Variations in Microrna-25 Expression Influence the Severity of Diabetic

Total Page:16

File Type:pdf, Size:1020Kb

Variations in Microrna-25 Expression Influence the Severity of Diabetic BASIC RESEARCH www.jasn.org Variations in MicroRNA-25 Expression Influence the Severity of Diabetic Kidney Disease † † † Yunshuang Liu,* Hongzhi Li,* Jieting Liu,* Pengfei Han, Xuefeng Li, He Bai,* Chunlei Zhang,* Xuelian Sun,* Yanjie Teng,* Yufei Zhang,* Xiaohuan Yuan,* Yanhui Chu,* and Binghai Zhao* *Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People’s Republic of China; and †Clinical Laboratory of Hong Qi Hospital, Mudanjiang Medical University, Heilongjiang, People’s Republic of China ABSTRACT Diabetic nephropathy is characterized by persistent albuminuria, progressive decline in GFR, and second- ary hypertension. MicroRNAs are dysregulated in diabetic nephropathy, but identification of the specific microRNAs involved remains incomplete. Here, we show that the peripheral blood from patients with diabetes and the kidneys of animals with type 1 or 2 diabetes have low levels of microRNA-25 (miR-25) compared with those of their nondiabetic counterparts. Furthermore, treatment with high glucose decreased the expression of miR-25 in cultured kidney cells. In db/db mice, systemic administration of an miR-25 agomir repressed glomerular fibrosis and reduced high BP. Notably, knockdown of miR-25 in normal mice by systemic administration of an miR-25 antagomir resulted in increased proteinuria, extracellular matrix accumulation, podocyte foot process effacement, and hypertension with renin-angiotensin system activation. However, excessive miR-25 did not cause kidney dysfunction in wild-type mice. RNA sequencing showed the alteration of miR-25 target genes in antagomir-treated mice, including the Ras-related gene CDC42. In vitro,cotrans- fection with the miR-25 antagomir repressed luciferase activity from a reporter construct containing the CDC42 39 untranslated region. In conclusion, these results reveal a role for miR-25 in diabetic nephropathy and indicate a potential novel therapeutic target for this disease. J Am Soc Nephrol 28: ccc–ccc, 2017. doi: https://doi.org/10.1681/ASN.2015091017 Diabetic nephropathy (DN) is a progressive kidney and microRNAs (miRNAs) in the pathogenesis of disease that develops secondary to diabetes, and it is hypertension, which serves as a reminder that the the single most common disorder leading to renal deregulation of miRNA expression plays a key role failure in developing countries.1 The percentage of in hypertension, especially originating from DN.6 individuals with DN in China also exceeds the per- miRNAs are short noncoding RNAs of approxi- centage with CKD related to GN.2 DN is charac- mately 22 nucleotides in length that exert their terized by persistent albuminuria (.300 mg/d), a progressive decline in the GFR, and elevated arte- rial BP.3 BP control and efficient blockade of the Received September 14, 2015. Accepted August 16, 2017. renin-angiotensin system (RAS) to reduce micro- Y.L., H.L., and J.L. contributed equally to this work. albuminuria together with tight glycemic control 4 Published online ahead of print. Publication date available at are important therapeutic strategies for DN. www.jasn.org. However, this strategy is insufficient to prevent progression to renal failure in a substantial propor- Correspondence: Dr. Yanhui Chu or Dr. Binghai Zhao, Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical 5 tion of patients. Thus, novel effective therapeutic University, 3 Tongxiang Street, Mudanjiang, Heilongjiang approaches are critical for the treatment and pre- 157001, People’s Republic of China. Email: yanhui_chu@163. vention of the disease. Intriguingly, recent studies com or [email protected] have shown a link between ACE2/Apelin signaling Copyright © 2017 by the American Society of Nephrology J Am Soc Nephrol 28: ccc–ccc, 2017 ISSN : 1046-6673/2812-ccc 1 BASIC RESEARCH www.jasn.org canonical function by binding the 39 un- translated region (39UTR) of mRNAs and regulate