336.Full.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

336.Full.Pdf Murine IgG1 and IgG3 Isotype Switch Variants Promote Phagocytosis of Cryptococcus neoformans through Different Receptors This information is current as of September 28, 2021. Carolyn A. Saylor, Ekaterina Dadachova and Arturo Casadevall J Immunol 2010; 184:336-343; Prepublished online 30 November 2009; doi: 10.4049/jimmunol.0902752 Downloaded from http://www.jimmunol.org/content/184/1/336 References This article cites 43 articles, 21 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/184/1/336.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Murine IgG1 and IgG3 Isotype Switch Variants Promote Phagocytosis of Cryptococcus neoformans through Different Receptors Carolyn A. Saylor,* Ekaterina Dadachova,*,† and Arturo Casadevall*,‡ Almost 3 decades ago, murine IgG3 was proposed to interact with a different receptor than the other IgG subclasses, but the issue remains unresolved. The question of whether a specific receptor exists for IgG3 is critically important for understanding Ab- mediated immunity against Cryptococcus neoformans, where the different isotypes manifest profound differences in protective efficacy. In this study, we revisited this question by analyzing IgG1- and IgG3-mediated phagocytosis with variable region- identical mAbs using mouse macrophages deficient in various receptors and in conditions of FcgR and complement receptor blockage with specific Abs. IgG3 was an efficient opsonin for C. neoformans in FcgR- and CD18-deficient cells and in the presence Downloaded from of blocking Abs to FcgR and complement receptor. Like IgG1, IgG3-mediated phagocytosis was associated with fungal residence in a mature phagosome that was followed by intracellular replication and exocytosis events. We conclude that a specific receptor for IgG3 exists in mice that is structurally different from the known FcgRs. The Journal of Immunology, 2010, 184: 336–343. hagocytosis is a receptor-mediated event in which the although there is a similar system in humans, mouse IgG isotypes specific recognition of microbes by phagocytic cells, such and FcgRs are not synonymous with human ones; although the http://www.jimmunol.org/ P as macrophages or dendritic cells, leads to microbial specificities of human IgG isotypes for the various human FcgRs are internalization and targeting to a phagolysosomal compartment for well characterized (11, 12), the mouse system is different and less degradation and Ag presentation (1–3). During an adaptive well understood. Various studies in mice showed that IgG2a is the immune response, Ab is the primary mediator of this interaction; most promiscuous Ab, interacting with all FcgRs, whereas IgG1 is microbes bound by specific IgG interact with FcgRs on effector more selective and only binds to one activating receptor, FcgRIII cells to promote clearance of infection (4, 5). Characterizing the (13). Although much work has been done to study the interaction of receptor interactions during Ab-mediated phagocytosis is impor- the various Ab isotypes with the different FcgRs, major questions tant for understanding the role of Ab generated during host still remain. In this regard, three of the four mouse IgG subclasses, defense as well as for assessing the mechanism of passive Ab IgG1, IgG2a, and IgG2b, have been well characterized in terms of by guest on September 28, 2021 therapy, by which treatment with immune serum or specific mAbs their affinity and specificity for the different FcgRs (14, 15); how- can ameliorate disease (6–8). ever, the data for IgG3 have been inconsistent, and most current In mice, the activating FcgRs are FcgRI, FcgRIII, and FcgRIV,all reviews conclude that IgG3 interacts only very weakly with known of which share a common g-chain containing an intracellular ITAM FcgRs (13). Understanding the mouse FcgR system is important sequence necessary to mediate activation when Ab is bound (5). because mice continue to be the most commonly used animal system FcgRIIb, the inhibitory receptor, does not pair with the common for immunological studies. g-chain, but rather has an intracellular ITIM sequence and mediates In 1981, Diamond and Yelton (16) proposed that a unique IgG3 inhibitory signaling (9). The balance of positive and negative signals receptor existed, based on the spontaneous J774 cell variant that determines the outcome of the interaction of Ab-bound microbes specifically lost the ability to phagocytose sheep red blood cells with cells, because the threshold to trigger phagocytosis or other coated in IgG3 but retained the ability to phagocytose via the other events is based on the ratio of activating/inhibitory receptor Ab