Insights Into the Function of Igd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Ligands for Human Igg and Their Effector Functions
antibodies Review The Ligands for Human IgG and Their Effector Functions Steven W. de Taeye 1,2,*, Theo Rispens 1 and Gestur Vidarsson 2 1 Sanquin Research, Dept Immunopathology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] 2 Sanquin Research, Dept Experimental Immunohematology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] * Correspondence: [email protected] Received: 26 March 2019; Accepted: 18 April 2019; Published: 25 April 2019 Abstract: Activation of the humoral immune system is initiated when antibodies recognize an antigen and trigger effector functions through the interaction with Fc engaging molecules. The most abundant immunoglobulin isotype in serum is Immunoglobulin G (IgG), which is involved in many humoral immune responses, strongly interacting with effector molecules. The IgG subclass, allotype, and glycosylation pattern, among other factors, determine the interaction strength of the IgG-Fc domain with these Fc engaging molecules, and thereby the potential strength of their effector potential. The molecules responsible for the effector phase include the classical IgG-Fc receptors (FcγR), the neonatal Fc-receptor (FcRn), the Tripartite motif-containing protein 21 (TRIM21), the first component of the classical complement cascade (C1), and possibly, the Fc-receptor-like receptors (FcRL4/5). Here we provide an overview of the interactions of IgG with effector molecules and discuss how natural variation on the antibody and effector molecule side shapes the biological activities of antibodies. The increasing knowledge on the Fc-mediated effector functions of antibodies drives the development of better therapeutic antibodies for cancer immunotherapy or treatment of autoimmune diseases. -
IDF Patient & Family Handbook
Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficiency Diseases This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. FIFTH EDITION COPYRIGHT 1987, 1993, 2001, 2007, 2013 IMMUNE DEFICIENCY FOUNDATION Copyright 2013 by Immune Deficiency Foundation, USA. REPRINT 2015 Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. The Immune Deficiency Foundation Patient & Family Handbook may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from the Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 110 West Road, Suite 300, Towson, MD 21204, USA; or by telephone at 800-296-4433. Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficency Diseases 5th Edition This publication has been made possible through a generous grant from Baxalta Incorporated Immune Deficiency Foundation 110 West Road, Suite 300 Towson, MD 21204 800-296-4433 www.primaryimmune.org [email protected] EDITORS R. Michael Blaese, MD, Executive Editor Francisco A. Bonilla, MD, PhD Immune Deficiency Foundation Boston Children’s Hospital Towson, MD Boston, MA E. Richard Stiehm, MD M. Elizabeth Younger, CPNP, PhD University of California Los Angeles Johns Hopkins Los Angeles, CA Baltimore, MD CONTRIBUTORS Mark Ballow, MD Joseph Bellanti, MD R. Michael Blaese, MD William Blouin, MSN, ARNP, CPNP State University of New York Georgetown University Hospital Immune Deficiency Foundation Miami Children’s Hospital Buffalo, NY Washington, DC Towson, MD Miami, FL Francisco A. -
Mcb 407-Immunology and Immunochemistry-Lecture Note
MCB 407-IMMUNOLOGY AND IMMUNOCHEMISTRY-LECTURE NOTE DR. D. A. OJO BRIEF HISTORICAL REVIEW OF IMMUNOLOGY The mechanism by which antibody are formed has been debated for years. It was proposed that the specificity of an antibody molecule was determined both by its amino acid sequence but by the molding of the peptide chain around the antigenic determinant. This theory lost favour when it became apparent that antibody-forming cells were devoid of antigen and that antibody specificity was a function of amino acid sequence. At present, the CLONAL (proposed by Burnete) SELECTION THEORY is widely accepted. It holds that an immunologically responsive cell can respond to only one antigen or a closely related group of antigens and that this property is inherent in the cell before the antigen is encountered. According to the clonal selection theory, each individual is endowed with a very large pool of lymphocytes, each of which is capable of responding to a different antigen. When the antigen enters the body, it selects the lymphocyte which has the best “fit” by virtue of a surface receptor. The antigen binds to this antibody-like receptor, and the cell is stimulated to proliferate and form a clone of cells. Thus, selected cells quickly differentiate into plasma cells and secrete antibody which is specific for the antigen which served as the original selecting agent (or a closely related group of antigens). The History of Blood Transfusion Man’s centuries-long desire to perform blood transfusion as a therapeutic procedure forms the cornerstone of the modern science of immunohematology. At present time, the use of whole blood is a well-accepted and commonly employed measure without which many modern surgical procedures could not be carried out. -