the expression of 50% of genes.7,8 It is well known that one miRNA can target multiple mRNAs, whereas one mRNA can be bound by a combination of numerous miRNAs.Therefore,miRNAsandtheir target mRNAs form an intricate regulatory network that can be expressed as a recip- rocal “one-to-more” relationship, which has been hypothesized as a “fail-safe” mechanism to control gene expression.9 In mice, a podocyte-specificknockoutof Dicer, an enzyme critical to the miRNA biogenesis pathway, leads to progressive re- nal glomerular and tubular damage.10–12 A similar phenotype is also observed when Drosha is inducibly deleted in podocytes.13 Thus, we conclude that excessive deficiency of miRNAs due to deletion of Dicer and Drosha contributes to renal dysfunction and suggest that dysregulation of miRNAs can promote kidney disease. Emerging ev- idence confirms that individual miRNAs, including microRNA-23b (miR-23b),14 miR-192/216a/217,15,16 and miR-377,17 are involved in DN. Recent studies have also shown that miRNAs, including miR- 143/145, are associated with the pathogen- esis of hypertension.18–20 In this study, we have shown that miR-25 is commonly downregulated in the serum and kidneys of patients with DN, the kidneys of mouse models of type 1 and 2 diabetes, and spe- cific kidney cells exposed to high glucose. We also observed that downregulation of miR-25 in normal mice causes severe renal disease with hypertension, and upregula- tion of miR-25 in db/db mice can reverse DN alterations and reduce high BP. RESULTS Figure 1. Excessive miR-25 reverse albuminuria and fibrosis in diabetic nephropathy. (A) miR- 25 levels in the sera of patients with type 1 diabetes (T1DM), type 2 diabetes (T2DM), or DN Overexpression of miR-25 Reverses were reduced compared with the healthy controls (Con). (B and C) Similarly, miR-25 was re- Albuminuria and Fibrosis in Diabetes duced in the kidneys of type 1/2 diabetic (Dia [n=5] and db/db [n=5]) animals compared with miR-25 levels in the sera of patients with controls (Con; n=5).(D)miR-25expressionlevelsinvarioustissuesofnormalC57BL/6mice.(E) diabetes both with and without nephropa- fi – Quanti cation of 24-hour albumin excretioninmiR-25agomir treated mice. (F) Representative thyweredownregulatedcomparedwith images of H&E (row 1), PAS (row 2), Sirius Red (row 3), a-SMA (row 4), and TEM (row 5) staining those in healthy controls (Figure 1A). A sim- from kidney sections of miR-25 agomir–injected mice. Green arrows indicate areas of fibrosis, an asterisk indicates the GBM, and a red arrow represents a foot process. (G) Quantification of ilar downregulation of miR-25 occurred as the a-SMA–positive area within glomeruli from miR-25 agomir–treated kidney sections. (H) detected by quantitative PCR (qPCR) in the Quantification of GBM thickening after miR-25 agomir injection. (I) Quantification of foot kidney tissues of streptozotocin-induced di- process fusion from miR-25 agomir–treated db/db mice. (J) Measurement of BP from miR-25 abetic and db/db mice (Figure 1, B and C) agomir–injected db/db mice. Data are shown as the mean6SEM. **P,0.01; ***P,0.001. and cultured cells exposed to high glucose 2 Journal of the American Society of Nephrology J Am Soc Nephrol 28: ccc–ccc,2017 www.jasn.org BASIC RESEARCH Figure 2. Overexpression of miR-25 inhibit RAS activation. (A) Representative images of KRI (row 1), angiotensin 1 (AT1; row 2), renin (row 3), and vWf (row 4) staining from miR-25 agomir–treated db/db mouse kidney sections (right panel represents a quantification of the images). (B) Quantification of an ELISA for serum renin, angiotensin I/II, and aldosterone (ALD) from miR-25 agomir– and antagomir– treated mice. Data are shown as the mean6SEM. Con, control. ***P,0.001. (Supplemental Figure 1, A–C). We also found that miR-25 in the miR-25 was highly expressed in mouse heart, muscle, adipose serum of db/db mice was decreased significantly compared with tissue, and kidneys compared with other tissues (Figure 1D). in the wild type (Supplemental Figure 1D). To regulate their To establish the functional