Department of Materials Engineering and Production §Ystems Lodzuniversity of Technology *

Total Page:16

File Type:pdf, Size:1020Kb

Department of Materials Engineering and Production §Ystems Lodzuniversity of Technology * Sumrnary of seiontific achievements Tomłsz Sąrmcz*I! PhD. Eng. , Department of Materials Engineering ' and Production §ystems LodzUniversity of Technology * Ann€x 2 Tońasż Szymczak Contents 1. Name: 3 2. Diplomas and degree§ .............. 3 ł J. Employment in scientific institutions......... ...............3 4. A scientific achievement pursuant to Ań. 16 par.2 of the act14 March 2003 on Academic Degrees and §cientific Titles and I)egrees and Titles in the Field of Arts (Journal of Laws, 20l7,item 1789): ......4 a) Title of scientific achievement......... ................4 b) Discussion of scientific achievements..........,...... ...............5 c) Description of scientific achievement application. ...........15 5. Teaching activity .............2L Important scientific indicators: ...........23 .......24 'i Annex 2 Tomasz Szymczak 1. Name: Tomasz Szymczak 2. Diplomas and degrees 22.06.2007 Doctor of Philosophy in Materials Engineering. PhD thesis: ,rThe model of the coat growth on iron alloys obtaining by immersion in the Al-Si bath and its connection with multi-component silumin", Lodz University of Technology, Faculty of Mechanical Engineering Dissertation advisor: Prof. Stanisław Pietrowski, Lodz University of Technology. Reviewer: Prof. Edward Guzik, AGH University of Science and Technology in Krakow. Reviewer: Prof. Piotr Kula, Lodz University of Technology. 22.02.2002 Master of Science. Engineer of Mechanical Engineering M.Sc. thesis: ,rComparative analysis of the manufacturing costs of the ventilated brake disk with various casting technologies" Lodz University of Technology, Faculty of Mechanical Engineering Dissertation advisors : Prof. Andrzej Jopkiewicz 3. Employment in scientific institutions 2007 - Lodz University of Technology, Department of Materials Engineering and Production Systems - assistant professor. Annex 2 Tomasz Szymczak 4. A scientific achievement pursuant to Art. 16 par,2 of the act14 March 2oo3 on Academic Degrees and Scientific Titles and Degrees and Titles in the Field of Arts (Journal of Laws, 20|7,item 1789): a) Title of scientific achievement As "a scientific achievement made after receiving the doctor's degree which constitutes the author's significant contribution into the development of a specific scientific field" I point to the monograph and a series of three publications under the same title: Hypoeutectic silumins with the addition of Cr, Mo, V and Wfor the casting under high pressure of machine parts with increased mechanical properties Bl. Szymczak T., Monograph: The ffict of Cr, Mo, V and W on the crystallization process and mechanical properties of hypoeutectic Al-Si alloys, Lodz University of Technology Publishing House, 2019. and a series publications: B2. Szymczak T., Szymszal J., Gumienny G.: ,,Statistical methods used in the assessment of the influence of the Al-Si alloy's chemical composition on its propeńies", Archives of Foundry Engineering, Volume 18, Issue l (2018)203-21l. 83. Szymczak T., Szlłnszal J., Gumienny G.: ,,Evaluation of the effect of the Cr, Mo, V and W content in an Al-Si alloy used for pressure casting on its proof stress", Archives of FoundryEngineering, Volume 18,Issue 2(2018) 105-1l1. B4. Szymczak T., Szymszal J., Gumienny G.: ,,Evaluation of the effect of Cr, Mo, V and W on the selected properties of silumins", Archives of Foundry Engineering, Volume 18,Issue 4 (2018) 77-82. Annex 2 Tomasz Szymczak b) Discussion of scientific achievements Aluminium is an element widely used in the foundry industry. In foundry engineering, this element is used as a construction material. Due to the relatively low mechanical properties of pure aluminium, mainly alloys made on its basis are used in the foundry industry. In recent years, after iron alloys, aluminium alloys have been the most often used group of alloys for the production of castings [1-8]. There is also an increased interest in Al alloys, which is reflected in the increasing global production of aluminium alloy castings in recent yeafs. The quantity of aluminium alloys processed in the foundry industry increased from 10.2 million tons in 2009 to 17.9 million tons in2016. During this period, the share of the production of castings from these alloys also increased in the global production of castings, from 12.7Yoto 17.Ioń. The high interest shown in Al alloys results in the necessity to undertake research aimed at maximising their development and extending the scope of application in various areas of processing and industry. Silumin is one of the most popular A1 alloys used in the foundry indusĘ. It's an aluminium-silicon alloy, which may also contain alloy additives. Silumins feature good castability, resistance to corrosion, machinability, heat resistance, electrical and thermal conductivity, low density (p = Z.l el"Ń), thermal expansion as well as a small casting shrinkage. They also have high strength properties in the group of low density alloys. Thanks to these properties, silumins have found a wide