Structure, Function, and Therapeutic Use of Igm Antibodies

Total Page:16

File Type:pdf, Size:1020Kb

Structure, Function, and Therapeutic Use of Igm Antibodies antibodies Review Structure, Function, and Therapeutic Use of IgM Antibodies Bruce A. Keyt *, Ramesh Baliga, Angus M. Sinclair, Stephen F. Carroll and Marvin S. Peterson IGM Biosciences Inc, 325 East Middlefield Road, Mountain View, CA 94043, USA; [email protected] (R.B.); [email protected] (A.M.S.); [email protected] (S.F.C.); [email protected] (M.S.P.) * Correspondence: [email protected]; Tel.: +1-650-265-6458 Received: 16 September 2020; Accepted: 9 October 2020; Published: 13 October 2020 Abstract: Natural immunoglobulin M (IgM) antibodies are pentameric or hexameric macro- immunoglobulins and have been highly conserved during evolution. IgMs are initially expressed during B cell ontogeny and are the first antibodies secreted following exposure to foreign antigens. The IgM multimer has either 10 (pentamer) or 12 (hexamer) antigen binding domains consisting of paired µ heavy chains with four constant domains, each with a single variable domain, paired with a corresponding light chain. Although the antigen binding affinities of natural IgM antibodies are typically lower than IgG, their polyvalency allows for high avidity binding and efficient engagement of complement to induce complement-dependent cell lysis. The high avidity of IgM antibodies renders them particularly efficient at binding antigens present at low levels, and non-protein antigens, for example, carbohydrates or lipids present on microbial surfaces. Pentameric IgM antibodies also contain a joining (J) chain that stabilizes the pentameric structure and enables binding to several receptors. One such receptor, the polymeric immunoglobulin receptor (pIgR), is responsible for transcytosis from the vasculature to the mucosal surfaces of the lung and gastrointestinal tract. Several naturally occurring IgM antibodies have been explored as therapeutics in clinical trials, and a new class of molecules, engineered IgM antibodies with enhanced binding and/or additional functional properties are being evaluated in humans. Here, we review the considerable progress that has been made regarding the understanding of biology, structure, function, manufacturing, and therapeutic potential of IgM antibodies since their discovery more than 80 years ago. Keywords: IgM (immunoglobulin M); hexameric; pentameric; polymeric; polyvalency; joining chain (J-chain); avidity; complement dependent cytotoxicity (CDC); poly Ig receptor (pIgR) 1. Introduction to Immunoglobulin M (IgM) During humoral immune responses, immunoglobulins of the IgM, IgD, IgG, IgA, and IgE isotypes may be produced, each expressing a unique profile of effector functions capable of mediating host defense against invading pathogens. Macro-immunoglobulin, IgM, is initially produced as a surface bound molecule and is expressed in early B cell differentiation. Later in the immune response, IgM is produced by plasma cells and secreted as soluble pentamers that contain 10 antigen binding sites and the joining (J) chain, or as hexamers containing 12 antigen binding sites and no joining chain (J-chain). IgM has a molecular weight of approximately 900 or 1050 kDa for the pentamer or hexamer, respectively (Figure1). Antibodies 2020, 9, 53; doi:10.3390/antib9040053 www.mdpi.com/journal/antibodies Antibodies 2020, 9, 53 2 of 35 Antibodies 2020, 9, x FOR PEER REVIEW 2 of 35 Figure 1. Schematic diagram of an immunoglobulinimmunoglobulin M (IgM) antibody pentamer ( left) and hexamer (right). Constant regions are shown in gray and variab variablele regions in green, and also shown on the IgM pentamer is the small joiningjoining chain (J-chain) in red. Due toto thethe polyvalent polyvalent nature nature of IgMs,of IgMs, they they may ma exhibity exhibit higher higher avidity avidity for antigen for antigen than the than bivalent the IgG.bivalent In addition IgG. In toaddition neutralizing to neut pathogens,ralizing pathogens, IgM antibodies IgM areantibodies highly e areffective highly at engaging effective complementat engaging tocomplement target lysis to of target cells andlysis pathogens. of cells and pathogens. Our understanding understanding of of the the biology, biology, structure, structure, an andd