consequence of miR-25 upregula- target mRNAs, the miRNA minimum threshold of expression tion in the kidneys,we performed intravenous miR-25 agomir must be reached, and the abundance of miRNAs in the miR- (2.5 mg/kg) injection in db/db mice. Delivery efficiencies NAome of a specific cell or tissue may be more important for showed an approximately fourfold increase in kidney miR-25 their function at the organismal level.21 We examined miR-25 expression (Supplemental Figure 1E). Importantly, miR-25 levels in multiple tissues, including the kidneys, and found that agomir injection in db/db mice decreased their proteinuria J Am Soc Nephrol 28: ccc–ccc, 2017 Inhibition of MicroRNA-25 Causes Kidney Failure 3 BASIC RESEARCH www.jasn.org (Figure 1E, Supplemental Figure 1F) and reversed their glomer- (Supplemental Figure 1I). In keeping with these findings, ular fibrosis as shown by H&E, PAS, Sirius Red, and a-SMA mesangial expansion, GBM thickening, and podocyte foot staining (Figure 1, F and G). Furthermore, miR-25 agomir collapse were observed under electron microscopy in miR-25 treatment reversed the upregulation of a series of fibrosis gene antagomir–treated mice but were not observed in the mice re- markers; however, miRNEG treatment had no such effect ceiving miRNEG injections (Figure 3, D and G). Because accu- (Supplemental Figure 1G). miR-25 overexpression also alle- mulated renal fibrosis and the collapse of the foot processes are viated the amount of foot process fusion and glomerular base- the main characteristics of glomerulosclerosis, we, therefore, ment membrane (GBM) thickening observed in db/db mice measured immunostaining for glomerulosclerosis marker (Figure1,F,H,andI). PODXL and found that its expression was significantly decreased (Figure 3, D and H). A series of genes related to glomeruloscle- Overexpression of miR-25 Alleviates Secondary rosis displayed a similar decrease compared with in control and Hypertension in Diabetes miRNEG-treated mice (Supplemental Figure 2A).
Recommended publications
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • The Oestrogen Receptor Alpha-Regulated Lncrna NEAT1 Is a Critical Modulator of Prostate Cancer
    ARTICLE Received 5 Dec 2013 | Accepted 26 Sep 2014 | Published 21 Nov 2014 DOI: 10.1038/ncomms6383 OPEN The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer Dimple Chakravarty1,2, Andrea Sboner1,2,3, Sujit S. Nair4, Eugenia Giannopoulou5,6, Ruohan Li7, Sven Hennig8, Juan Miguel Mosquera1,2, Jonathan Pauwels1, Kyung Park1, Myriam Kossai1,2, Theresa Y. MacDonald1, Jacqueline Fontugne1,2, Nicholas Erho9, Ismael A. Vergara9, Mercedeh Ghadessi9, Elai Davicioni9, Robert B. Jenkins10, Nallasivam Palanisamy11,12, Zhengming Chen13, Shinichi Nakagawa14, Tetsuro Hirose15, Neil H. Bander16, Himisha Beltran1,2, Archa H. Fox7, Olivier Elemento2,3 & Mark A. Rubin1,2 The androgen receptor (AR) plays a central role in establishing an oncogenic cascade that drives prostate cancer progression. Some prostate cancers escape androgen dependence and are often associated with an aggressive phenotype. The oestrogen receptor alpha (ERa)is expressed in prostate cancers, independent of AR status. However, the role of ERa remains elusive. Using a combination of chromatin immunoprecipitation (ChIP) and RNA-sequencing data, we identified an ERa-specific non-coding transcriptome signature. Among putatively ERa-regulated intergenic long non-coding RNAs (lncRNAs), we identified nuclear enriched abundant transcript 1 (NEAT1) as the most significantly overexpressed lncRNA in prostate cancer. Analysis of two large clinical cohorts also revealed that NEAT1 expression is asso- ciated with prostate cancer progression. Prostate cancer cells expressing high levels of NEAT1 were recalcitrant to androgen or AR antagonists. Finally, we provide evidence that NEAT1 drives oncogenic growth by altering the epigenetic landscape of target gene promoters to favour transcription. 1 Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, 413 East 69th Street, Room 1402, New York, New York 10021, USA.