isotypes. A subsequent study by Gavin et al. (17) showed that engagement (10). Because Ab isotypes have different affinities for the known receptor FcgRI, which has high affinity for IgG2a, the various FcgRs, they can trigger different effector functions could also interact with IgG3. However, this study demonstrated based on their receptor binding specificity. It is critical to note that only low-affinity binding of IgG3 to FcgRI-transfected cells. Additionally, in bone marrow-derived macrophages from FcgRI- *Department of Microbiology and Immunology, †Department of Nuclear Medicine, deficient mice, phagocytosis of IgG3-coated particles failed and ‡Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, compared with macrophages derived from wild-type mice in NY 10461 which they visualized internalization via IgG3. However, this Received for publication September 18, 2009. Accepted for publication October 27, study was not consistent with the original observation by Diamond 2009. and Yelton (16), in which phagocytosis by the variant cell line via This work was supported by National Institutes of Health Grants AI33774, AI33142, other Ab isotypes, such as IgG2a, was unchanged, which would AI51519, and HL59842-01 (to A.C.), T32 AI07506 (to C.A.S), and AI60507 (to E.D.). E.D. is the Sylvia and Robert S. Olnick Faculty Scholar in Cancer Research. not be true if FcgRI was the receptor lost by the J774 variant. Address correspondence and reprint requests to Dr. Arturo Casadevall, Forchheimer Moreover, the study by Gavin et al. (17) did not examine the role 411, 1300 Morris Park Avenue, Bronx, NY 10461. E-mail address: arturo.casadevall@ of IgG3 phagocytosis in terms of a microbe-specific Ab in- einstein.yu.edu teraction with host cells during infection. The role of IgG3 in Abbreviations used in this paper: CR, complement receptor; Lamp1, lysosomal- phagocytosis is not clear. In addition to these studies, there is other associated membrane protein 1. evidence strongly supporting the notion that IgG3 Abs engage Copyright Ó 2009 by The American Association of Immunologists, Inc. 0022-1767/10/$16.00 a different receptor than other IgG subclasses: 1) IgG1 and IgG3 www.jimmunol.org/cgi/doi/10.4049/jimmunol.0902752 The Journal of Immunology 337 have very different protective efficacy in mice (18); 2) IgG1 is cultures grown in Sabouraud media (Difco, Sparks, MD) at 30˚C. Yeast cells toxic, whereas IgG3 is nontoxic in mice with chronic cryptococcal were washed three times with sterile PBS then counted on a hemocytometer infection and high serum Ag levels (19, 20); and 3) IgG3, but not and suspended at the appropriate cell density in RPMI 1640 media. the other IgG subclasses, mediates Ag–Ab complex enhancement MAbs of the Ab response in Fcg-deficient mice (21). The 3E5 IgG1, IgG2a, and IgG3 mAbs were described previously (23). In this study, we revisitedthe topic of IgG3-mediated phagocytosis Briefly, mAb 3E5 was originally isolated as an IgG3 mAb following bycomparingtheopsonicefficacyofIgG1andIgG3forCryptococcus immunization of mice with capsular polysaccharide glucuronoxylomannan neoformans. Many mAbs specific for C. neoformans have been conjugated to tetanus toxoid, and the other isotypes were later generated via generated and used to study the effects of passive mAb treatment on in vitro isotype switching. Ascites was generated by injecting hybridoma cells into the peritoneal cavity of pristine-primed BALB/c mice (National cryptococcal infection (22–24). The in vitro system of C. neofor- Cancer Institute, Frederick, MD) and harvesting the fluid. Abs were purified mans and macrophage interactions is ideal to study receptor-medi- from ascites using a protein G column following the manufacturer’s in- ated phagocytosis because in the absence of opsonin, phagocytosis of structions (Pierce, Rockford, IL) and then dialyzed in PBS and quantified by C. neoformans by macrophages is essentially zero, and yeast cells are ELISA with an isotype-matched standard to determine concentration. Abs 2 easily identified and counted by microscopy (25–27). However, this were aliquoted, stored in PBS at 20˚C, and thawed once before use. system has some unique features that need to be taken into account, Phagocytosis assays including the phenomenon of Ab-mediated phagocytosis proceeding Phagocytosis assays were performed in 96-well plates containing primary through FcgRs and complement receptors (CRs) in the absence of peritoneal cells isolated 1 d prior to the experiment. In the case of CR- or complement. In this system, IgG can function as directly opsonizing FcgR-blocking experiments, Abs to CR3 and CR4 (CD18, CD11b, and Ab, where the Fc portions of Ab bound to the capsule of C.