range of applications, especially in the automotive, aerospace and electrical machinery industry, as well as in the manufacture of household appliances. A problematic feature of silumin is the abili§ to form a coafse microstructure in it with relatively slow heat dissipation from the casting. For this reason, these alloys are generally not used for casting in sand and ceramic moulds. For this reason, it is best to use technologies in which metal moulds are used for casting silumin. Such technologies include die casting and pressure casting. Due to the relatively small thickness of the walls of pressure castings (s ś6 mm), this technology is characterised by very intense heat removal from the casting. For this reason, silumins after casting under pressure have significantly higher values of tensile strength R., proof stress Rpo.z and slightly higher HBW hardness compared with silumins cast into sand moulds, as well as die moulds. The fragmentation of the silumin microstructures, and thus the increase of their strength properties, can also be obtained due to their modification. The broadly understood properties of silumin can also be irqproved by incorporating alloy additions. Commonly used additions Annex 2 Tomasz Szymczak to silumin allow for carrying out heat treatment called precipitation hardening (e.g. Mg and Cu), increasing corrosion resistance (e.g. Ni) and strengthening solid solutions (e.g. Zn). Both the precipitation hardening, the strengthening of solid solutions and the modification have the greatest impact on increasing the strength properties of silumin. A special group of additives that can be introduced into silumin are so-called high-melting elements, such as Cr, Mo, V and W. The equilibrium systems Al-Cr [9], Al-Mo [10], Al-V I11, 12] and Al-W [11,13] show that the analysed high-melting elements have a lack of solubility or insignificant solubility in aluminium in the solid state. As a consequence, many intermetallic phases crystallize in these systems. High-melting elements (Cr, Mo, V and W) form numerous intermetallic phases also in double equilibrium systems with silicon [II,14-17l. The analysis of two-component equilibrium systems Cr-Mo, Cr-V, Cr-W, Mo-V, Mo-W and VW [l1, 18- 22] shows the mutual unlimited solubility of these elements or the formation of solid solutions. The data presented above indicates that the potential intermetallic phases, which may be formed in silumin after the addition of Cr, Mo, V and W additives, will crystallize in systems with Al or Si. In multi-component silumins, we have to take into account the possibility of creating more complex phases containing components other than those analysed. The intermetallic phases can significantly increase the brittleness of A1 alloys and reduce their strength and plastic properties. The danger of separation of intermetallic phases in silumins containing Cr, Mo, V and W increases with the decreasing rate of heat dissipation from the crystallized casting. The high rate of heat removal from the casting to the pressure mould makes it possible to supersaturate solid silumin solutions with these additives. This should lead to strengthening solid solutions of silumin and, consequently, improving its strength properties. Therefore, the addition of Cr, Mo, V and W to silumin intended for pressure casting seems to be the most favourable. Papers [Bl-B4], constituting the described scientific achievement, are devoted to the introduction of these additives to silumins casts under pressure in order to increase their mechanical properties. The analysis of the current state of knowledge presented in the monograph [B1] shows the small number of research papers on the use of Cr, Mo, V and W additives to silumin. This knowledge indicates two main goals for introducing these additives to silumin. They are: strengthening the effect of precipitation strengthening and reducing the harmful influence of iron on the properties of silumin. It has been shown that the addition of Cr, Mo or V into the silumin cast into die moulds can enhance the effect of precipitation strengthening, resulting in Annex 2 Tomasz Szymczak an increase in the mechanical properties of silumin at both ambient and elevated temperatures. Chromium and molybdenum appear to be the most effęctivę in this area. The effectiveness in reducing the harmful effect of iron on the mechanical propeńies of silumin is demonstrated by all high-melting additives tested. The iron causes the formation of the B-Al5FeSi intermetallic phase with plate morphology in the silumin microstructure. This phase significantly increases the brittleness of the alloy. The Cr, Mo, V or W introduced into silumin causes a decrease in the size of precipitates of this phase or crystallization, instead of a phase with plate morphology, of other phases having a morphology considered less harmful. The addition of Cr, Mo, V or W to silumin can cause the crystallization of intermetallic phases in the Al-Fe- Si-X system, where X means any high- melting addition tested. In silumins containing manganese, this element also enters the described phase. This phase may have divęrse morphology: "Chinese script", block, polygon, star or dendritic morphology.