    [Show full text]
  • Inhibition of Single Minded 2 Gene Expression Mediates Tumor-Selective Apoptosis and Differentiation in Human Colon Cancer Cells
    Inhibition of Single Minded 2 gene expression mediates tumor-selective apoptosis and differentiation in human colon cancer cells Mireille J. Aleman*†‡§, Maurice Phil DeYoung*†§¶, Matthew Tress*†, Patricia Keating*†, Gary W. Perryʈ, and Ramaswamy Narayanan*†** *Center for Molecular Biology and Biotechnology, Departments of †Biology and ‡Chemistry, and ¶Center for Complex System and Brain Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 Communicated by Herbert Weissbach, Florida Atlantic University, Boca Raton, FL, July 21, 2005 (received for review April 4, 2005) A Down’s syndrome associated gene, Single Minded 2 gene short bound AhR͞ARNT complex (12) and hence prevent carcinogen form (SIM2-s), is specifically expressed in colon tumors but not in metabolism, leading to cumulative DNA damage and cancer. the normal colon. Antisense inhibition of SIM2-s in a RKO-derived The growth arrest and DNA damage (GADD) family of genes colon carcinoma cell line causes growth inhibition, apoptosis, and was originally isolated from UV radiation-treated cells and subse- inhibition of tumor growth in a nude mouse tumoriginicity model. quently grouped according to their coordinate regulation by growth The mechanism of cell death in tumor cells is unclear. In the present arrest and DNA damage (13). The GADD family members include study, we investigated the pathways underlying apoptosis. Apo- GADD34,-45␣,-45␤,-45␥, and -153 (14, 15). These are stress- ptosis was seen in a tumor cell-specific manner in RKO cells but not response genes induced by both genotoxic and nongenotoxic in normal renal epithelial cells, despite inhibition of SIM2-s expres- stresses (16–18). GADD45␣ is the most extensively studied mem- sion in both of these cells by the antisense.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Download Download
    NEUROSCIENCE RESEARCH NOTES OPEN ACCESS | RESEARCH NOTES ISSN: 2576-828X Transcriptomic profiling of skeletal muscle from the Ts1Cje mouse model of Down syndrome suggests dysregulation of trisomic genes associated with neuromuscular junction signaling, oxidative stress and chronic inflammation Melody Pui Yee Leong 1,2, Usman Bala 2,3, Chai Ling Lim 2,3, Rozita Rosli 1,2, Pike-See Cheah 2,3 and King-Hwa Ling 1,2,* 1 Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. 2 Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. 3 Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. * Correspondence: [email protected]; Tel.: +603-8947 2564 Received: 10 May 2018; Accepted: 21 August 2018; Published: 27 August 2018 Edited by: Azlina Ahmad Annuar (University of Malaya, Malaysia) Reviewed by: Ruth Chia (National Institute on Aging, National Institutes of Health, USA); Shelisa Tey (Institute of Neuropathology, RWTH University Hospital Aachen, Germany) DOI: https://doi.org/10.31117/neuroscirn.v1i1.12 Abstract: Ts1Cje is a mouse model of Down syndrome (DS) with partial triplication of chromosome 16, which encompasses a high number of human chromosome 21 (HSA21) orthologous genes. The mouse model exhibits muscle weakness resembling hypotonia in DS individuals. The effect of extra gene dosages on muscle weakness or hypotonia in Ts1Cje and DS individuals remains unknown. To identify molecular dysregulation of the skeletal muscle, we compared the transcriptomic signatures of soleus and extensor digitorum longus (EDL) muscles between the adult Ts1Cje and disomic littermates.