Recommended publications
  • The Ligands for Human Igg and Their Effector Functions
    antibodies Review The Ligands for Human IgG and Their Effector Functions Steven W. de Taeye 1,2,*, Theo Rispens 1 and Gestur Vidarsson 2 1 Sanquin Research, Dept Immunopathology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] 2 Sanquin Research, Dept Experimental Immunohematology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] * Correspondence: [email protected] Received: 26 March 2019; Accepted: 18 April 2019; Published: 25 April 2019 Abstract: Activation of the humoral immune system is initiated when antibodies recognize an antigen and trigger effector functions through the interaction with Fc engaging molecules. The most abundant immunoglobulin isotype in serum is Immunoglobulin G (IgG), which is involved in many humoral immune responses, strongly interacting with effector molecules. The IgG subclass, allotype, and glycosylation pattern, among other factors, determine the interaction strength of the IgG-Fc domain with these Fc engaging molecules, and thereby the potential strength of their effector potential. The molecules responsible for the effector phase include the classical IgG-Fc receptors (FcγR), the neonatal Fc-receptor (FcRn), the Tripartite motif-containing protein 21 (TRIM21), the first component of the classical complement cascade (C1), and possibly, the Fc-receptor-like receptors (FcRL4/5). Here we provide an overview of the interactions of IgG with effector molecules and discuss how natural variation on the antibody and effector molecule side shapes the biological activities of antibodies. The increasing knowledge on the Fc-mediated effector functions of antibodies drives the development of better therapeutic antibodies for cancer immunotherapy or treatment of autoimmune diseases.
    [Show full text]
  • B Cell Checkpoints in Autoimmune Rheumatic Diseases
    REVIEWS B cell checkpoints in autoimmune rheumatic diseases Samuel J. S. Rubin1,2,3, Michelle S. Bloom1,2,3 and William H. Robinson1,2,3* Abstract | B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen- presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co- engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases. Antibody- dependent B cells are multifunctional lymphocytes that contribute that serve as precursors to and thereby give rise to acti- cell- mediated cytotoxicity to the pathogenesis of autoimmune diseases
    [Show full text]
  • The Adaptive Immune Response B-Cells
    The Adaptive Immune Response B-cells The innate immune system provides immediate protection. The adaptive response takes time to develop and is antigen specific. Activation of B and T lymphocytes Naive Plasma cells Naive ADAPTIVE IMMUNITY The adaptive immune system consists of lymphocytes and their products, including antibodies. The receptors of lymphocytes are much more diverse than those of the innate immune system, but lymphocytes are not inherently specific for microbes, and they are capable of recognizing a vast array of foreign substances. http://www.pathologystudent.com/wp- content/uploads/2010/07/normal-lymphs.jpg There are two types of adaptive Immunity Humoral immunity: mediated by B lymphocytes and their secreted products, antibodies (also called immunoglobulins, Ig) that protects against extracellular microbes and their toxins. Cellular immunity: mediated by T lymphocytes and is responsible for defense against intracellular microbes. content/uploads/2011/05/adoptive_immunity.gif - sheng.com/wp - http://yang Types of Adaptive Immune Reponses Lymphocytes Although lymphocytes appear morphologically unimpressive and similar to one another, they are actually remarkably heterogeneous and specialized in molecular properties and functions. Lymphocytes and other cells involved in immune responses are not fixed in particular tissues (as are cells in most of the organs of the body) but are capable of migrating among lymphoid and other tissues and the vascular and lymphatic circulations. This feature permits lymphocytes to home to any site of infection. In lymphoid organs, different classes of lymphocytes are anatomically segregated in such a way that they interact with one another only when stimulated to do so by encounter with antigens and other stimuli.
