Curly Dock Rumex Crispus Kingdom: Plantae FEATURES Division: Magnoliophyta Curly Dock, Or Curled Dock, Is a Member of the Class: Magnoliopsida Buckwheat Family

Total Page:16

File Type:pdf, Size:1020Kb

Curly Dock Rumex Crispus Kingdom: Plantae FEATURES Division: Magnoliophyta Curly Dock, Or Curled Dock, Is a Member of the Class: Magnoliopsida Buckwheat Family curly dock Rumex crispus Kingdom: Plantae FEATURES Division: Magnoliophyta Curly dock, or curled dock, is a member of the Class: Magnoliopsida buckwheat family. This biennial or perennial herb Order: Polygonales has a taproot. Its stems are erect and unbranched. The leaves grow in a basal rosette and along the Family: Polygonaceae stem. Stem leaves are arranged alternately. The ILLINOIS STATUS lance-shaped, smooth leaves are wavy along the edges and may be 10 inches long and three inches common, nonnative wide. Flowers are borne in whorls at the tip of the stem and in the leaf axils. The green or brown flowers are each attached to a slender, drooping stalk. The fruits have three, heart-shaped wings. Curly dock may grow to a height of four feet. BEHAVIORS Curly dock may be found throughout Illinois. It grows in field edges, roadsides and along streams. Flowers are produced from April through May. Curly dock is a native of Europe that was transported to the United States with early settlers and has spread tremendously. ILLINOIS RANGE seed head © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. plant © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. seed head © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. leaves and stems Aquatic Habitats none Woodland Habitats none Prairie and Edge Habitats edge © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources..
Recommended publications
  • Anthracene Derivatives in Some Species of Rumex L
    Vol. 76, No. 2: 103-108, 2007 ACTA SOCIETATIS BOTANICORUM POLONIAE 103 ANTHRACENE DERIVATIVES IN SOME SPECIES OF RUMEX L. GENUS MAGDALENA WEGIERA1, HELENA D. SMOLARZ1, DOROTA WIANOWSKA2, ANDRZEJ L. DAWIDOWICZ2 1 Departament of Pharmaceutical Botany Skubiszewski Medical University of Lublin Chodki 1, 20-039 Lublin, Poland e-mail: [email protected] 2 Faculty of Chemistry, Marii Curie-Sk³odowska University of Lublin (Received: June 1, 2006. Accepted: September 5, 2006) ABSTRACT Eight anthracene derivatives (chrysophanol, physcion, emodin, aloe-emodin, rhein, barbaloin, sennoside A and sennoside B) were signified in six species of Rumex L genus: R. acetosa L., R. acetosella L., R. confertus Willd., R. crispus L., R. hydrolapathum Huds. and R. obtusifolius L. For the investigations methanolic extracts were pre- pared from the roots, leaves and fruits of these species. Reverse Phase High Performance Liquid Chromatography was applied for separation, identification and quantitative determination of anthracene derivatives. The identity of these compounds was further confirmed with UV-VIS. Received data were compared. The roots are the best organs for the accumulation of anthraquinones. The total amount of the detected compo- unds was the largest in the roots of R. confertus (163.42 mg/g), smaller in roots R. crispus (25.22 mg/g) and the smallest in roots of R. hydrolapathum (1.02 mg/g). KEY WORDS: Rumex sp., roots, fruits, leaves, anthracene derivatives, RP-HPLC. INTRODUCTION scion-anthrone, rhein, nepodin, nepodin-O-b-D-glycoside and 1,8-dihydroxyanthraquinone from R. acetosa (Dedio The species belonging to the Rumex L. genus are wide- 1973; Demirezer and Kuruuzum 1997; Fairbairn and El- spread in the world.
