com/ the anal canal being surrounded successively craniocaudally by the internal anal sphincter and then the external anal sphincter has been replaced by the knowledge that the two muscles overlap to a considerable extent with the external sphincter wrapped round the internal sphincter2'3.
    [Show full text]
  • 6 Physiology of the Colon : Motility
    #6 Physiology of the colon : motility Objectives : ● Parts of the Colon ● Functions of the Colon ● The physiology of Different Colon Regions ● Secretion in the Colon ● Nutrient Digestion in the Colon ● Absorption in the Colon ● Bacterial Action in the Colon ● Motility in the Colon ● Defecation Reflex Doctors’ notes Extra Important Resources: 435 Boys’ & Girls’ slides | Guyton and Hall 12th & 13th edition Editing file [email protected] 1 ﺗﻛرار ﻣن اﻟﮭﺳﺗوﻟوﺟﻲ واﻷﻧﺎﺗوﻣﻲ The large intestine ● This is the final digestive structure. ● It does not contain villi. ● By the time the digested food (chyme) reaches the large intestine, most of the nutrients have been absorbed. ● The primary role of the large intestine is to convert chyme into feces for excretion. Parts of the colon ● The colon has a length of about 150 cm. ( 1.5 meters) (one-fifth of the whole length of GIT). ● It consists of the ascending & descending colon, transverse colon, sigmoid colon, rectum and anal canal. 3 ● The transit of radiolabeled chyme through 4 the large intestine occurs in 36-48 hrs. 2 They know this how? By inserting radioactive chyme. 1 6 5 ❖ Mucous membrane of the colon ● Lacks villi and has many crypts of lieberkuhn. ● They consists of simple short glands lined by mucous-secreting goblet cells. Main colonic secretion is mucous, as the colon lacks digestive enzymes. ● The outer longitudinal muscle layer is modified to form three longitudinal bands called taenia coli visible on the outer surface.(Taenia coli: Three thickened bands of muscles.) ● Since the muscle bands are shorter than the length of the colon, the colonic wall is sacculated and forms haustra.(Haustra: Sacculation of the colon between the taenia.) Guyton corner : mucus in the large intestine protects the intestinal wall against excoriation, but in addition, it provides an adherent medium for holding fecal matter together.
    [Show full text]
  • Gastrointestinal Motility Disorders of the Small Intestine, Large Intestine, Rectum, and Pelvic Floor
    IFFGD International Foundation for PO Box 170864 Functional Gastrointestinal Disorders Milwaukee, WI 53217 www.iffgd.org Lower GI Motility (162) © Copyright 2001 by William E. Whitehead. Published here with permission. Gastrointestinal Motility Disorders of the Small Intestine, Large Intestine, Rectum, and Pelvic Floor By: William E. Whitehead, Ph.D. Center for Functional GI and Motility Disorders, University of North Carolina, Chapel Hill, NC Each part of the gastrointestinal tract has a unique function to perform in digestion, and as a result each part has a distinct type of motility and sensation. When motility or sensations are not appropriate for performing this function, they cause symptoms . IFFGD PO Box 17086 kee, WI 53217 Gastrointestinal Motility Disorders of the Small Intestine, Large Intestine, Rectum, and Pelvic Floor By: William E. Whitehead, Ph.D., Director, Center for Functional GI and Motility Disorders; Professor, Division of Gastroenterology and Hepatology; and Adjunct Professor, Department of Obstetrics and Gynecology, School of Medicine, University of North Carolina, Chapel Hill, NC Normal Gastrointestinal Motility and Function Between meals, the intestine shows cycles of activity “Motility” is a term used to describe the contraction of the that repeat about every 90–120 minutes. These are easiest to muscles in the gastrointestinal tract. Because the see at night when there is a longer period between meals, gastrointestinal tract is a circular tube, when these muscles because meals suppress these cycles. The cycle consists of a contract, they close off the tube or make the opening inside short period of no contractions (Phase I), followed by a long smaller – they squeeze.