function function relationships relationships for forIgM IgM antibodies antibodies has hasprogressed progressed to the to thepoint point where where this this antibody antibody isot isotypeype can can be be exploited exploited therapeutically; therapeutically; however, however, challenges associatedassociated with with their their manufacture manufacture remain. remain. Here, Here, we review we thereview progress the andprogress the therapeutic and the potentialtherapeutic for potential this class for of antibodies, this class of as antibodies, well as the potentialas well as for the new potential classes for of engineerednew classes IgM of engineered antibodies. IgM antibodies. 1.1. History and Discovery of IgM 1.1. HistoryHumoral and immunity Discovery hasof IgM been studied since the late 1800s when George Nuttall [1] discovered that animalHumoral immune immunity sera could has kill been bacteria. studied Subsequent since the analysis late 1800s ofthe when immune George serum Nuttall using [1] technologies discovered suchthat animal as electrophoresis immune sera and ultracentrifugationcould kill bacteria. allowed Subsequent for biochemical analysis of characterization the immune ofserum the various using proteinstechnologies that such could asmediate electrophoresis immunity, and resultingultracentrifugation in the discovery allowed of for immunoglobulins. biochemical characterization Originally, theseof the serumvarious components proteins that were coul assignedd mediate as α immunity,-globulin, βresulting-globulin, in and the γdiscovery-globulin of fractions immunoglobulins. to designate theOriginally, proteins these by order serum of electrophoreticcomponents were mobility assigned [2]. Theas α first-globulin, description β-globulin, of IgM and antibodies γ-globulin was reportedfractions into 1939designate by Kabat the proteins et al. [3] by who order evaluated of electrophoretic the molecular mobility weight [2]. of antibodiesThe first description produced inof horse,IgM antibodies cow, pig, was monkey, reported and in human 1939 serumby Kabat after et immunizational. [3] who evaluated with pneumococcus. the molecular Due weight to the of largeantibodies size (approximately produced in horse, 990 kDa), cow, the pig, new monk antibodyey, and was human referred serum to as γafte-macroglobulin.r immunization In 1944,with γpneumococcus.-macroglobulins Due were to the also large discovered size (approximatel to be expressedy 990 at kDa), high the levels new in antibody multiple myelomawas referred patients to as byγ-macroglobulin. Waldenstrom andIn 1944, later γ independently-macroglobulins by were Kunkel also [4 ,discovered5]. They identified to be expressed that the γat-macroglobulin high levels in inmultiple patient myeloma sera migrated patients close by Waldenstrom to β-globulin and using later immuno-electrophoresis independently by Kunkel and [4,5]. ultracentrifugation They identified techniques.that the γ-macroglobulin In the 1960s, methodsin patient were sera developedmigrated close to induce to β-globulin plasmacytomas using immuno-electrophoresis in mice that produced uniformand ultracentrifugation immunoglobulins techniques. that included In theγ 1960s,-macroglobulin methods were producing developed plasmacytomas, to induce plasmacytomas recapitulating thein mice data observedthat produced in multiple uniform myeloma immunoglobulins patients [6]. As thethat immunoglobulins included γ-macroglobulin discovered duringproducing this timeplasmacytomas, were being givenrecapitulating arbitrary names, the data in 1964 observed the World in Healthmultiple Organization myelomadefined patients a nomenclature[6]. As the systemimmunoglobulins for antibody discovered isotypes. As during a consequence this time γwere-macroglobulin being given was arbitrary renamed names, IgM, andin 1964 the Mthe referred World toHealth “macroglobulin” Organization [7 ].defined a nomenclature system for antibody isotypes. As a consequence γ- macroglobulin was renamed IgM, and the M referred to “macroglobulin” [7]. 