Rumex Crispus L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Anthracene Derivatives in Some Species of Rumex L
Vol. 76, No. 2: 103-108, 2007 ACTA SOCIETATIS BOTANICORUM POLONIAE 103 ANTHRACENE DERIVATIVES IN SOME SPECIES OF RUMEX L. GENUS MAGDALENA WEGIERA1, HELENA D. SMOLARZ1, DOROTA WIANOWSKA2, ANDRZEJ L. DAWIDOWICZ2 1 Departament of Pharmaceutical Botany Skubiszewski Medical University of Lublin Chodki 1, 20-039 Lublin, Poland e-mail: [email protected] 2 Faculty of Chemistry, Marii Curie-Sk³odowska University of Lublin (Received: June 1, 2006. Accepted: September 5, 2006) ABSTRACT Eight anthracene derivatives (chrysophanol, physcion, emodin, aloe-emodin, rhein, barbaloin, sennoside A and sennoside B) were signified in six species of Rumex L genus: R. acetosa L., R. acetosella L., R. confertus Willd., R. crispus L., R. hydrolapathum Huds. and R. obtusifolius L. For the investigations methanolic extracts were pre- pared from the roots, leaves and fruits of these species. Reverse Phase High Performance Liquid Chromatography was applied for separation, identification and quantitative determination of anthracene derivatives. The identity of these compounds was further confirmed with UV-VIS. Received data were compared. The roots are the best organs for the accumulation of anthraquinones. The total amount of the detected compo- unds was the largest in the roots of R. confertus (163.42 mg/g), smaller in roots R. crispus (25.22 mg/g) and the smallest in roots of R. hydrolapathum (1.02 mg/g). KEY WORDS: Rumex sp., roots, fruits, leaves, anthracene derivatives, RP-HPLC. INTRODUCTION scion-anthrone, rhein, nepodin, nepodin-O-b-D-glycoside and 1,8-dihydroxyanthraquinone from R. acetosa (Dedio The species belonging to the Rumex L. genus are wide- 1973; Demirezer and Kuruuzum 1997; Fairbairn and El- spread in the world. -
Guidance Note on the Methods That Can Be Used to Control Harmful Weeds
Department for Environment, Food and Rural Affairs Guidance note on the methods that can be used to control harmful weeds March 2007 Contents Guidance note on the methods that can be used to control harmful weeds ............... 1 Introduction ................................................................................................................ 2 Control methods - general guidance .......................................................................... 2 Use of herbicides ....................................................................................................... 2 Non-selective herbicide treatment .............................................................................. 3 Selective herbicide treatment ..................................................................................... 3 Ragwort control .......................................................................................................... 3 Ragwort control methods ........................................................................................... 4 Cutting .................................................................................................................... 4 Pulling (and digging) ............................................................................................... 5 Herbicides ............................................................................................................... 5 Spear thistle control ............................................................................................... -
Concentrations of Anthraquinone Glycosides of Rumex Crispus During Different Vegetation Stages L
Concentrations of Anthraquinone Glycosides of Rumex crispus during Different Vegetation Stages L. Ömtir Demirezer Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, 06100 Ankara, Turkey Z. Naturforsch. 