Recommended publications
  • Studies on Properties of Al–Sic Metal Matrix Composite Material for Making IC Engine Valves
    Proceedings of the World Congress on Engineering 2018 Vol II WCE 2018, July 4-6, 2018, London, U.K. Studies on Properties of Al–SiC Metal Matrix Composite Material for Making IC Engine Valves Nilamkumar S. Patel, Ashwin D. Patel, Ritesh Kumar Ranjan, Vikas Rai Abstract-Automobile industries are using material substitution the matrix also helps to transfer load among the composite for to build lighter weight, and fuel efficient engines, offering is compound material which differs from alloy due to fact better properties materials of engine components, including that all the individual component retain its characteristic. engine poppet valves and valve seats. Valves and valve seats are very important components that are used at high operating II. EXPERIMENTAL SET-UP temperature to control the flow and volumetric efficient at desired level of engine performance. The present work Stir casting process is liquid state processing. It is simple describes that Al-SiC composite as possible alternate materials and flexible process. In this process, there is mixing of with its unique capacity to give required properties for engine matrix and reinforcement. poppet valves and valve seats. Al-SiC MMC is prepared by In this process, reinforcement particles are added into the powder metallurgy and various casting techniques. In the research a composite is developed by stir casting process by molten matrix metal. And then the proper mixture is done using aluminium alloy with silicon carbide Nano particles and by hand stirring as well as Mechanical stirring. And then substitute sintering operation at 600oC temperature for one this mixture is allowed to pour into the mould shape.
    [Show full text]
  • A Review on Comparison of Aluminium Alloy LM-25 with Al/Sic
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072 A review on comparison of Aluminium alloy LM-25 with Al/Sic Rahul Ushir1 , Kunal Gandhi2, Gaurav Dahe3, Vijay Bidgar4, Prof. Vishal Thakre5. 1,2,3,4 BE student Mechanical, SND COE & RC, YEOLA, Maharashtra, India 5Prof. Mechanical, SND COE & RC, YEOLA, Maharashtra, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract- Many industries suffered a great loss of materials and procedures to decrease the wear of devices manufacturing process due to collapse of manufacturing and designing segments. These incorporate change of mass machines due to wear and fail of lubrication. Friction is main properties of the materials, surface medications and cause of wear and energy dissipation. Improving friction can utilization of covering, and so on. In the course of the most make substantial saving. It is obvious that enormous amount recent couple of years, numerous endeavors have been made of the worlds resources are used to overcome friction in the to comprehend the wear conduct of the surfaces in sliding form or another. Lubrication is an effective means of contact and the instrument, which prompts wear. The controlling wear and reducing friction. Hence, for the survival applications of aluminium and its alloys for the machine of machine wear and friction must be decreased parts are increasing day to day in the industry. However, and/controlled carefully. little has been reported on the wear behaviour of aluminium and its alloys with the addition of grain refiner and modifier. Key words: Silicon Carbide(Sic) , aluminium LM25,scanning electron microscope ( SEM ) , metal PROBLEM DEFINITION: matrix composite ( MMCs) .