    [Show full text]
  • CURLY DOCK SHEEP SORREL Rumex Crisp Us Rumex Acetosella
    CURLY DOCK SHEEP SORREL Rumex crisp us Rumex acetosella FAMILY: Polygonaceae GENUS: Rumex SPECIES: crispus acetosella COMMON NAMES: Curly Dock Sheep Sorrel Yellow Dock Sorrell Dock Sour Dock Field Sorrel Narrow-leaved Dock Red Sorrel Wood Sorrel Sour-weed POLLEN GRAINS: Spheroidal, 23 to 27 microns in diameter. A thin exine is finely pitted. Three or four (sometimes six) linear furrows are evenly arranged, each having a small elliptical germ pore. POLLINATING PERIOD: June to August. Earlier in warmer Throughout the summer but areas. heaviest in May and June. DISTRIBUTION: Throughout the United States. ThroughoutmostoftheUnited States. Rarely found in Southern California or desert areas of the Southwest. ALLERGIC IMPORTANCE: Of only moderate Importance In areas of abundance. Curly Dock is a stout perennial 1 ~ to 5 feet Sheep Sorrel is a perennial ~ to 2 feet tall tall. During the first year the plant forms a arising from a slender running rootstock. The dense roseaffe of leaves. Leaves are elon­ leaves are rather fleshy and vary in size and gated with wavy margins. The upright stems shape from lower to upper. The lower leaves are leafy. The terminal inflorescence is dense are halbard-shaped with two basal lobes. with few or no leaves and is 1 to 2 feet long. In The inflorescence is terminal and mostly leaf­ fruit in the late summer and fall the tops turn a less. Individual flowers are of separate sex characteristic reddish brown. with the female being red and the male a yellowish green color. The foliage of the docks is acid but especially so in this species.
    [Show full text]
  • Somerset's Ecological Network
    Somerset’s Ecological Network Mapping the components of the ecological network in Somerset 2015 Report This report was produced by Michele Bowe, Eleanor Higginson, Jake Chant and Michelle Osbourn of Somerset Wildlife Trust, and Larry Burrows of Somerset County Council, with the support of Dr Kevin Watts of Forest Research. The BEETLE least-cost network model used to produce Somerset’s Ecological Network was developed by Forest Research (Watts et al, 2010). GIS data and mapping was produced with the support of Somerset Environmental Records Centre and First Ecology Somerset Wildlife Trust 34 Wellington Road Taunton TA1 5AW 01823 652 400 Email: [email protected] somersetwildlife.org Front Cover: Broadleaved woodland ecological network in East Mendip Contents 1. Introduction .................................................................................................................... 1 2. Policy and Legislative Background to Ecological Networks ............................................ 3 Introduction ............................................................................................................... 3 Government White Paper on the Natural Environment .............................................. 3 National Planning Policy Framework ......................................................................... 3 The Habitats and Birds Directives ............................................................................. 4 The Conservation of Habitats and Species Regulations 2010 ..................................