Λ-Light Chain and Igg-Heavy Chain Constant Regions
Detection of new allotypic variants of bovine antibody -light chain and IgG-heavy chain constant regions Dissertation To obtain the Ph.D. degree In the International Ph. D. Program for Agricultural Sciences in Goettingen (IPAG) At the Faculty of Agricultural Sciences, Georg-August-University Goettingen, Germany Presented by Dalia Mohamed Hemdan Aboelhassan born in Cairo, Egypt Göttingen, 2012 D7 Referent: Prof. Dr. Dr. Claus-Peter Czerny Co-referent: Prof. Dr. Sven König Date of dissertation: 03.02.2012 Contents I Contents Abbreviations 1 INTRODUCTION ................................................................................................................ 1 2 REVIEW OF LITERATURE .............................................................................................. 2 2.1 IMMUNOGLOBULIN (IG) ........................................................................................................... 2 2.2 BOVINE IMMUNOGLOBULINS ................................................................................................... 5 2.3 BOVINE IMMUNOGLOBULIN HEAVY CHAINS .......................................................................... 6 2.3.1 Bovine immunoglobulin M (IgM) ................................................................................... 6 2.3.2 Bovine immunoglobulin D (IgD) .................................................................................... 7 2.3.3 Bovine immunoglobulin E (IgE) ..................................................................................... 8 2.3.4 Bovine immunoglobulin -
Pulmonary Extranodal Marginal Zone Lymphoma That Presented
lin Journal of clinical and experimental hematopathology JC Vol. 58 No.3, 141-147, 2018 EH xp ematopathol Case report Pulmonary extranodal marginal zone lymphoma that presented with macroglobulinemia and marked plasmacytic cell proliferation carrying the t(14;18)(q32;q21)/MALT1- immunoglobulin heavy-chain fusion gene in pleural fluid Takashi Akasaka,1) Chiyuki Kishimori,2) Fumiyo Maekawa,2) Kayo Takeoka,2) 2) 3) 3) 1),2) Masahiko Hayashida, Hiroshi Gomyo, Tohru Murayama, and Hitoshi Ohno An 80-year-old man presented with the accumulation of pleural fluid in the right thoracic cavity. Serum electrophoresis revealed an M-component and immunofixation confirmed IgM/λ. The level of IgM was 1,526 mg/dL. Imaging studies showed an infil- trative condition of the ipsilateral lung parenchyma. The fluid contained abundant neoplastic cells with the morphological and immunophenotypic features of plasma cells, which expressed IgM/λ monoclonal immunoglobulins on the cell surface and in the cytoplasm. The karyotype was 48,XY,+3,add(9)(p13),+12,add(14)(q32),del(16)(q22),−18,+mar, and a series of fluores- cence in situ hybridization studies demonstrated that the add(14) chromosome represented der(14)t(14;18)(q32;q21), at which the MALT1-immunoglobulin heavy-chain (IGH) fusion gene was localized. A long-distance polymerase chain reaction ampli- fied the fragment encompassing the two genes, showing that the junction occurred at the J6 segment of IGH and 3.7-kb upstream of the MALT1 breakpoint cluster. We propose that this case represents an extreme form of the plasmacytic differenti- ation of extranodal marginal zone lymphoma that developed in the lung. -
B Cell Checkpoints in Autoimmune Rheumatic Diseases
REVIEWS B cell checkpoints in autoimmune rheumatic diseases Samuel J. S. Rubin1,2,3, Michelle S. Bloom1,2,3 and William H. Robinson1,2,3* Abstract | B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen- presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co- engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases. Antibody- dependent B cells are multifunctional lymphocytes that contribute that serve as precursors to and thereby give rise to acti- cell- mediated cytotoxicity to the pathogenesis of autoimmune diseases -
Absence of Surface Igd Does Not Impair Naive B Cell Homeostasis and Memory B Cell