    [Show full text]
  • Maec.19 70 (University of London) London
    COMPLEX & INCREMENTAL STRESS CREEP OF A HIGH STRENGTH ALUMINIUM ALLOY AT ELEVATED TEMPERATURES (ALLOY: HIDUMINIUM RR58 SPECIFICATION DTD 731) by SURINDAR BAHADUR MATHUR Thesis presented in the Department of Mechanical Engineering for the Award of the Doctor of Philosphy in Mechanical Engineering of the University of London. Mechanical Engineering Department Imperial College of Science and Technology mAec.19 70 (University of London) London. ABSTRACT A theory for creep rates under complex and incremental stresses is deduced from experimental data concerning complex creep at elevated temperatures for the test material HIDUMINIUM RR 58 - Specification DID 731. The most important results are for tubular specimens tested at 150°C and 250°C under incremental loads. The analysis of results relates to steady state creep only. Modified relationships in stress equivalence and strain equivalence are proposed to account for thermal softening, polygonization, recrystallization and the resulting exaggerated flow in the direction of the applied shear. (The original equations are based on the hypothesis of Von Mises). A further relationship is suggested between the immediate total energy of distortion and the subsequent creep work rate. Results of the static tests and the results of the tests for creep behaviour under complex loading are presented and compared with the results of static torsion and simple incremental torsion creep tests on the basis of the proposed equations. An appendix describes the complex creep testing machine, furnace, extensometers
    [Show full text]
  • The Effect of Cooling Rate on the Microstructure of A356 Aluminium Alloy
    SVOA MATERIALS SCIENCE & TECHNOLOGY (ISSN: 2634-5331) Research https://sciencevolks.com/materials-science/ Volume 2 Issue 4 The Effect of Cooling Rate on the Microstructure of A356 Aluminium Alloy Maftah H. Alkathafi1*, Abdalfattah A. Khalil2, Ayad O. Abdalla3 Affiliations: 1Mechanical Engineering Department, Faculty of Engineering, Sirte University, Libya 2Materials Science Department, Faculty of Engineering, Omer Al-Mukhtar University, Libya. 3College of Mechanical Engineering Technology, Benghazi-Libya. *Corresponding author: Maftah H. Alkathafi* Mechanical Engineering Department, Faculty of Engineering, Sirte University, Libya Received: December 10, 2020 Published: December 31, 2020 Abstract: In this study a fast-cooling technology is employed for a cast iron mould to prepare cast A356 aluminium alloy by solidifica- tion of the molten metal. The cooling rate is achieved by pouring the molten alloy into a preheating permanent mould at different temperatures (25, 100, 200, 300 and 4000C) for cast samples with 40 mm inside diameter and 200 mm height. The samples considered are analyzed by optical microscopy, scanning electron microscopy (SEM), and EDS X-ray analysis (EDS). The effects of cooling rate on the morphology of α – aluminum and eutectic silicon of A356 alloy have been studied. The results showed that the dendritic structure of α-phase was broken and converted into a somewhat globular grain structure and the coarse acicular eutectic silicon trend to be broken and converted into short sticks or small rounded in other cases. Keywords: A356 Aluminum alloy, Grain refinement, Cooling rate, SEM, EDS, Microstructure. 1. Introduction Aluminium alloys have attractive physical and mechanical properties. They are lightweight, low costs production, easy to machine and have good recycling possibilities up to 95 % [1].