    [Show full text]
  • The Nuclear Hormone Receptor Coactivator SRC-1 Is a Specific Target of P300 TSO-PANG YAO, GREGORY Ku, NAIDONG ZHOU, RALPH SCULLY, and DAVID M
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 10626-10631, October 1996 Biochemistry The nuclear hormone receptor coactivator SRC-1 is a specific target of p300 TSO-PANG YAO, GREGORY Ku, NAIDONG ZHOU, RALPH SCULLY, AND DAVID M. LIvINGSTON* Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA 02115 Contributed by David M. Livingston, June 17, 1996 ABSTRACT p300 and its family member, CREB-binding derlying ligand activation of nuclear receptor transcription protein (CBP), function as key transcriptional coactivators by activity. virtue of their interaction with the activated forms of certain Specifically, it has been shown that, upon ligand binding, a transcription factors. In a search for additional cellular specific set of proteins are recruited to the hormone bound targets of p300/CBP, a protein-protein cloning strategy, (i.e., activated) receptor (11-13). It was hypothesized that surprisingly identified SRC-1, a coactivator involved in nu- these multiprotein complexes assemble and become transcrip- clear hormone receptor transcriptional activity, as a p300/ tionally active in response to hormone binding. Identifying and CBP interactive protein. p300 and SRC-1 interact, specifically, understanding how individual components of these complexes in vitro and they also form complexes in vivo. Moreover, we function are part of the key to understand how nuclear show that SRC-1 encodes a new member of the basic helix- receptors modulate transcription. Recently, one of the nuclear loop-helix-PAS domain family and that it physically interacts receptor-binding proteins, steroid receptor coactivator-1 with the retinoic acid receptor in response to hormone bind- (SRC-1), was identified and cloned.
    [Show full text]
  • Genetic Testing for Acute Myeloid Leukemia AHS-M2062
    Corporate Medical Policy Genetic Testing for Acute Myeloid Leukemia AHS-M2062 File Name: genetic_testing_for_acute_myeloid_leukemia Origination: 1/1/2019 Last CAP Review: 8/2021 Next CAP Review: 8/2022 Last Review: 8/2021 Description of Procedure or Service Acute myeloid leukemia (AML) is characterized by large numbers of abnormal, immature myeloid cells in the bone marrow and peripheral blood resulting from genetic changes in hematopoietic precursor cells which disrupt normal hematopoietic growth and differentiation (Stock, 2020). Related Policies: Genetic Cancer Susceptibility Using Next Generation Sequencing AHS-M2066 Molecular Panel Testing of Cancers to Identify Targeted Therapy AHS-M2109 Serum Tumor Markers for Malignancies AHS-G2124 Minimal Residual Disease (MRD) AHS- M2175 ***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician. Policy BCBSNC will provide coverage for genetic testing for acute myeloid leukemia when it is determined to be medically necessary because the medical criteria and guidelines shown below are met. Benefits Application This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy. When Genetic Testing for Acute Myeloid Leukemia is covered The use of genetic testing for acute myeloid leukemia is considered medically necessary for the following: A. Genetic testing for FLT3 internal tandem duplication and tyrosine kinase domain mutations (ITD and TKD), IDH1, IDH2, TET2, WT1, DNMT3A, ASXL1 and/or TP53 in adult and pediatric patients with suspected or confirmed AML of any type for prognostic and/or therapeutic purposes.