    [Show full text]
  • Structural Features of Human Immunoglobulin G That Determine Isotype-Specitic Differences in Complement Activation by Mi-Hua Tao,* Richard I.F
    Structural Features of Human Immunoglobulin G that Determine Isotype-specitic Differences in Complement Activation By Mi-Hua Tao,* Richard I.F. Smith,* and Sherie L. Morrison*r From the "Department of Microbiology and Molecular Genetics and IThe Molecular Biology Institute, University of California, Los Angeles, California 90024 Summary Although very similar in sequence, the four subclasses of human immunoglobulin G (IgG) differ markedly in their ability to activate complement. Glu318-Lys320-Lys322 has been identified as Downloaded from http://rupress.org/jem/article-pdf/178/2/661/1268014/661.pdf by guest on 30 September 2021 a key binding motif for the first component of complement, Clq, and is present in all isotypes of Ig capable of activating complement. This motif, however, is present in all subclasses of human IgG, including those that show little (IgG2) or even no (IgG4) complement activity. Using point mutants of chimeric antibodies, we have identified specificresidues responsible for the differing ability of the IgG subclasses to fix complement. In particular, we show that Ser at position 331 in 3/4 is critical for determining the inability of that isotype to bind Clq and activate complement. Additionally, we provide further evidence that levels of Clq binding do not necessarily correlate with levels of complement activity, and that Clq binding alone is not sufficient for complement activation. he classical pathway of complement activation is initi- tivation ability and an IgG4 with the hinge of IgG3, although T ated by immune complexes composed of antigen and ei- as flexible as wild-type IgG3, displays no detectable comple- ther IgM or IgG Abs.
    [Show full text]
  • Nasopharyngeal Infection by Streptococcus Pyogenes Requires Superantigen-Responsive Vβ-Specific T Cells
    Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells Joseph J. Zeppaa, Katherine J. Kaspera, Ivor Mohorovica, Delfina M. Mazzucaa, S. M. Mansour Haeryfara,b,c,d, and John K. McCormicka,c,d,1 aDepartment of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; bDepartment of Medicine, Division of Clinical Immunology & Allergy, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5A5, Canada; cCentre for Human Immunology, Western University, London, ON N6A 5C1, Canada; and dLawson Health Research Institute, London, ON N6C 2R5, Canada Edited by Philippa Marrack, Howard Hughes Medical Institute, National Jewish Health, Denver, CO, and approved July 14, 2017 (received for review January 18, 2017) The globally prominent pathogen Streptococcus pyogenes secretes context of invasive streptococcal disease is extremely dangerous, potent immunomodulatory proteins known as superantigens with a mortality rate of over 30% (10). (SAgs), which engage lateral surfaces of major histocompatibility The role of SAgs in severe human infections has been well class II molecules and T-cell receptor (TCR) β-chain variable domains established (5, 11, 12), and specific MHC-II haplotypes are known (Vβs). These interactions result in the activation of numerous Vβ- risk factors for the development of invasive streptococcal disease specific T cells, which is the defining activity of a SAg. Although (13), an outcome that has been directly linked to SAgs (14, 15). streptococcal SAgs are known virulence factors in scarlet fever However, how these exotoxins contribute to superficial disease and and toxic shock syndrome, mechanisms by how SAgs contribute colonization is less clear.