1.2. Evolution of IgM Antibodies 1.2. EvolutionImmunoglobulins, of IgM Antibodies including IgM antibodies, are found in all jawed vertebrates (gnathosomes) that diverged in evolution from jawless fish (agnathans) approximately 550 million years ago [8,9]. Similar to Immunoglobulins, including IgM antibodies, are found in all jawed vertebrates (gnathosomes) mammals, IgM expression precedes the expression of other antibody isotypes, although, in teleost fish, that diverged in evolution from jawless fish (agnathans) approximately 550 million years ago [8,9]. IgD and IgT are the only other isotypes present [10]. The phylogeny of the immunoglobulin heavy Similar to mammals, IgM expression precedes the expression of other antibody isotypes, although, and light chain isotypes is illustrated in Figure2. However, within certain species, there are distinct in teleost fish, IgD and IgT are the only other isotypes present [10]. The phylogeny of the differences in the structure of the IgM antibodies produced [11]. For example, the predominant form immunoglobulin heavy and light chain isotypes is illustrated in Figure 2. However, within certain species, there are distinct differences in the structure of the IgM antibodies produced [11]. For example, the predominant form of IgM antibodies in mice and humans are pentameric in structure Antibodies 2020, 9,
Recommended publications
  • The Ligands for Human Igg and Their Effector Functions
    antibodies Review The Ligands for Human IgG and Their Effector Functions Steven W. de Taeye 1,2,*, Theo Rispens 1 and Gestur Vidarsson 2 1 Sanquin Research, Dept Immunopathology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] 2 Sanquin Research, Dept Experimental Immunohematology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] * Correspondence: [email protected] Received: 26 March 2019; Accepted: 18 April 2019; Published: 25 April 2019 Abstract: Activation of the humoral immune system is initiated when antibodies recognize an antigen and trigger effector functions through the interaction with Fc engaging molecules. The most abundant immunoglobulin isotype in serum is Immunoglobulin G (IgG), which is involved in many humoral immune responses, strongly interacting with effector molecules. The IgG subclass, allotype, and glycosylation pattern, among other factors, determine the interaction strength of the IgG-Fc domain with these Fc engaging molecules, and thereby the potential strength of their effector potential. The molecules responsible for the effector phase include the classical IgG-Fc receptors (FcγR), the neonatal Fc-receptor (FcRn), the Tripartite motif-containing protein 21 (TRIM21), the first component of the classical complement cascade (C1), and possibly, the Fc-receptor-like receptors (FcRL4/5). Here we provide an overview of the interactions of IgG with effector molecules and discuss how natural variation on the antibody and effector molecule side shapes the biological activities of antibodies. The increasing knowledge on the Fc-mediated effector functions of antibodies drives the development of better therapeutic antibodies for cancer immunotherapy or treatment of autoimmune diseases.
    [Show full text]
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.468,689 B2 Zeng Et Al
    USOO9468689B2 (12) United States Patent (10) Patent No.: US 9.468,689 B2 Zeng et al. (45) Date of Patent: *Oct. 18, 2016 (54) ULTRAFILTRATION CONCENTRATION OF (56) References Cited ALLOTYPE SELECTED ANTIBODES FOR SMALL-VOLUME ADMINISTRATION U.S. PATENT DOCUMENTS 5,429,746 A 7/1995 Shadle et al. (71) Applicant: Immunomedics, Inc., Morris Plains, NJ 5,789,554 A 8/1998 Leung et al. (US) 6,171,586 B1 1/2001 Lam et al. 6,187,287 B1 2/2001 Leung et al. (72) Inventors: Li Zeng, Edison, NJ (US); Rohini 6,252,055 B1 6/2001 Relton Mitra, Brigdewater, NJ (US); Edmund 6,676,924 B2 1/2004 Hansen et al. 6,870,034 B2 3/2005 Breece et al. A. Rossi, Woodland Park, NJ (US); 6,893,639 B2 5/2005 Levy et al. Hans J. Hansen, Picayune, MS (US); 6,991,790 B1 1/2006 Lam et al. David M. Goldenberg, Mendham, NJ 7,038,017 B2 5, 2006 Rinderknecht et al. (US) 7,074,403 B1 7/2006 Goldenberg et al. 7,109,304 B2 9, 2006 Hansen et al. 7,138,496 B2 11/2006 Hua et al. (73) Assignee: Immunomedics, Inc., Morris Plains, NJ 7,151,164 B2 * 12/2006 Hansen et al. ............. 530,387.3 (US) 7,238,785 B2 7/2007 Govindan et al. 7,251,164 B2 7/2007 Okhonin et al. (*) Notice: Subject to any disclaimer, the term of this 7.282,567 B2 10/2007 Goldenberg et al. patent is extended or adjusted under 35 7,300,655 B2 11/2007 Hansen et al.