    [Show full text]
  • Concentrations of Anthraquinone Glycosides of Rumex Crispus During Different Vegetation Stages L
    Concentrations of Anthraquinone Glycosides of Rumex crispus during Different Vegetation Stages L. Ömtir Demirezer Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, 06100 Ankara, Turkey Z. Naturforsch. 49c, 404-406 (1994); received January 31, 1994 Rumex crispus, Polygonaceae. Anthraquinone, Glycoside The anthraquinone glycoside contents of various parts of Rumex crispus L. (Polygonaceae) in different vegetation stages were investigated by thin layer chromatographic and spectro- photometric methods. The data showed that the percentage of anthraquinone glycoside in all parts of plant increased at each stage. Anthraquinone glycoside content was increased in leaf, stem, fruit and root from 0.05 to 0.40%. from 0.03 to 0.46%. from 0.08 to 0.34%, and from 0.35 to 0.91% respectively. From the roots of R. crispus, emodin- 8 -glucoside, RGA (isolated in our laboratory, its structure was not elucidated), traceable amount of glucofran- gulin B and an unknown glycoside ( R f = 0.28 in ethyl acetate:methanol:water/100:20:10) was detected in which the concentration was increased from May to August. The other parts of plant contained only emodin- 8 -glucoside. Introduction In the present investigation various parts of Rumex L. (Polygonaceae) is one of several Rumex crispus, leaf, stem, fruit and root were ana­ genera which is characterized by the presence lyzed separately for their anthraquinone glycoside of anthraquinone derivatives. There are about contents, the glycosides in different vegetation 200 species of Rumex in worldwide (Hegi, 1957). stages were detected individually. By this method, Rumex is represented with 23 species and 5 hy­ translocation of anthraquinone glycosides were brids in Turkey (Davis, 1965) and their roots have also investigated.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • Application of Pontentilla Anserine, Polygonum Aviculare and Rumex Crispus Mixture Extracts in a Rabbit Model with Experimentally Induced E
    animals Article Application of Pontentilla Anserine, Polygonum aviculare and Rumex Crispus Mixture Extracts in A Rabbit Model with Experimentally Induced E. coli Infection Robert Kupczy ´nski 1,* , Antoni Szumny 2 , Michał Bednarski 3, Tomasz Piasecki 3, Kinga Spitalniak-Bajerska´ 1 and Adam Roman 1 1 Department of Environment, Animal Hygiene and Welfare, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; [email protected] (K.S.-B.);´ [email protected] (A.R.) 2 Department of Chemistry, Wroclaw University of Environmental and Life Science, 50-375 Wrocław, Poland; [email protected] 3 Department of Epizootiology with Clinic of Birds and Exotic Animals, Wroclaw University of Environmental and Life Science, 50-366 Wrocław, Poland; [email protected] (M.B.); [email protected] (T.P.) * Correspondence: [email protected] Received: 27 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Simple Summary: The beneficial effect of herbs on production parameters, quality of products of animal origin, and animal health was demonstrated in numerous studies. This study aimed to determine an effect of herbal mixture on blood parameters and the anti-colibacteriosis efficacy. The rabbit model used during the experimental infection with E. coli indicates a clear effect of Rumex crispus L., Pontentilla anserine, Polygonum aviculare, whose activity involves the reduction of colonization of basically all sections of the intestines. The use of herbs in rabbits can control the activity of intestinal microbial community. Administration of a mixture of herbs to feed reduced the number of E. coli in cecum more than supplementation into water after experimental infection.
    [Show full text]
  • Concentrations of Anthraquinone Glycosides of Rumex Crispus During Different Vegetation Stages L
    Concentrations of Anthraquinone Glycosides of Rumex crispus during Different Vegetation Stages L. Ömtir Demirezer Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, 06100 Ankara, Turkey Z. Naturforsch. 49c, 404-406 (1994); received January 31, 1994 Rumex crispus, Polygonaceae. Anthraquinone, Glycoside The anthraquinone glycoside contents of various parts of Rumex crispus L. (Polygonaceae) in different vegetation stages were investigated by thin layer chromatographic and spectro- photometric methods. The data showed that the percentage of anthraquinone glycoside in all parts of plant increased at each stage. Anthraquinone glycoside content was increased in leaf, stem, fruit and root from 0.05 to 0.40%. from 0.03 to 0.46%. from 0.08 to 0.34%, and from 0.35 to 0.91% respectively. From the roots of R. crispus, emodin- 8 -glucoside, RGA (isolated in our laboratory, its structure was not elucidated), traceable amount of glucofran- gulin B and an unknown glycoside ( R f = 0.28 in ethyl acetate:methanol:water/100:20:10) was detected in which the concentration was increased from May to August. The other parts of plant contained only emodin- 8 -glucoside. Introduction In the present investigation various parts of Rumex L. (Polygonaceae) is one of several Rumex crispus, leaf, stem, fruit and root were ana­ genera which is characterized by the presence lyzed separately for their anthraquinone glycoside of anthraquinone derivatives. There are about contents, the glycosides in different vegetation 200 species of Rumex in worldwide (Hegi, 1957). stages were detected individually. By this method, Rumex is represented with 23 species and 5 hy­ translocation of anthraquinone glycosides were brids in Turkey (Davis, 1965) and their roots have also investigated.