49c, 404-406 (1994); received January 31, 1994 Rumex crispus, Polygonaceae. Anthraquinone, Glycoside The anthraquinone glycoside contents of various parts of Rumex crispus L. (Polygonaceae) in different vegetation stages were investigated by thin layer chromatographic and spectro- photometric methods. The data showed that the percentage of anthraquinone glycoside in all parts of plant increased at each stage. Anthraquinone glycoside content was increased in leaf, stem, fruit and root from 0.05 to 0.40%. from 0.03 to 0.46%. from 0.08 to 0.34%, and from 0.35 to 0.91% respectively. From the roots of R. crispus, emodin- 8 -glucoside, RGA (isolated in our laboratory, its structure was not elucidated), traceable amount of glucofran- gulin B and an unknown glycoside ( R f = 0.28 in ethyl acetate:methanol:water/100:20:10) was detected in which the concentration was increased from May to August. The other parts of plant contained only emodin- 8 -glucoside. Introduction In the present investigation various parts of Rumex L. (Polygonaceae) is one of several Rumex crispus, leaf, stem, fruit and root were ana genera which is characterized by the presence lyzed separately for their anthraquinone glycoside of anthraquinone derivatives. There are about contents, the glycosides in different vegetation 200 species of Rumex in worldwide (Hegi, 1957). stages were detected individually. By this method, Rumex is represented with 23 species and 5 hy translocation of anthraquinone glycosides were brids in Turkey (Davis, 1965) and their roots have also investigated. -
Fort Ord Natural Reserve Plant List
UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC -
Concentrations of Anthraquinone Glycosides of Rumex Crispus During Different Vegetation Stages L
Concentrations of Anthraquinone Glycosides of Rumex crispus during Different Vegetation Stages L. Ömtir Demirezer Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, 06100 Ankara, Turkey Z. Naturforsch. 49c, 404-406 (1994); received January 31, 1994 Rumex crispus, Polygonaceae. Anthraquinone, Glycoside The anthraquinone glycoside contents of various parts of Rumex crispus L. (Polygonaceae) in different vegetation stages were investigated by thin layer chromatographic and spectro- photometric methods. The data showed that the percentage of anthraquinone glycoside in all parts of plant increased at each stage. Anthraquinone glycoside content was increased in leaf, stem, fruit and root from 0.05 to 0.40%. from 0.03 to 0.46%. from 0.08 to 0.34%, and from 0.35 to 0.91% respectively. From the roots of R. crispus, emodin- 8 -glucoside, RGA (isolated in our laboratory, its structure was not elucidated), traceable amount of glucofran- gulin B and an unknown glycoside ( R f = 0.28 in ethyl acetate:methanol:water/100:20:10) was detected in which the concentration was increased from May to August. The other parts of plant contained only emodin- 8 -glucoside. Introduction In the present investigation various parts of Rumex L. (Polygonaceae) is one of several Rumex crispus, leaf, stem, fruit and root were ana genera which is characterized by the presence lyzed separately for their anthraquinone glycoside of anthraquinone derivatives. There are about contents, the glycosides in different vegetation 200 species of Rumex in worldwide (Hegi, 1957). stages were detected individually. By this method, Rumex is represented with 23 species and 5 hy translocation of anthraquinone glycosides were brids in Turkey (Davis, 1965) and their roots have also investigated. -
Rumex Crispus L.; Curly Dock R
A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Rumex crispus L.; curly dock R. crispus R. obtusifolius Rumex obtusifolius L.; broadleaf dock Curly and broadleaf dock Family: Polygonaceae Range: Curly dock is found throughout the U.S., including every western state. Broadleaf dock is found in most of the western states, except Nevada, Wyoming and North Dakota. Habitat: Ditches, roadsides, wetlands, meadows, riparian areas, alfalfa and pasture fields (especially with poor drainage), orchards and other disturbed moist areas. Plants prefer wet to moist soils but tolerate periods of dryness, and can grow in most climates and soil types. Origin: R. crispus, Eurasia; R. obtusifolia, western Europe. Impact: Both species can be very competitive and outcompete more desirable vegetation for water, nutrients and light. Under certain conditions, they can accumulate soluble oxalates making them toxic to livestock. California Invasive Plant Council (Cal-IPC) Inventory: R. crispus, Limited Invasiveness Both species are erect perennials from 1.5 to 3 ft tall, occasionally to 5 ft tall. Curly dock leaves are lanceolate and up to 20 inches long, whereas broadleaf dock has lanceolate-ovate leaves that are up to 30 inches long. -