    [Show full text]
  • Defining Natural Antibodies
    PERSPECTIVE published: 26 July 2017 doi: 10.3389/fimmu.2017.00872 Defining Natural Antibodies Nichol E. Holodick1*, Nely Rodríguez-Zhurbenko2 and Ana María Hernández2* 1 Department of Biomedical Sciences, Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States, 2 Natural Antibodies Group, Tumor Immunology Division, Center of Molecular Immunology, Havana, Cuba The traditional definition of natural antibodies (NAbs) states that these antibodies are present prior to the body encountering cognate antigen, providing a first line of defense against infection thereby, allowing time for a specific antibody response to be mounted. The literature has a seemingly common definition of NAbs; however, as our knowledge of antibodies and B cells is refined, re-evaluation of the common definition of NAbs may be required. Defining NAbs becomes important as the function of NAb production is used to define B cell subsets (1) and as these important molecules are shown to play numerous roles in the immune system (Figure 1). Herein, we aim to briefly summarize our current knowledge of NAbs in the context of initiating a discussion within the field of how such an important and multifaceted group of molecules should be defined. Edited by: Keywords: natural antibody, antibodies, natural antibody repertoire, B-1 cells, B cell subsets, B cells Harry W. Schroeder, University of Alabama at Birmingham, United States NATURAL ANTIBODY (NAb) PRODUCING CELLS Reviewed by: Andre M. Vale, Both murine and human NAbs have been discussed in detail since the late 1960s (2, 3); however, Federal University of Rio cells producing NAbs were not identified until 1983 in the murine system (4, 5).
    [Show full text]
  • Multiple Myeloma Baseline Immunoglobulin G Level and Pneumococcal Vaccination Antibody Response
    Journal of Patient-Centered Research and Reviews Volume 4 Issue 3 Article 5 8-10-2017 Multiple Myeloma Baseline Immunoglobulin G Level and Pneumococcal Vaccination Antibody Response Michael A. Thompson Martin K. Oaks Maharaj Singh Karen M. Michel Michael P. Mullane Husam S. Tarawneh Angi Kraut Kayla J. Hamm Follow this and additional works at: https://aurora.org/jpcrr Part of the Immune System Diseases Commons, Medical Immunology Commons, Neoplasms Commons, Oncology Commons, Public Health Education and Promotion Commons, and the Respiratory Tract Diseases Commons Recommended Citation Thompson MA, Oaks MK, Singh M, Michel KM, Mullane MP, Tarawneh HS, Kraut A, Hamm KJ. Multiple myeloma baseline immunoglobulin G level and pneumococcal vaccination antibody response. J Patient Cent Res Rev. 2017;4:131-5. doi: 10.17294/2330-0698.1453 Published quarterly by Midwest-based health system Advocate Aurora Health and indexed in PubMed Central, the Journal of Patient-Centered Research and Reviews (JPCRR) is an open access, peer-reviewed medical journal focused on disseminating scholarly works devoted to improving patient-centered care practices, health outcomes, and the patient experience. BRIEF REPORT Multiple Myeloma Baseline Immunoglobulin G Level and Pneumococcal Vaccination Antibody Response Michael A. Thompson, MD, PhD,1,3 Martin K. Oaks, PhD,2 Maharaj Singh, PhD,1 Karen M. Michel, BS,1 Michael P. Mullane,3 MD, Husam S. Tarawneh, MD,3 Angi Kraut, RN, BSN, OCN,1 Kayla J. Hamm, BSN3 1Aurora Research Institute, Aurora Health Care, Milwaukee, WI; 2Transplant Research Laboratory, Aurora St. Luke’s Medical Center, Aurora Health Care, Milwaukee, WI; 3Aurora Cancer Care, Aurora Health Care, Milwaukee, WI Abstract Infections are a major cause of morbidity and mortality in multiple myeloma (MM), a cancer of the immune system.