    [Show full text]
  • Rumex Crispus L.; Curly Dock R
    A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Rumex crispus L.; curly dock R. crispus R. obtusifolius Rumex obtusifolius L.; broadleaf dock Curly and broadleaf dock Family: Polygonaceae Range: Curly dock is found throughout the U.S., including every western state. Broadleaf dock is found in most of the western states, except Nevada, Wyoming and North Dakota. Habitat: Ditches, roadsides, wetlands, meadows, riparian areas, alfalfa and pasture fields (especially with poor drainage), orchards and other disturbed moist areas. Plants prefer wet to moist soils but tolerate periods of dryness, and can grow in most climates and soil types. Origin: R. crispus, Eurasia; R. obtusifolia, western Europe. Impact: Both species can be very competitive and outcompete more desirable vegetation for water, nutrients and light. Under certain conditions, they can accumulate soluble oxalates making them toxic to livestock. California Invasive Plant Council (Cal-IPC) Inventory: R. crispus, Limited Invasiveness Both species are erect perennials from 1.5 to 3 ft tall, occasionally to 5 ft tall. Curly dock leaves are lanceolate and up to 20 inches long, whereas broadleaf dock has lanceolate-ovate leaves that are up to 30 inches long.
    [Show full text]
  • Polygonaceae of Alberta
    AN ILLUSTRATED KEY TO THE POLYGONACEAE OF ALBERTA Compiled and writen by Lorna Allen & Linda Kershaw April 2019 © Linda J. Kershaw & Lorna Allen This key was compiled using informaton primarily from Moss (1983), Douglas et. al. (1999) and the Flora North America Associaton (2005). Taxonomy follows VAS- CAN (Brouillet, 2015). The main references are listed at the end of the key. Please let us know if there are ways in which the kay can be improved. The 2015 S-ranks of rare species (S1; S1S2; S2; S2S3; SU, according to ACIMS, 2015) are noted in superscript (S1;S2;SU) afer the species names. For more details go to the ACIMS web site. Similarly, exotc species are followed by a superscript X, XX if noxious and XXX if prohibited noxious (X; XX; XXX) according to the Alberta Weed Control Act (2016). POLYGONACEAE Buckwheat Family 1a Key to Genera 01a Dwarf annual plants 1-4(10) cm tall; leaves paired or nearly so; tepals 3(4); stamens (1)3(5) .............Koenigia islandica S2 01b Plants not as above; tepals 4-5; stamens 3-8 ..................................02 02a Plants large, exotic, perennial herbs spreading by creeping rootstocks; fowering stems erect, hollow, 0.5-2(3) m tall; fowers with both ♂ and ♀ parts ............................03 02b Plants smaller, native or exotic, perennial or annual herbs, with or without creeping rootstocks; fowering stems usually <1 m tall; fowers either ♂ or ♀ (unisexual) or with both ♂ and ♀ parts .......................04 3a 03a Flowering stems forming dense colonies and with distinct joints (like bamboo
    [Show full text]
  • Deep Roots Radio 2020 Spring Herbs 1
    RED CLOVER HERBAL APOTHECARY FARM SPRING HERBS Stinging Nettles (Urtica dioica) leaf, root and seeds One of my very favorite herbs • Use as a tea or in plant extracts. Use as a food - saute in olive oil with garlic, add to pasta dishes, make Nettle leaf lasagna. Use the dried seeds at end of growing season • Stinging nettle is a powerful source of many nutrients, calcium, manganese, magnesium, vitamin K, carotenoids, and protein • Because of its high mineral content, Nettle strengthens bones, hair, nails, and teeth. • Nettles build red blood cells so boosts iron levels. Many women this instead of iron pills when pregnant. Restoring iron levels can also relieve fatigue. • Nettles natural histamine may decrease seasonal allergic responses, such as hay fever. Suggested use for allergies - make a strong nourishing infusions (1 ounce of nettle leaf by weight, infused in 32 ounces of just-boiled water for 4-8 hours) Drink this daily in the time leading up to allergy season. This often eliminates or strongly decreases allergy symptoms • There's the old tale of Elders running naked through the Nettle patches. Stinging nettle hairs contain several chemicals that have pain-relieving and anti-inflammatory properties. This means that stinging nettle could help reduce pain and inflammation in conditions such as arthritis. • Nettle stings contain histamine that causes the initial reaction when you are stung. Dock leaf sap contains natural antihistamine, which helps to ease the stinging sensation. • Stinging Nettle seed is currently being used in clinical practice as a trophorestorative for degenerative kidney disease. A trophorestorative nourishes and restores the function of a tired, compromised, diseased tissue, organ, or system.