    [Show full text]
  • Aluminium Alloy - 6262 - T6 Extrusions
    Aluminium Alloy - 6262 - T6 Extrusions SPECIFICATIONS CHEMICAL COMPOSITION Commercial 6262 BS EN 573-3:2009 Alloy 6262 EN 6262 Element % Present Magnesium (Mg) 0.80 - 1.20 Aluminium alloy 6262 is a heat treatable alloy with Copper (Cu) 0.15 - 1.40 very good corrosion resistance and strength. Additions of bismuth to the alloy mean that 6262 has excellent Silicon (Si) 0.40 - 0.80 machinability and surface finish. Lead (Pb) 0.40 - 0.70 High-speed steel or carbide tooling can be used to obtain smooth finishes. Heavy cutting requires oil Bismuth (Bi) 0.40 - 0.70 lubricant but light cutting can be done dry. Iron (Fe) 0.0 - 0.70 Alloy 6262 can be used in place of 2011 when higher corrosion resistance and better anodising response is Zinc (Zn) 0.0 - 0.25 required. Chromium (Cr) 0.04 - 0.14 Applications Titanium (Ti) 0.0 - 0.15 6262 is commonly used in the manufacture of: Manganese (Mn) 0.0 - 0.15 Screw machine products Camera parts Others (Total) 0.0 - 0.15 Nuts Other (Each) 0.0 - 0.05 Couplings Aluminium (Al) Balance Marine fittings Decorative hardware and appliance fittings Hinge pins Oil line fittings ALLOY DESIGNATIONS Valves and valve parts Aluminium alloy 6262 also corresponds to the following standard designations and specifications but may not PLEASE NOTE: Due to European Environmental be a direct equivalent: Protection Directives: AA6262 # 2000/53/CE-ELV – For the automotive sector Al 1.0Mg 0.6Si Pb # 2002/95/CE-RoHS – For the electrical and A96262 electronics sector This alloy has been replaced by Alloy 6026 which has a PLEASE NOTE: Due to European Environmental lower Lead content.
    [Show full text]
  • Fatigue Behavior of 2618-T851 Aluminum Alloy Under Uniaxial and Multiaxial Loadings
    Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/24572 Official URL : https://doi.org/10.1016/j.ijfatigue.2019.105322 To cite this version : BenaÕssa, Malek and Mabru, Catherine and Chaussumier, Michel Fatigue behavior of 2618-T851 aluminum alloy under uniaxial and multiaxial loadings. (2020) International Journal of Fatigue, 131 (105322). 1-9. ISSN 0142-1123 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Fatigue behavior of 2618-T851 aluminum alloy under uniaxial and multiaxial loadings ⁎ Benaïssa Malek, Catherine Mabru, Michel Chaussumier Université de Toulouse, Institut Clément Ader (ICA), UMR CNRS 5312, UPS/INSA/ISAE/ Mines Albi, 3 Rue Caroline Aigle, 31400 Toulouse, France ABSTRACT Keywords: AA2618 aeronautical aluminum alloy has been largely used in the past, especially in well-known Concorde AA2618-T851 aircraft, developed during sixties decade. In more recent aircraft, this alloy has been largely replaced by others Multiaxial fatigue such as 7075 which present greater fatigue resistance. Forgotten for a time, AA2618 comes back in new aircrafts Roughness for structural parts submitted to fatigue loading at high temperature because of only a slight decrease of fatigue Crossland criterion resistance of this alloy compared to room temperature fatigue resistance. In this paper, a complete fatigue characterization of 2618-T851 aluminum alloy is presented: fatigue tests under uniaxial tensile or torsion cyclic loadings, with mean tensile or shear stress have been realized; fatigue tests under combined tensile-torsion, in or out-of-phase have also been conducted as well as some combined tensile-torsion-internal pressure fatigue tests.
    [Show full text]
  • Tribological Behavior and Hardness Properties of Heat Treated Al 7075-Beryl-Graphene Hybrid Metal Matrix Composites
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-3, September 2019 Tribological Behavior and Hardness Properties of Heat Treated Al 7075-Beryl-Graphene Hybrid Metal Matrix Composites Shanawaz Patil, Mohamed Haneef mirror frames, house members, serving trays and cooking Abstract— The emerging technologies and trends of the utensils. Even in the field of engineering applications, the present generation require downsizing the unwieldy structures to aluminum and its alloys plays vigorous role as an aerospace, lightweight structures. Aluminum matrix composites are tailored space, and automotive components material of increasing candidate materials for aerospace applications due to their outstanding greater strength to weight ratio and low wear rate. In value because of its properties which includes diverse range this study, Al7075 alloy-Beryl-Graphene hybrid composites are of uses are appearance, lightweight and has a low density of developed by using stir casting process. Graphene weight range 2.7 to 2.8 gm/cm3 which is almost one-third of steel percentage was varied from 0 wt. % to 2 wt. % in steps of 0.5 wt. %. (7.83 gmcm3)[-,5]. One of the foremost usually used metal Whereas for Beryl 6 wt. % is used thorough out the study. The alloy for structural application is Al7075 due to its enticing casted specimens were heat-treated at T6 solutionizing wide-ranging properties like low density, improved strength, temperature of 530±5oC for 8 hours. After the heat treatment the specimen are quenched in boiling Water and Ice. The ductility, toughness, and resistance to fatigue. Al7075 alloy microstructure of the newly developed hybrid MMCs has been has been extensively used in aircraft structure elements and investigated by TEM and SEM.