    [Show full text]
  • Application of Microrna Database Mining in Biomarker Discovery and Identification of Therapeutic Targets for Complex Disease
    Article Application of microRNA Database Mining in Biomarker Discovery and Identification of Therapeutic Targets for Complex Disease Jennifer L. Major, Rushita A. Bagchi * and Julie Pires da Silva * Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; [email protected] * Correspondence: [email protected] (R.A.B.); [email protected] (J.P.d.S.) Supplementary Tables Methods Protoc. 2021, 4, 5. https://doi.org/10.3390/mps4010005 www.mdpi.com/journal/mps Methods Protoc. 2021, 4, 5. https://doi.org/10.3390/mps4010005 2 of 25 Table 1. List of all hsa-miRs identified by Human microRNA Disease Database (HMDD; v3.2) analysis. hsa-miRs were identified using the term “genetics” and “circulating” as input in HMDD. Targets CAD hsa-miR-1 Targets IR injury hsa-miR-423 Targets Obesity hsa-miR-499 hsa-miR-146a Circulating Obesity Genetics CAD hsa-miR-423 hsa-miR-146a Circulating CAD hsa-miR-149 hsa-miR-499 Circulating IR Injury hsa-miR-146a Circulating Obesity hsa-miR-122 Genetics Stroke Circulating CAD hsa-miR-122 Circulating Stroke hsa-miR-122 Genetics Obesity Circulating Stroke hsa-miR-26b hsa-miR-17 hsa-miR-223 Targets CAD hsa-miR-340 hsa-miR-34a hsa-miR-92a hsa-miR-126 Circulating Obesity Targets IR injury hsa-miR-21 hsa-miR-423 hsa-miR-126 hsa-miR-143 Targets Obesity hsa-miR-21 hsa-miR-223 hsa-miR-34a hsa-miR-17 Targets CAD hsa-miR-223 hsa-miR-92a hsa-miR-126 Targets IR injury hsa-miR-155 hsa-miR-21 Circulating CAD hsa-miR-126 hsa-miR-145 hsa-miR-21 Targets Obesity hsa-mir-223 hsa-mir-499 hsa-mir-574 Targets IR injury hsa-mir-21 Circulating IR injury Targets Obesity hsa-mir-21 Targets CAD hsa-mir-22 hsa-mir-133a Targets IR injury hsa-mir-155 hsa-mir-21 Circulating Stroke hsa-mir-145 hsa-mir-146b Targets Obesity hsa-mir-21 hsa-mir-29b Methods Protoc.
    [Show full text]
  • Supplementary Materials and Tables a and B
    SUPPLEMENTARY MATERIAL 1 Table A. Main characteristics of the subset of 23 AML patients studied by high-density arrays (subset A) WBC BM blasts MYST3- MLL Age/Gender WHO / FAB subtype Karyotype FLT3-ITD NPM status (x109/L) (%) CREBBP status 1 51 / F M4 NA 21 78 + - G A 2 28 / M M4 t(8;16)(p11;p13) 8 92 + - G G 3 53 / F M4 t(8;16)(p11;p13) 27 96 + NA G NA 4 24 / M PML-RARα / M3 t(15;17) 5 90 - - G G 5 52 / M PML-RARα / M3 t(15;17) 1.5 75 - - G G 6 31 / F PML-RARα / M3 t(15;17) 3.2 89 - - G G 7 23 / M RUNX1-RUNX1T1 / M2 t(8;21) 38 34 - + ND G 8 52 / M RUNX1-RUNX1T1 / M2 t(8;21) 8 68 - - ND G 9 40 / M RUNX1-RUNX1T1 / M2 t(8;21) 5.1 54 - - ND G 10 63 / M CBFβ-MYH11 / M4 inv(16) 297 80 - - ND G 11 63 / M CBFβ-MYH11 / M4 inv(16) 7 74 - - ND G 12 59 / M CBFβ-MYH11 / M0 t(16;16) 108 94 - - ND G 13 41 / F MLLT3-MLL / M5 t(9;11) 51 90 - + G R 14 38 / F M5 46, XX 36 79 - + G G 15 76 / M M4 46 XY, der(10) 21 90 - - G NA 16 59 / M M4 NA 29 59 - - M G 17 26 / M M5 46, XY 295 92 - + G G 18 62 / F M5 NA 67 88 - + M A 19 47 / F M5 del(11q23) 17 78 - + M G 20 50 / F M5 46, XX 61 59 - + M G 21 28 / F M5 46, XX 132 90 - + G G 22 30 / F AML-MD / M5 46, XX 6 79 - + M G 23 64 / M AML-MD / M1 46, XY 17 83 - + M G WBC: white blood cell.