    [Show full text]
  • B Cell Checkpoints in Autoimmune Rheumatic Diseases
    REVIEWS B cell checkpoints in autoimmune rheumatic diseases Samuel J. S. Rubin1,2,3, Michelle S. Bloom1,2,3 and William H. Robinson1,2,3* Abstract | B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen- presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co- engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases. Antibody- dependent B cells are multifunctional lymphocytes that contribute that serve as precursors to and thereby give rise to acti- cell- mediated cytotoxicity to the pathogenesis of autoimmune diseases
    [Show full text]
  • The Adaptive Immune Response B-Cells
    The Adaptive Immune Response B-cells The innate immune system provides immediate protection. The adaptive response takes time to develop and is antigen specific. Activation of B and T lymphocytes Naive Plasma cells Naive ADAPTIVE IMMUNITY The adaptive immune system consists of lymphocytes and their products, including antibodies. The receptors of lymphocytes are much more diverse than those of the innate immune system, but lymphocytes are not inherently specific for microbes, and they are capable of recognizing a vast array of foreign substances. http://www.pathologystudent.com/wp- content/uploads/2010/07/normal-lymphs.jpg There are two types of adaptive Immunity Humoral immunity: mediated by B lymphocytes and their secreted products, antibodies (also called immunoglobulins, Ig) that protects against extracellular microbes and their toxins. Cellular immunity: mediated by T lymphocytes and is responsible for defense against intracellular microbes. content/uploads/2011/05/adoptive_immunity.gif - sheng.com/wp - http://yang Types of Adaptive Immune Reponses Lymphocytes Although lymphocytes appear morphologically unimpressive and similar to one another, they are actually remarkably heterogeneous and specialized in molecular properties and functions. Lymphocytes and other cells involved in immune responses are not fixed in particular tissues (as are cells in most of the organs of the body) but are capable of migrating among lymphoid and other tissues and the vascular and lymphatic circulations. This feature permits lymphocytes to home to any site of infection. In lymphoid organs, different classes of lymphocytes are anatomically segregated in such a way that they interact with one another only when stimulated to do so by encounter with antigens and other stimuli.