    [Show full text]
  • Clinically-Relevant Monoclonal Antibodies
    ANTIBODIES ISOTYPE FAMILIES Switch natural isotypes Clinically relevant monoclonal antibodies Fine-tuned effector functions Up to 14 different native and engineered isotypes InvivoGen provides a series of clinically relevant antibodies in their original Antibodies against format or with different immunoglobulin isotypes. Our engineered antibodies various targets are designed to adjust their effector functions, including half-life, complement- Anti-hCD20 Anti-hPD1 dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity Anti-hCTLA4 Anti-hPD-L1 (ADCC) and antibody-dependent cell phagocytosis (ADCP). The variety of Anti-hEGFR Anti-hTNF-α the immunoglobulin constant regions helps you determine the most suitable Anti-HER2 Anti-hVEGF isotype for your application. WWW.INVIVOGEN.COM/ANTIBODY-ISOTYPES Description Monoclonal antibodies (mAbs) have become a major tool in the treatment of cancer and auto-immune diseases. The efficacy of antibodies is governed by their bifunctional nature. On the one hand, the variable domain of the immunoglobulin, within the fragment of antigen binding (Fab), confers antigen specificity function. On the other hand, the fragment crystallizable region (Fc) in the constant domain of the immunoglobulin triggers antibody-mediated effector functions by engaging a variety of Fc receptors. Antibody isotype switching is a biological process enabling changes in the ability of the antibody to interact with different Fc receptors and thus, reduce or potentiate effector functions. InvivoGen’s antibody isotype families consist of clinically relevant mAbs comprising the same variable domain and the constant domain of various isotypes, therefore differing in their suitability for a given application. Native and engineered isotypes Features of our antibody isotype families • Native isotype antibodies Physiological native isotypes trigger various combinations of Specificities Fragment antigen effector functions that are summarized in the table below.
    [Show full text]
  • The Importance of Using an Isotype Control
    The Importance of Using an Isotype Control White Paper What are Isotype Controls? Isotype control antibodies are essential negative controls for in vivo studies and can play an important role in standard immunoassays, such as flow cytometry and immunohistochemistry (IHC). They match the characteristics of the assay’s primary antibody (e.g. isotype, clonality), but having been raised against antigens known not to be present in common preclinical species (HEL, KLH, etc.), have no target cell/antigen specificity. This provides researchers with a suitable negative control to accurately discriminate between an antibody binding in an antigen-dependent specific manner from non-antigen dependent mAb binding due to Fc receptors (FcR) or other proteins. In the simplest terms, isotype controls help distinguish non- specific background signal from specific antibody signal. Monoclonal, subclass specific (i.e. lambda vs. kappa immunoglobulin) isotype controls provide an especially reliable method that effectively differentiates between specificity versus background in a range of drug development assays. Why is it Important to Use Isotype Controls? Structurally, all antibodies are very similar, with only a small hypervariable region determining antigen specific binding. The rest of the antibody molecule consists of Using an the constant region, where sequences are often shared by antibodies of the same “appropriate isotype. isotype control allows the true The constant regions help determine antibody mechanism of action, by coordinating determination binding to the FcR present on many cell types. FcRs are expressed on a number of different cell types in the immune system, including (but not limited to): of specific vs non-antigen • B lymphocytes specific • follicular dendritic cells binding • natural killer cells across a range • macrophages • neutrophils of in vivo “ studies and • eosinophils Immunoassays • basophils • human platelets • mast cells.
    [Show full text]
  • A Novel Superantigen Isolated from Pathogenic Strains of Streptococcus Pyogenes with Aminoterminal Homology to Staphylococcal Enterotoxins B and C
    A novel superantigen isolated from pathogenic strains of Streptococcus pyogenes with aminoterminal homology to staphylococcal enterotoxins B and C. J A Mollick, … , D Grossman, R R Rich J Clin Invest. 1993;92(2):710-719. https://doi.org/10.1172/JCI116641. Research Article Streptococcus pyogenes (group A Streptococcus) has re-emerged in recent years as a cause of severe human disease. Because extracellular products are involved in streptococcal pathogenesis, we explored the possibility that a disease isolate expresses an uncharacterized superantigen. We screened culture supernatants for superantigen activity with a major histocompatibility complex class II-dependent T cell proliferation assay. Initial fractionation with red dye A chromatography indicated production of a class II-dependent T cell mitogen by a toxic shock-like syndrome (TSLS) strain. The amino terminus of the purified streptococcal superantigen was more homologous to the amino termini of staphylococcal enterotoxins B, C1, and C3 (SEB, SEC1, and SEC3), than to those of pyrogenic exotoxins A, B, C or other streptococcal toxins. The molecule, designated SSA, had the same pattern of class II isotype usage as SEB in T cell proliferation assays. However, it differed in its pattern of human T cell activation, as measured by quantitative polymerase chain reaction with V beta-specific primers. SSA activated human T cells that express V beta 1, 3, 15 with a minor increase of V beta 5.2-bearing cells, whereas SEB activated V beta 3, 12, 15, and 17-bearing T cells. Immunoblot analysis of 75 disease isolates from several localities detected SSA production only in group A streptococci, and found that SSA is apparently confined to only three clonal […] Find the latest version: https://jci.me/116641/pdf A Novel Superantigen Isolated from Pathogenic Strains of Streptococcus pyogenes with Aminoterminal Homology to Staphylococcal Enterotoxins B and C Joseph A.