    [Show full text]
  • The Role of Npas4 in Neuroprotection and Neurogenesis
    !!"$ &#!"#!%%! &#! $$ ! !( %$$$&%%!#%#! !%!#!!$!"( "#% % ! %$ '!&%! !!! !! $ '#$%(! # ,01;4 >5>=C4=CB 42;0A0C8>= 2:=>F;4364<4=CB 1BCA02C 70?C4A "=CA>3D2C8>= *4E84F(0?4A *46D;0C8>=>5'?0B4G?A4BB8>=1H>C74A<4270=8B<B -*',*'("#&(&&,(+ 0(*++#'& (+ 0(*++#'&#&*+('&+,'# *&,,1(+' +,*++ 338C8>=0;5D=2C8>=B>5'?0B 0#,,#'&#&"##,#'&"'%'+,+#+ -*'!&+#+ &82A>*'B #'!&+#+' %# + %# +#&&-*'!&+#+ (A>942CA0C8>=0;40=3A4B40A2708<B 70?C4A *4B40A27?0?4A 70?C4A *4B40A27?0?4A 70?C4A 8BC8=2C8E4?A>58;4>58B><8*4G?A4BB8>=0=3=>E4;<82A>*'B3DA8=6=4DA0; 38554A4=C80C8>=>5<>DB44<1AH>=82BC4<24;;B "=CA>3D2C8>= *4BD;CB0=338B2DBB8>= .*.#/' +%$$ +)-&#&!, -&&' #+'%#+)-&+ &,# #,#'&' &'.$%# + >=2;DB8>= 70?C4A >=2;D38=6*4<0A:B (A>942CB86=85820=24 *42><<4=30C8>=B5>A5DAC74AF>A: *454A4=24 42;0A0C8>= 5FGQUMPIAMLR?GLQLMK?RCPG?JUFGAFF?Q@CCL?AACNRCBDMPRFC?U?PBMD?LWMRFCPBCEPCC MPBGNJMK?GL?LWSLGTCPQGRWMPMRFCPRCPRG?PWGLQRGRSRGML?LB RMRFC@CQRMDKWILMUJCBEC ?LB@CJGCD AMLR?GLQLMK?RCPG?JNPCTGMSQJWNS@JGQFCBMPUPGRRCL@W?LMRFCP NCPQML CVACNR UFCPCBSCPCDCPCLACF?Q@CCLK?BCGLRFCRCVR *EGTCAMLQCLRRMRFGQAMNWMDKWRFCQGQ UFCLBCNMQGRCBGLRFC6LGTCPQGRW-G@P?PW @CGLE K?BC?T?GJ?@JCDMPJM?L?LBNFMRMAMNWGLE QS@HCARRMRFCNPMTGQGMLQMDRFC$MNWPGEFR"AR *?JQM EGTCNCPKGQQGMLDMPRFCBGEGR?JTCPQGMLMDKWRFCQGQRM@CK?BC?T?GJ?@JCMLRFCUC@ TG?RFC6LGTCPQGRWmQBGEGR?JPCQC?PAFPCNMQGRMPW RFC-G@P?PWA?R?JMESC?LB?JQMRFPMSEFUC@ QC?PAFCLEGLCQ SLJCQQNCPKGQQGMLF?Q@CCLEP?LRCB@WRFC6LGTCPQGRWRMPCQRPGAR?AACQQDMP? NCPGMBMDRGKC 4GELCB %?RC 2:=>F;4364<4=CB *UMSJBJGICRMR?ICRFGQMNNMPRSLGRWRMCVNPCQQKWSRKMQREP?RGRSBCRMK?LWGLBGTGBS?JQUFM
    [Show full text]
  • Maintenance of Mammary Epithelial Phenotype by Transcription Factor Runx1 Through Mitotic Gene Bookmarking Joshua Rose University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2019 Maintenance Of Mammary Epithelial Phenotype By Transcription Factor Runx1 Through Mitotic Gene Bookmarking Joshua Rose University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry Commons, and the Genetics and Genomics Commons Recommended Citation Rose, Joshua, "Maintenance Of Mammary Epithelial Phenotype By Transcription Factor Runx1 Through Mitotic Gene Bookmarking" (2019). Graduate College Dissertations and Theses. 