    [Show full text]
  • 1 Therapeutic Antibodies – from Past to Future Stefan Dubel¨ and Janice M
    1 1 Therapeutic Antibodies – from Past to Future Stefan Dubel¨ and Janice M. Reichert 1.1 An Exciting Start – and a Long Trek In the late nineteenth century, the German army doctor Emil von Behring (1854–1917), later the first Nobel Laureate for Medicine, pioneered the thera- peutic application of antibodies. He used blood serum for the treatment of tetanus and diphtheria (‘‘Blutserumtherapie’’). When his data were published in 1890 [1], very little was known about the factors or mechanisms involved in immune defense. Despite this, his smart conclusion was that a human body needs some defense mechanism to fight foreign toxic substances and that these substances should be present in the blood – and therefore can be prepared from serum and used for therapy against toxins or infections. His idea worked, and the success allowed him to found the first ‘‘biotech’’ company devoted to antibody-based therapy in 1904 – using his Nobel Prize money as ‘‘venture capital.’’ The company is still active in the business today as part of CSLBehring. In 1908, Paul Ehrlich, the father of hematology [2] and the first consistent concept of immunology (‘‘lateral chain theory,’’ Figure 1.1d [3]), was awarded the second Nobel Prize related to antibody therapeutics for his groundbreaking work on serum, ‘‘particularly to the valency determination of sera preparations.’’ Ehrlich laid the foundations of antibody generation by performing systematic research on immunization schedules and their efficiency, and he was the first to describe different immunoglobulin subclasses. He also coined the phrases ‘‘passive vaccination’’ and ‘‘active vaccination.’’ His lateral chain theory (‘‘Seitenketten,’’ sometimes misleadingly translated to ‘‘side-chain theory’’) postulated chemical receptors produced by blood cells that fitted intruding toxins (antigens).
    [Show full text]
  • Structural Features of Human Immunoglobulin G That Determine Isotype-Specitic Differences in Complement Activation by Mi-Hua Tao,* Richard I.F
    Structural Features of Human Immunoglobulin G that Determine Isotype-specitic Differences in Complement Activation By Mi-Hua Tao,* Richard I.F. Smith,* and Sherie L. Morrison*r From the "Department of Microbiology and Molecular Genetics and IThe Molecular Biology Institute, University of California, Los Angeles, California 90024 Summary Although very similar in sequence, the four subclasses of human immunoglobulin G (IgG) differ markedly in their ability to activate complement. Glu318-Lys320-Lys322 has been identified as Downloaded from http://rupress.org/jem/article-pdf/178/2/661/1268014/661.pdf by guest on 30 September 2021 a key binding motif for the first component of complement, Clq, and is present in all isotypes of Ig capable of activating complement. This motif, however, is present in all subclasses of human IgG, including those that show little (IgG2) or even no (IgG4) complement activity. Using point mutants of chimeric antibodies, we have identified specificresidues responsible for the differing ability of the IgG subclasses to fix complement. In particular, we show that Ser at position 331 in 3/4 is critical for determining the inability of that isotype to bind Clq and activate complement. Additionally, we provide further evidence that levels of Clq binding do not necessarily correlate with levels of complement activity, and that Clq binding alone is not sufficient for complement activation. he classical pathway of complement activation is initi- tivation ability and an IgG4 with the hinge of IgG3, although T ated by immune complexes composed of antigen and ei- as flexible as wild-type IgG3, displays no detectable comple- ther IgM or IgG Abs.
    [Show full text]
  • Phage Display-Based Strategies for Cloning and Optimization of Monoclonal Antibodies Directed Against Human Pathogens
    Int. J. Mol. Sci. 2012, 13, 8273-8292; doi:10.3390/ijms13078273 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Phage Display-based Strategies for Cloning and Optimization of Monoclonal Antibodies Directed against Human Pathogens Nicola Clementi *,†, Nicasio Mancini †, Laura Solforosi, Matteo Castelli, Massimo Clementi and Roberto Burioni Microbiology and Virology Unit, “Vita-Salute” San Raffaele University, Milan 20132, Italy; E-Mails: [email protected] (N.M.); [email protected] (L.S.); [email protected] (M.C.); [email protected] (M.C.); [email protected] (R.B.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-2-2643-5082; Fax: +39-2-2643-4288. Received: 16 March 2012; in revised form: 25 June 2012 / Accepted: 27 June 2012 / Published: 4 July 2012 Abstract: In the last two decades, several phage display-selected monoclonal antibodies (mAbs) have been described in the literature and a few of them have managed to reach the clinics. Among these, the anti-respiratory syncytial virus (RSV) Palivizumab, a phage-display optimized mAb, is the only marketed mAb directed against microbial pathogens. Palivizumab is a clear example of the importance of choosing the most appropriate strategy when selecting or optimizing an anti-infectious mAb. From this perspective, the extreme versatility of phage-display technology makes it a useful tool when setting up different strategies for the selection of mAbs directed against human pathogens, especially when their possible clinical use is considered.