    [Show full text]
  • A Survey of Al7075 Aluminium Metal Matrix Composites
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 A Survey of Al7075 Aluminium Metal Matrix Composites Rajendra .S .K1, Ramesha .C .M2 1Research Scholar, Jain University, Bengaluru, Department of Industrial Engineering and Management, Dr. Ambedkar Institute of Technology, Bengaluru 2Department of Mechanical Engineering, M S Ramaiah Institute of Technology, Bengaluru Abstract:A composite material is a combination of two or more chemically distinct and insoluble phases; its properties and structural performance are superior to those of the constituents acting independently. Metals and ceramics, as well, can be embedded with particles or fibers, to improve their properties; these combinations are known as Metal-Matrix composites. Aluminum 7075 alloy constitutes a very important engineering material widely employed in the aircraft and aerospace industry for the manufacturing of different parts and components. It is due to its high strength to density ratio that it a sought after metal matrix composite. In this paper we present a survey of Al 7075 Metal Matrix Composites. Keywords: Metal Matrix Composites (MMC’s), Aluminium Metal Matrix, Beryl, Al7075, Aluminium alloy 1. Introduction Aluminium alloy 7075 is an aluminium alloy, with zinc as the primary alloying element. It is strong, with a strength The effects of research in Aluminium based Metal Matrix comparable to many steels, and has good fatigue strength and Composites (MMC’s) are far reaching these days. These average machinability, but has less resistance to corrosion composites find various applications in the automobile than many other Al alloys. Its relatively high cost limits its industry, the aerospace industry and in defence and marine use to applications where cheaper alloys are not suitable.
    [Show full text]
  • THE VACUUM CHAMBERIN the INTERACTION REGIÓN of PARTIÓLE COLLIDERS: a HISTORICAL STUDY and DEVELOPMENTS IMPLEMENTED in the Lhcb EXPERIMENT at CERN
    Departamento de Física Aplicada a la Ingeniería Industrial Escuela Técnica Superior de Ingenieros Industriales THE VACUUM CHAMBERIN THE INTERACTION REGIÓN OF PARTIÓLE COLLIDERS: A HISTORICAL STUDY AND DEVELOPMENTS IMPLEMENTED IN THE LHCb EXPERIMENT AT CERN Autor: Juan Ramón Klnaster Refolio Ingeniero Industrial por la E.T.S.I. Industriales Universidad Politécnica de Madrid Directores: Raymond J.M. Veness Ph; D. Mechanics of Materials and Plasticity University of Leicester (England) Linarejos Gámez Mejías Doctor Ingeniero Industrial por la E.T.S.I.I. Universidad Politécnica de Madrid 2004 Whatever you dream, you can do, begin it! Boldness has power, magic and genius in it Goethe Homo sum: humani nihil a me alienum puto (Je suis homme, et rien de ce que est humain ne m'est étraxiger) Terence Loving softly and deeply... Elsje Tout proche d'étre un Boudha paresseusement réve le vieux pin Issa En nuestra cabeza, en nuestro pecho es donde están los circos en que, vestidos con los disfraces del tiempo, se enfrentan la Libertad y el Destino Jünger This Thesis has been possible thanks to the support of many people that duñng last 15 months have helped me in different ways. I would like to thank my co- lleagues R. Aehy, P. Bryant, B. Calcagno, G. Corii, A. Gerardin, G. Foffano, M. Goossens, C. Hauvüler, H. Kos, J. Kruzelecki, P. Lutkiewicz, T. Nakada, A. Rossi, J.A. Rubio, B. Szybinski, D. Tristram, B. Ver- solatto, L. Vos and W. Witzeling for their contribu- tions in different moments. Neither would I have ever managed to finish it without those moments of peace shared with mes fréres d'Independance et Verité á VOr :.