    [Show full text]
  • Vaccine Immunology Claire-Anne Siegrist
    2 Vaccine Immunology Claire-Anne Siegrist To generate vaccine-mediated protection is a complex chal- non–antigen-specifc responses possibly leading to allergy, lenge. Currently available vaccines have largely been devel- autoimmunity, or even premature death—are being raised. oped empirically, with little or no understanding of how they Certain “off-targets effects” of vaccines have also been recog- activate the immune system. Their early protective effcacy is nized and call for studies to quantify their impact and identify primarily conferred by the induction of antigen-specifc anti- the mechanisms at play. The objective of this chapter is to bodies (Box 2.1). However, there is more to antibody- extract from the complex and rapidly evolving feld of immu- mediated protection than the peak of vaccine-induced nology the main concepts that are useful to better address antibody titers. The quality of such antibodies (e.g., their these important questions. avidity, specifcity, or neutralizing capacity) has been identi- fed as a determining factor in effcacy. Long-term protection HOW DO VACCINES MEDIATE PROTECTION? requires the persistence of vaccine antibodies above protective thresholds and/or the maintenance of immune memory cells Vaccines protect by inducing effector mechanisms (cells or capable of rapid and effective reactivation with subsequent molecules) capable of rapidly controlling replicating patho- microbial exposure. The determinants of immune memory gens or inactivating their toxic components. Vaccine-induced induction, as well as the relative contribution of persisting immune effectors (Table 2.1) are essentially antibodies— antibodies and of immune memory to protection against spe- produced by B lymphocytes—capable of binding specifcally cifc diseases, are essential parameters of long-term vaccine to a toxin or a pathogen.2 Other potential effectors are cyto- effcacy.
    [Show full text]
  • Structure, Function, and Therapeutic Use of Igm Antibodies
    antibodies Review Structure, Function, and Therapeutic Use of IgM Antibodies Bruce A. Keyt *, Ramesh Baliga, Angus M. Sinclair, Stephen F. Carroll and Marvin S. Peterson IGM Biosciences Inc, 325 East Middlefield Road, Mountain View, CA 94043, USA; [email protected] (R.B.); [email protected] (A.M.S.); [email protected] (S.F.C.); [email protected] (M.S.P.) * Correspondence: [email protected]; Tel.: +1-650-265-6458 Received: 16 September 2020; Accepted: 9 October 2020; Published: 13 October 2020 Abstract: Natural immunoglobulin M (IgM) antibodies are pentameric or hexameric macro- immunoglobulins and have been highly conserved during evolution. IgMs are initially expressed during B cell ontogeny and are the first antibodies secreted following exposure to foreign antigens. The IgM multimer has either 10 (pentamer) or 12 (hexamer) antigen binding domains consisting of paired µ heavy chains with four constant domains, each with a single variable domain, paired with a corresponding light chain. Although the antigen binding affinities of natural IgM antibodies are typically lower than IgG, their polyvalency allows for high avidity binding and efficient engagement of complement to induce complement-dependent cell lysis. The high avidity of IgM antibodies renders them particularly efficient at binding antigens present at low levels, and non-protein antigens, for example, carbohydrates or lipids present on microbial surfaces. Pentameric IgM antibodies also contain a joining (J) chain that stabilizes the pentameric structure and enables binding to several receptors. One such receptor, the polymeric immunoglobulin receptor (pIgR), is responsible for transcytosis from the vasculature to the mucosal surfaces of the lung and gastrointestinal tract.