    [Show full text]
  • Nutrition, Toxicology, and Availability of Wild Edible Greens in the East Bay
    bioRxiv preprint doi: https://doi.org/10.1101/385864; this version posted August 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Open-Source Food: Nutrition, Toxicology, and Availability of Wild Edible Greens in the East Bay Philip B. Stark1Y*, Daphne Miller2¤, Thomas J. Carlson3‡, Kristen Rasmussen de Vasquez4 1 Department of Statistics 2 School of Public Health 3 Department of Integrative Biology 4 Department of Nutrition and Toxicology University of California, Berkeley Yconceptualization, formal analysis, funding acquisition, investigation, methodology, project administration, software, supervision, visualization, writing–original draft preparation, writing–editing ¤writing–original draft preparation, writing–editing ‡conceptualization, investigation, methodology, project administration investigation, methodology * [email protected] Abstract Significance. Foraged leafy greens are consumed around the globe, including in urban areas, and may play a larger role when food is scarce or expensive. It is thus important to assess the safety and nutritional value of wild greens foraged in urban environments. Methods. Field observations, soil tests, and nutritional and toxicology tests on plant tissue were conducted for three sites, each roughly 9 square blocks, in disadvantaged neighborhoods in the East San Francisco Bay Area in 2014–2015. The sites included mixed-use areas and areas with high vehicle traffic. Results. Edible wild greens were abundant, even during record droughts. Soil at some survey sites had elevated concentrations of lead and cadmium, but tissue tests suggest that rinsed greens are safe to eat.
    [Show full text]
  • FSC Nettlecombe Court Nature Review 2014
    FSC Nettlecombe Court Nature Review 2014 Compiled by: Sam Tuddenham Nettlecombe Court- Nature Review 2014 Introduction The purpose of this report is to review and share the number of different species that are present in the grounds of Nettlecombe Court. A significant proportion of this data has been generated by FSC course tutors and course attendees studying at Nettlecombe court on a variety of courses. Some of the data has been collected for the primary purpose of species monitoring for nationwide conservation charities e.g. The Big Butterfly Count and Bee Walk Survey Scheme. Other species have just been noted by members or staff when out in the grounds. These records are as accurate as possible however we accept that there may be species missing. Nettlecombe Court Nettlecombe Court Field Centre of the Field Studies Council sits just inside the eastern border of Exmoor national park, North-West of Taunton (Map 1). The house grid reference is 51o07’52.23”N, 32o05’8.65”W and this report only documents wildlife within the grounds of the house (see Map 2). The estate is around 60 hectares and there is a large variety of environment types: Dry semi- improved neutral grassland, bare ground, woodland (large, small, man –made and natural), bracken dominated hills, ornamental shrubs (lawns/ domestic gardens) and streams. These will all provide different habitats, enabling the rich diversity of wildlife found at Nettlecombe Court. Nettlecombe court has possessed a meteorological station for a number of years and so a summary of “MET” data has been included in this report.
    [Show full text]