998. https://scholarworks.uvm.edu/graddis/998 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. MAINTENANCE OF MAMMARY EPITHELIAL PHENOTYPE BY TRANSCRIPTION FACTOR RUNX1 THROUGH MITOTIC GENE BOOKMARKING A Thesis Presented by Joshua Rose to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Cellular, Molecular, and Biomedical Sciences January, 2019 Defense Date: November 12, 2018 Thesis Examination Committee: Sayyed Kaleem Zaidi, Ph.D., Advisor Gary Stein, Ph.D., Advisor Seth Frietze, Ph.D., Chairperson Janet Stein, Ph.D. Jonathan Gordon, Ph.D. Cynthia J. Forehand, Ph.D. Dean of the Graduate College ABSTRACT Breast cancer arises from a series of acquired mutations that disrupt normal mammary epithelial homeostasis and create multi-potent cancer stem cells that can differentiate into clinically distinct breast cancer subtypes. Despite improved therapies and advances in early detection, breast cancer remains the leading diagnosed cancer in women.
    [Show full text]
  • Ohnologs in the Human Genome Are Dosage Balanced and Frequently Associated with Disease
    Ohnologs in the human genome are dosage balanced and frequently associated with disease Takashi Makino1 and Aoife McLysaght2 Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland Edited by Michael Freeling, University of California, Berkeley, CA, and approved April 9, 2010 (received for review December 21, 2009) About 30% of protein-coding genes in the human genome are been duplicated by WGD, subsequent loss of individual genes related through two whole genome duplication (WGD) events. would result in a dosage imbalance due to insufficient gene Although WGD is often credited with great evolutionary impor- product, thus leading to biased retention of dosage-balanced tance, the processes governing the retention of these genes and ohnologs. In fact, evidence for preferential retention of dosage- their biological significance remain unclear. One increasingly pop- balanced genes after WGD is accumulating (4, 7, 11–20). Copy ular hypothesis is that dosage balance constraints are a major number variation [copy number polymorphism (CNV)] describes determinant of duplicate gene retention. We test this hypothesis population level polymorphism of small segmental duplications and show that WGD-duplicated genes (ohnologs) have rarely and is known to directly correlate with gene expression levels (21– experienced subsequent small-scale duplication (SSD) and are also 24). Thus, CNV of dosage-balanced genes is also expected to be refractory to copy number variation (CNV) in human populations deleterious. This model predicts that retained ohnologs should be and are thus likely to be sensitive to relative quantities (i.e., they are enriched for dosage-balanced genes that are resistant to sub- dosage-balanced).
    [Show full text]