Polygonaceae of Alberta
AN ILLUSTRATED KEY TO THE POLYGONACEAE OF ALBERTA Compiled and writen by Lorna Allen & Linda Kershaw April 2019 © Linda J. Kershaw & Lorna Allen This key was compiled using informaton primarily from Moss (1983), Douglas et. al. (1999) and the Flora North America Associaton (2005). Taxonomy follows VAS- CAN (Brouillet, 2015). The main references are listed at the end of the key. Please let us know if there are ways in which the kay can be improved. The 2015 S-ranks of rare species (S1; S1S2; S2; S2S3; SU, according to ACIMS, 2015) are noted in superscript (S1;S2;SU) afer the species names. For more details go to the ACIMS web site. Similarly, exotc species are followed by a superscript X, XX if noxious and XXX if prohibited noxious (X; XX; XXX) according to the Alberta Weed Control Act (2016). POLYGONACEAE Buckwheat Family 1a Key to Genera 01a Dwarf annual plants 1-4(10) cm tall; leaves paired or nearly so; tepals 3(4); stamens (1)3(5) .............Koenigia islandica S2 01b Plants not as above; tepals 4-5; stamens 3-8 ..................................02 02a Plants large, exotic, perennial herbs spreading by creeping rootstocks; fowering stems erect, hollow, 0.5-2(3) m tall; fowers with both ♂ and ♀ parts ............................03 02b Plants smaller, native or exotic, perennial or annual herbs, with or without creeping rootstocks; fowering stems usually <1 m tall; fowers either ♂ or ♀ (unisexual) or with both ♂ and ♀ parts .......................04 3a 03a Flowering stems forming dense colonies and with distinct joints (like bamboo -
Deep Roots Radio 2020 Spring Herbs 1
RED CLOVER HERBAL APOTHECARY FARM SPRING HERBS Stinging Nettles (Urtica dioica) leaf, root and seeds One of my very favorite herbs • Use as a tea or in plant extracts. Use as a food - saute in olive oil with garlic, add to pasta dishes, make Nettle leaf lasagna. Use the dried seeds at end of growing season • Stinging nettle is a powerful source of many nutrients, calcium, manganese, magnesium, vitamin K, carotenoids, and protein • Because of its high mineral content, Nettle strengthens bones, hair, nails, and teeth. • Nettles build red blood cells so boosts iron levels. Many women this instead of iron pills when pregnant. Restoring iron levels can also relieve fatigue. • Nettles natural histamine may decrease seasonal allergic responses, such as hay fever. Suggested use for allergies - make a strong nourishing infusions (1 ounce of nettle leaf by weight, infused in 32 ounces of just-boiled water for 4-8 hours) Drink this daily in the time leading up to allergy season. This often eliminates or strongly decreases allergy symptoms • There's the old tale of Elders running naked through the Nettle patches. Stinging nettle hairs contain several chemicals that have pain-relieving and anti-inflammatory properties. This means that stinging nettle could help reduce pain and inflammation in conditions such as arthritis. • Nettle stings contain histamine that causes the initial reaction when you are stung. Dock leaf sap contains natural antihistamine, which helps to ease the stinging sensation. • Stinging Nettle seed is currently being used in clinical practice as a trophorestorative for degenerative kidney disease. A trophorestorative nourishes and restores the function of a tired, compromised, diseased tissue, organ, or system. -
Nutrition, Toxicology, and Availability of Wild Edible Greens in the East Bay
bioRxiv preprint doi: https://doi.org/10.1101/385864; this version posted August 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Open-Source Food: Nutrition, Toxicology, and Availability of Wild Edible Greens in the East Bay Philip B. Stark1Y*, Daphne Miller2¤, Thomas J. Carlson3‡, Kristen Rasmussen de Vasquez4 1 Department of Statistics 2 School of Public Health 3 Department of Integrative Biology 4 Department of Nutrition and Toxicology University of California, Berkeley Yconceptualization, formal analysis, funding acquisition, investigation, methodology, project administration, software, supervision, visualization, writing–original draft preparation, writing–editing ¤writing–original draft