bioRxiv preprint doi: https://doi.org/10.1101/332361; this version posted May 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Absence of surface IgD does not impair naive B cell homeostasis and memory B cell formation in humans J. Nechvatalova,1,2 S.J.W. Bartol,3 Z. Chovancova,1,2 L. Boon,4 M. Vlkova,1,2 M.C. van Zelm3,5* 1Dept. Clinical Immunology and Allergology, St Anne´s University Hospital in Brno, the Czech Republic 2Faculty of Medicine, Masaryk University, Brno, the Czech Republic 3Dept. Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands 4Bioceros B.V., Utrecht, the Netherlands 5Dept. Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia One Sentence Summary: Human B cells with a genetic defect in IGHD develop normally in vivo, and do not have a competitive disadvantage to IgD-expressing B cells for developing into memory B cells. * Address correspondence to: Menno C. van Zelm, Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6 Burnet Centre, 89 Commercial Rd, Melbourne VIC 3004, Australia; Email: [email protected] Conflict of interest: The authors have declared that no conflict of interest exists. Key words: IgD; B cell; inherited gene defect; antibody; memory; immunodeficiency; auto- immunity; surface immunoglobulin 1 bioRxiv preprint doi: https://doi.org/10.1101/332361; this version posted May 28, 2018. -
The Adaptive Immune Response B-Cells
The Adaptive Immune Response B-cells The innate immune system provides immediate protection. The adaptive response takes time to develop and is antigen specific. Activation of B and T lymphocytes Naive Plasma cells Naive ADAPTIVE IMMUNITY The adaptive immune system consists of lymphocytes and their products, including antibodies. The receptors of lymphocytes are much more diverse than those of the innate immune system, but lymphocytes are not inherently specific for microbes, and they are capable of recognizing a vast array of foreign substances. http://www.pathologystudent.com/wp- content/uploads/2010/07/normal-lymphs.jpg There are two types of adaptive Immunity Humoral immunity: mediated by B lymphocytes and their secreted products, antibodies (also called immunoglobulins, Ig) that protects against extracellular microbes and their toxins. Cellular immunity: mediated by T lymphocytes and is responsible for defense against intracellular microbes. content/uploads/2011/05/adoptive_immunity.gif - sheng.com/wp - http://yang Types of Adaptive Immune Reponses Lymphocytes Although lymphocytes appear morphologically unimpressive and similar to one another, they are actually remarkably heterogeneous and specialized in molecular properties and functions. Lymphocytes and other cells involved in immune responses are not fixed in particular tissues (as are cells in most of the organs of the body) but are capable of migrating among lymphoid and other tissues and the vascular and lymphatic circulations. This feature permits lymphocytes to home to any site of infection. In lymphoid organs, different classes of lymphocytes are anatomically segregated in such a way that they interact with one another only when stimulated to do so by encounter with antigens and other stimuli. -
Structural Features of Human Immunoglobulin G That Determine Isotype-Specitic Differences in Complement Activation by Mi-Hua Tao,* Richard I.F
Structural Features of Human Immunoglobulin G that Determine Isotype-specitic Differences in Complement Activation By Mi-Hua Tao,* Richard I.F. Smith,* and Sherie L. Morrison*r From the "Department of Microbiology and Molecular Genetics and IThe Molecular Biology Institute, University of California, Los Angeles, California 90024 Summary Although very similar in sequence, the four subclasses of human immunoglobulin G (IgG) differ markedly in their ability to activate complement. Glu318-Lys320-Lys322 has been identified as Downloaded from http://rupress.org/jem/article-pdf/178/2/661/1268014/661.pdf by guest on 30 September 2021 a key binding motif for the first component of complement, Clq, and is present in all isotypes of Ig capable of activating complement. This motif, however, is present in all subclasses of human IgG, including those that show little (IgG2) or even no (IgG4) complement activity. Using point mutants of chimeric antibodies, we have identified specificresidues responsible for the differing ability of the IgG subclasses to fix complement. In particular, we show that Ser at position 331 in 3/4 is critical for determining the inability of that isotype to bind Clq and activate complement. Additionally, we provide further evidence that levels of Clq binding do not necessarily correlate with levels of complement activity, and that Clq binding alone is not sufficient for complement activation. he classical pathway of complement activation is initi- tivation ability and an IgG4 with the hinge of IgG3, although T ated by immune complexes composed of antigen and ei- as flexible as wild-type IgG3, displays no detectable comple- ther IgM or IgG Abs. -
Nasopharyngeal Infection by Streptococcus Pyogenes Requires Superantigen-Responsive Vβ-Specific T Cells
Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells Joseph J. Zeppaa, Katherine J. Kaspera, Ivor Mohorovica, Delfina M. Mazzucaa, S. M. Mansour Haeryfara,b,c,d, and John K. McCormicka,c,d,1 aDepartment of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; bDepartment of Medicine, Division of Clinical Immunology & Allergy, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5A5, Canada; cCentre for Human Immunology, Western University, London, ON N6A 5C1, Canada; and dLawson Health Research Institute, London, ON N6C 2R5, Canada Edited by Philippa Marrack, Howard Hughes Medical Institute, National Jewish Health, Denver, CO, and approved July 14, 2017 (received for review January 18, 2017) The globally prominent pathogen Streptococcus pyogenes secretes context of invasive streptococcal disease is extremely dangerous, potent immunomodulatory proteins known as superantigens with a mortality rate of over 30% (10). (SAgs), which engage lateral surfaces of major histocompatibility The role of SAgs in severe human infections has been well class II molecules and T-cell receptor (TCR) β-chain variable domains established (5, 11, 12), and specific MHC-II haplotypes are known (Vβs). These interactions result in the activation of numerous Vβ- risk factors for the development of invasive streptococcal disease specific T cells, which is the defining activity of a SAg. Although (13), an outcome that has been directly linked to SAgs (14, 15). streptococcal SAgs are known virulence factors in scarlet fever However, how these exotoxins contribute to superficial disease and and toxic shock syndrome, mechanisms by how SAgs contribute colonization is less clear. -
Immunoglobulin Heavy) Marie-Paule Lefranc IMGT, LIGM, IGH, UPR CNRS 1142, 141 Rue De La Cardonille, 34396 Montpellier Cedex 5, France (MPL)
Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Review IGH@ (Immunoglobulin Heavy) Marie-Paule Lefranc IMGT, LIGM, IGH, UPR CNRS 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France (MPL) Published in Atlas Database: September 2003 Online updated version: http://AtlasGeneticsOncology.org/Genes/IgHID40.html DOI: 10.4267/2042/38013 This article is an update of : Lefranc MP. IGH (immunoglobulin heavy). Atlas Genet Cytogenet Oncol Haematol.2000;4(3):107-110. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2003 Atlas of Genetics and Cytogenetics in Oncology and Haematology depending from the haplotypes, 27 IGHD segments Identity belonging to 7 subgroups, 9 IGHJ segments, and 11 Other names: IGH (Immunoglobulin Heavy) IGHC genes. HGNC (Hugo): IGH@ Eighty-two to 88 IGHV genes belong to 7 subgroups, whereas 41 pseudogenes, which are too divergent to be Location: 14q32.33 assigned to subgroups, have been assigned to 4 clans. Note Seven non-mapped IGHV genes have been described The human IGH locus is located on the chromo-some as insertion/deletion polymorphism but have not yet 14 at band 14q32.33, at the telomeric extremity of the been precisely located. long arm; the orientation of the locus has been The most 5' IGHV genes occupy a position very close determined by the analysis of translocations, involving to the chromosome 14q telomere whereas the IGHC the IGH locus, in leukemia and lymphoma. genes are in a more centromeric position. The potentiel genomic IGH repertoire is more limited since it comprises 38-46 functional IGHV genes belonging to 6 or 7 subgroups depending from the haplotypes 23 IGHD, 6 IGHJ, and 9 IGHC genes. -
A Challenging Case of Igd Kappa Multiple Myeloma Associated with Primary Amyloidosis: Importance of Serum Free Light Chains in M
L al of euk rn em u i o a J Journal of Leukemia García de Veas Silva JL et al, J Leuk 2014, 2:5 ISSN: 2329-6917 DOI: 10.4172/2329-6917.1000164 Case Report Open Access A Challenging Case of IgD Kappa Multiple Myeloma Associated With Primary Amyloidosis: Importance of Serum Free Light Chains in Monitoring Treatment Response and Disease Relapse José Luis García de Veas Silva1*, Carmen Bermudo Guitarte1, Paloma Menéndez Valladares1, Rafael Duro Millán2 and Johanna Carolina Rojas Noboa2 1Department of Clinical Biochemistry, Hospital Universitario Virgen Macarena, Sevilla, Spain 2Department of Hematology, Hospital Universitario Virgen Macarena, Sevilla, Spain *Corresponding author: José Luis García de Veas Silva, Laboratory of Proteins, Department of Clinical Biochemistry, Hospital Universitario Virgen Macarena, Sevilla, Spain, Tel: +034955008108; E-mail: [email protected] Rec date: Oct 10, 2014, Acc date: Oct 16, 2014; Pub date: Oct 24, 2014 Copyright: © 2014 García de Veas Silva JL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Multiple Myeloma (MM) is a malignancy of B cells characterized by an atypical proliferation of plasma cells. IgD MM has a very low incidence (2% of total MM cases) and it´s characterized by an aggressive course and a worse prognosis than other subtypes. The serum free light chains (sFLC) are very important markers for monitoring patients with MM and other monoclonal gammopathies. When the sFLC are present in low concentrations, it is often difficult to detect them by conventional methods such as serum protein electrophoresis and serum immunofixation.