    [Show full text]
  • Anatomy of the Digestive System
    The Digestive System Anatomy of the Digestive System We need food for cellular utilization: organs of digestive system form essentially a long !nutrients as building blocks for synthesis continuous tube open at both ends !sugars, etc to break down for energy ! alimentary canal (gastrointestinal tract) most food that we eat cannot be directly used by the mouth!pharynx!esophagus!stomach! body small intestine!large intestine !too large and complex to be absorbed attached to this tube are assorted accessory organs and structures that aid in the digestive processes !chemical composition must be modified to be useable by cells salivary glands teeth digestive system functions to altered the chemical and liver physical composition of food so that it can be gall bladder absorbed and used by the body; ie pancreas mesenteries Functions of Digestive System: The GI tract (digestive system) is located mainly in 1. physical and chemical digestion abdominopelvic cavity 2. absorption surrounded by serous membrane = visceral peritoneum 3. collect & eliminate nonuseable components of food this serous membrane is continuous with parietal peritoneum and extends between digestive organs as mesenteries ! hold organs in place, prevent tangling Human Anatomy & Physiology: Digestive System; Ziser Lecture Notes, 2014.4 1 Human Anatomy & Physiology: Digestive System; Ziser Lecture Notes, 2014.4 2 is suspended from rear of soft palate The wall of the alimentary canal consists of 4 layers: blocks nasal passages when swallowing outer serosa: tongue visceral peritoneum,
    [Show full text]
  • Studies of the Reflex Activity of the External Sphincter Ani in Spinal Man
    STUDIES OF THE REFLEX ACTIVITY OF THE EXTERNAL SPHINCTER ANI IN SPINAL MAN By J. MELZAK, M.D. National Spinal Injuries Centre, Stoke Mandeville Hospital, Aylesbury and N. H. PORTER, F.R.C.S. Department of Surgery, Guy's Hospital, London INTRODUCTION IN normal man, the anus remains closed unless faeces or wind are to be evacuated. Anal closure is maintained by the tone of the anal sphincters. The importance of the internal and external anal sphincters in maintaining anal closure has for long been a controversial subject. Gowers (I877) made classical contributions to the understanding of visceral reflexes and sphincter activity. He postulated a complex lumbar reflex centre controlling the function of the rectum and anal sphincter. He demonstrated tonic contraction of the anal sphincter in paraplegic patients, pro­ vided the lumbar segments of the cord and the corresponding motor and sensory nerves were intact. Starling (I900) considered that both sphincters were tonically contracted. Frankl-Hochwart and Frohlich (I900) found that 60 per cent. of the tonic closure of the anus in dogs was due to the activity of the external sphincter. Matti (I 909, I9I 0) considered that both sphincters were tonically contracted in man and dogs. Denny-Brown and Robertson (I935) concluded from their studies that the postural tone of the internal anal sphincter was a local phenomenon and related to the peripheral nervous plexus. They also held the view that the external sphincter on the other hand was not tonically contracted. The external anal sphincter has repeatedly been the subject of electromyo­ graphic investigation. In I930, Beck, using steel needle electrodes and a string galvanometer, observed action potentials on contraction and relaxation of this muscle in a number of dogs and in one man.
    [Show full text]
  • Macrophage Density in Pharyngeal and Laryngeal Muscles Greatly Exceeds That in Other Striated Muscles: an Immunohistochemical Study Using Elderly Human Cadavers
    Original Article http://dx.doi.org/10.5115/acb.2016.49.3.177 pISSN 2093-3665 eISSN 2093-3673 Macrophage density in pharyngeal and laryngeal muscles greatly exceeds that in other striated muscles: an immunohistochemical study using elderly human cadavers Sunki Rhee1, Masahito Yamamoto1, Kei Kitamura1, Kasahara Masaaki1, Yukio Katori2, Gen Murakami3, Shin-ichi Abe1 1Department of Anatomy, Tokyo Dental College, Tokyo, 2Department of Otorhinolaryngology, Tohoku University School of Medicine, Sendai, 3Division of Internal Medicine, Iwamizawa Asuka Hospital, Iwamizawa, Japan Abstract: Macrophages play an important role in aging-related muscle atrophy (i.e., sarcopenia). We examined macrophage density in six striated muscles (cricopharyngeus muscle, posterior cricoarytenoideus muscle, genioglossus muscle, masseter muscle, infraspinatus muscle, and external anal sphincter). We examined 14 donated male cadavers and utilized CD68 immunohistochemistry to clarify macrophage density in muscles. The numbers of macrophages per striated muscle fiber in the larynx and pharynx (0.34 and 0.31) were 5–6 times greater than those in the tongue, shoulder, and anus (0.05–0.07) with high statistical significance. Thick muscle fibers over 80 μm in diameter were seen in the pharynx, larynx, and anal sphincter of two limited specimens. Conversely, in the other sites or specimens, muscle fibers were thinner than 50 μm. We did not find any multinuclear muscle cells suggestive of regeneration. At the beginning of the study, we suspected that mucosal macrophages might have invaded into the muscle layer of the larynx and pharynx, but we found no evidence of inflammation in the mucosa. Likewise, the internal anal sphincter (a smooth muscle layer near the mucosa) usually contained fewer macrophages than the external sphincter.
    [Show full text]