    [Show full text]
  • Microstructual and Thermal Analysis of Aluminum-Silicon and Magnesium-Aluminum Alloys Subjected to High Cooling Rates
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2012 Microstructual and Thermal Analysis of Aluminum-Silicon and Magnesium-Aluminum Alloys Subjected to High Cooling Rates Paul Marchwica University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Marchwica, Paul, "Microstructual and Thermal Analysis of Aluminum-Silicon and Magnesium-Aluminum Alloys Subjected to High Cooling Rates" (2012). Electronic Theses and Dissertations. 5572. https://scholar.uwindsor.ca/etd/5572 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Microstructual and Thermal Analysis of AlSi and MgAl Alloys Subjected to High Cooling Rates By Paul C. Marchwica A Thesis Submitted to the Faculty of Graduate Studies through the Department of Mechanical, Automotive and Materials Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 2012 © 2012 P.
    [Show full text]
  • The Safety of Molten Aluminium-Lithium Alloys in the Presence of Coolants F
    THE SAFETY OF MOLTEN ALUMINIUM-LITHIUM ALLOYS IN THE PRESENCE OF COOLANTS F. Page, A. Chamberlain, R. Grimes To cite this version: F. Page, A. Chamberlain, R. Grimes. THE SAFETY OF MOLTEN ALUMINIUM-LITHIUM AL- LOYS IN THE PRESENCE OF COOLANTS. Journal de Physique Colloques, 1987, 48 (C3), pp.C3- 63-C3-73. 10.1051/jphyscol:1987308. jpa-00226531 HAL Id: jpa-00226531 https://hal.archives-ouvertes.fr/jpa-00226531 Submitted on 1 Jan 1987 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C3, suppl6ment au n09, Tome 48; septembre 1987 THE SAFETY OF MOLTEN ALUMINIUM-LITHIUM ALLOYS IN THE PRESENCE OF COOLANTS F.M. PAGE, A.T. CHAMBERLAIN and R. GRIMES* University of Aston, Gosta Green, GB-Birmingham 84 7ET, Great-Britain "~rritishAlcan Aluminium plc, c/o Alcan International Limited, Southam Road, Banbury, GB-Oxon OX16 7SP, Great-Britain ABSTRACT The conventional, large scale techniques employed for casting fabrication ingot in aluminium alloys allow, in certain circumstances, the molten alloy to come into contact with water. Industry codes of practice have been developed that reduce the likelihood of explosions in these "run-out" situations to a very low level.
    [Show full text]
  • Alloys for Aeronautic Applications: State of the Art and Perspectives
    metals Review Alloys for Aeronautic Applications: State of the Art and Perspectives Antonio Gloria 1, Roberto Montanari 2,*, Maria Richetta 2 and Alessandra Varone 2 1 Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; [email protected] 2 Department of Industrial Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy; [email protected] (M.R.); [email protected] (A.V.) * Correspondence: [email protected]; Tel.: +39-06-7259-7182 Received: 16 May 2019; Accepted: 4 June 2019; Published: 6 June 2019 Abstract: In recent years, a great effort has been devoted to developing a new generation of materials for aeronautic applications. The driving force behind this effort is the reduction of costs, by extending the service life of aircraft parts (structural and engine components) and increasing fuel efficiency, load capacity and flight range. The present paper examines the most important classes of metallic materials including Al alloys, Ti alloys, Mg alloys, steels, Ni superalloys and metal matrix composites (MMC), with the scope to provide an overview of recent advancements and to highlight current problems and perspectives related to metals for aeronautics. Keywords: alloys; aeronautic applications; mechanical properties; corrosion resistance 1. Introduction The strong competition in the industrial aeronautic sector pushes towards the production of aircrafts with reduced operating costs, namely, extended service life, better fuel efficiency, increased payload and flight range. From this perspective, the development of new materials and/or materials with improved characteristics is one of the key factors; the principal targets are weight reduction and service life extension of aircraft components and structures [1].
    [Show full text]