    [Show full text]
  • Selective Igm Deficiency—An Underestimated Primary Immunodeficiency
    UC Irvine UC Irvine Previously Published Works Title Selective IgM Deficiency-An Underestimated Primary Immunodeficiency. Permalink https://escholarship.org/uc/item/6wg240n5 Journal Frontiers in immunology, 8(SEP) ISSN 1664-3224 Authors Gupta, Sudhir Gupta, Ankmalika Publication Date 2017 DOI 10.3389/fimmu.2017.01056 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California REVIEW published: 05 September 2017 doi: 10.3389/fimmu.2017.01056 Selective IgM Deficiency—An Underestimated Primary Immunodeficiency Sudhir Gupta* and Ankmalika Gupta† Program in Primary Immunodeficiency and Aging, Division of Basic and Clinical Immunology, University of California at Irvine, Irvine, CA, United States Although selective IgM deficiency (SIGMD) was described almost five decades ago, it was largely ignored as a primary immunodeficiency. SIGMD is defined as serum IgM levels below two SD of mean with normal serum IgG and IgA. It appears to be more common than originally realized. SIGMD is observed in both children and adults. Patients with SIGMD may be asymptomatic; however, approximately 80% of patients with SIGMD present with infections with bacteria, viruses, fungi, and protozoa. There is an increased frequency of allergic and autoimmune diseases in SIGMD. A number Edited by: of B cell subset abnormalities have been reported and impaired specific antibodies Guzide Aksu, to Streptococcus pneumoniae responses are observed in more than 45% of cases. Ege University, Turkey Innate immunity, T cells, T cell subsets, and T cell functions are essentially normal. Reviewed by: Amos Etzioni, The pathogenesis of SIGMD remains unclear. Mice selectively deficient in secreted IgM University of Haifa, Israel are also unable to control infections from bacterial, viral, and fungal pathogens, and Isabelle Meyts, develop autoimmunity.
    [Show full text]
  • Systemic Autoimmunity Induced by the TLR7/8 Agonist Resiquimod Causes Myocarditis and Dilated Cardiomyopathy in a New Mouse Model of Autoimmune Heart Disease Muneer G
    © 2017. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2017) 10, 259-270 doi:10.1242/dmm.027409 RESEARCH ARTICLE Systemic autoimmunity induced by the TLR7/8 agonist Resiquimod causes myocarditis and dilated cardiomyopathy in a new mouse model of autoimmune heart disease Muneer G. Hasham1, Nicoleta Baxan2, Daniel J. Stuckey3, Jane Branca1, Bryant Perkins1, Oliver Dent4, Ted Duffy1, Tolani S. Hameed4, Sarah E. Stella4, Mohammed Bellahcene4, Michael D. Schneider4, Sian E. Harding4, Nadia Rosenthal1,4 and Susanne Sattler4,* ABSTRACT disease results from direct target-specific tissue damage due to Systemic autoimmune diseases such as systemic lupus autoreactive effector cells and antibodies, as well as from indirect erythematosus (SLE) and rheumatoid arthritis (RA) show significant damage due to increased systemic levels of inflammatory cytokines heart involvement and cardiovascular morbidity, which can be due to (Abou-Raya and Abou-Raya, 2006; Abusamieh and Ash, 2004; systemically increased levels of inflammation or direct autoreactivity Knockaert, 2007). targeting cardiac tissue. Despite high clinical relevance, cardiac The most common cardiac complication of the prototype systemic damage secondary to systemic autoimmunity lacks inducible rodent autoimmune disease systemic lupus erythematosus (SLE) is models. Here, we characterise immune-mediated cardiac tissue pericarditis, followed by myocarditis or myocardial fibrosis due to damage in a new model of SLE induced by topical application of the infiltration of inflammatory cells (Jastrzebską et al., 2013). Toll-like receptor 7/8 (TLR7/8) agonist Resiquimod. We observe a Myocarditis may be idiopathic, infectious or autoimmune in origin. cardiac phenotype reminiscent of autoimmune-mediated dilated Inflammation may resolve or persist and lead to cardiac remodelling, cardiomyopathy, and identify auto-antibodies as major contributors ventricular dilation with normal or reduced left ventricular wall to cardiac tissue damage.
    [Show full text]