preparation, writing–editing ‡conceptualization, investigation, methodology, project administration investigation, methodology * [email protected] Abstract Significance. Foraged leafy greens are consumed around the globe, including in urban areas, and may play a larger role when food is scarce or expensive. It is thus important to assess the safety and nutritional value of wild greens foraged in urban environments. Methods. Field observations, soil tests, and nutritional and toxicology tests on plant tissue were conducted for three sites, each roughly 9 square blocks, in disadvantaged neighborhoods in the East San Francisco Bay Area in 2014–2015. The sites included mixed-use areas and areas with high vehicle traffic. Results. Edible wild greens were abundant, even during record droughts. Soil at some survey sites had elevated concentrations of lead and cadmium, but tissue tests suggest that rinsed greens are safe to eat. -
Integrated Management of Biodiversity in Slatioara Gravel Pit”
FINAL REPORT OF THE PROJECT ”INTEGRATED MANAGEMENT OF BIODIVERSITY IN SLATIOARA GRAVEL PIT” ”The Quarry Life Award” Scientific and Educational Contest, 4th edition (2018) 0 1. Contestant profile Contestant name: Marcel ȚÎBÎRNAC Contestant occupation: Ecologist expert University / Organisation Independent candidate – freelancer Number of people in your team: 3 2. Project overview Title: Integrated management of biodiversity in Slatioara gravel pit Contest: (Research/Community) Research Quarry name: Slatioara Pit 3. Abstract The project „Integrated management of biodiversity in Slatioara gravel pit” is based on 3 incorporated approaches: i) inventory, mapping and detailed evaluation of habitats and species of wild flora and fauna, ii) identification of proper solutions for the ecological restoration and rehabilitation of the site (insurring the conditions for the quality improvement of biodiversity aspects) and iii) promoting suitable ethics for a proper/sustainable management of the exploitation of natural resources that would lead to a strong sustainable development at a local and regional level. In this context, the project entailed the study of biodiversity (habitats, plants, invertebrates, amphibians, reptiles, fish, birds and mammals) and the pressure/threats existing/developing on these biodiversity groups, as well as the study of degrated habitats with high ecological potential for the biodiversity elements within Slatioara gravel pit (feeding, reproduction and rest habitats for fauna species). The project also includes solutions -
Redalyc.A NEW ANTHRAQUINONE ISOLATED from RUMEX OBTUSIFOLIUS
Revista Boliviana de Química ISSN: 0250-5460 [email protected] Universidad Mayor de San Andrés Bolivia Ibáñez-Calero, Sandra L.; Jullian, Valérie; Sauvain, Michel A NEW ANTHRAQUINONE ISOLATED FROM RUMEX OBTUSIFOLIUS Revista Boliviana de Química, vol. 26, núm. 2, julio-diciembre, 2009, pp. 49-56 Universidad Mayor de San Andrés La Paz, Bolivia Available in: http://www.redalyc.org/articulo.oa?id=426339672002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative REVISTA BOLIVIANA DE QUÍMICA VOLUMEN 26, No.2 – 2009 Received: 10/09/09 Approved: 21/10/09 Published: 2/12/09 A NEW ANTHRAQUINONE ISOLATED FROM RUMEX OBTUSIFOLIUS Sandra L. Ibáñez-Calero1, Valérie Jullian2, Michel Sauvain3 1Instituto de Investigaciones Químicas (IIQ), Carrera de Ciencias Químicas, Universidad Mayor de San Andrés, (UMSA), La Paz- Bolivia. 2Université de Toulouse ; UPS ; UMR 152 (Laboratoire de pharmacochimie des substances naturelles et pharmacophores redox), F-31062 Toulouse cedex 9, France. 3IRD, UMR 152 (LPSNPR), F-31062 Toulouse cedex 9, France. Keywords: Rumex obtusifolius, Ferriprotoporphyrine Biocrystallization Inhibition Test, NMR, Malaria, Anthraquinone, structure-activity relationship ABSTRACT In this research we studied Rumex obtusifolius (Polygonaceae) along with other plants used in traditional medicine in relation to the chemical reaction FBIT (Ferriprotoporphyrine Biocrystallization Inhibition Test) which may provide information on a possible action mechanism for presumed antimalarial plants. According to folk medicine Rumex obtusifolius has a pronounced detoxifying effect on the liver and is used against jaundice and fever.