    [Show full text]
  • The Anti-Pseudomonas Aeruginosa Antibody Panobacumab Is Efficacious on Acute Pneumonia in Neutropenic Mice and Has Additive Effects with Meropenem
    The Anti-Pseudomonas aeruginosa Antibody Panobacumab Is Efficacious on Acute Pneumonia in Neutropenic Mice and Has Additive Effects with Meropenem Thomas Secher1,3*¤a☯, Stefanie Fas2¤b☯, Louis Fauconnier1,3¤c☯, Marieke Mathieu1,3, Oliver Rutschi2, Bernhard Ryffel1,3, Michael Rudolf2 1 Université d’Orléans and Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Orléans, France, 2 Kenta Biotech AG, Schlieren, Switzerland, 3 Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, Republic of South Africa Abstract Pseudomonas aeruginosa (P. aeruginosa) infections are associated with considerable morbidity and mortality in immunocompromised patients due to antibiotic resistance. Therefore, we investigated the efficacy of the anti-P. aeruginosa serotype O11 lipopolysaccharide monoclonal antibody Panobacumab in a clinically relevant murine model of neutropenia induced by cyclophosphamide and in combination with meropenem in susceptible and meropenem resistant P. aeruginosa induced pneumonia. We observed that P. aeruginosa induced pneumonia was dramatically increased in neutropenic mice compared to immunocompetent mice. First, Panobacumab significantly reduced lung inflammation and enhanced bacterial clearance from the lung of neutropenic host. Secondly, combination of Panobacumab and meropenem had an additive effect. Third, Panobacumab retained activity on a meropenem resistant P. aeruginosa strain. In conclusion, the present data established that Panobacumab contributes to the clearance of P. aeruginosa in neutropenic hosts as well as in combination with antibiotics in immunocompetent hosts. This suggests beneficial effects of co-treatment even in immunocompromised individuals, suffering most of the morbidity and mortality of P. aeruginosa infections. Citation: Secher T, Fas S, Fauconnier L, Mathieu M, Rutschi O, et al.
    [Show full text]
  • Nasopharyngeal Infection by Streptococcus Pyogenes Requires Superantigen-Responsive Vβ-Specific T Cells
    Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells Joseph J. Zeppaa, Katherine J. Kaspera, Ivor Mohorovica, Delfina M. Mazzucaa, S. M. Mansour Haeryfara,b,c,d, and John K. McCormicka,c,d,1 aDepartment of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; bDepartment of Medicine, Division of Clinical Immunology & Allergy, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5A5, Canada; cCentre for Human Immunology, Western University, London, ON N6A 5C1, Canada; and dLawson Health Research Institute, London, ON N6C 2R5, Canada Edited by Philippa Marrack, Howard Hughes Medical Institute, National Jewish Health, Denver, CO, and approved July 14, 2017 (received for review January 18, 2017) The globally prominent pathogen Streptococcus pyogenes secretes context of invasive streptococcal disease is extremely dangerous, potent immunomodulatory proteins known as superantigens with a mortality rate of over 30% (10). (SAgs), which engage lateral surfaces of major histocompatibility The role of SAgs in severe human infections has been well class II molecules and T-cell receptor (TCR) β-chain variable domains established (5, 11, 12), and specific MHC-II haplotypes are known (Vβs). These interactions result in the activation of numerous Vβ- risk factors for the development of invasive streptococcal disease specific T cells, which is the defining activity of a SAg. Although (13), an outcome that has been directly linked to SAgs (14, 15). streptococcal SAgs are known virulence factors in scarlet fever However, how these exotoxins contribute to superficial disease and and toxic shock syndrome, mechanisms by how SAgs contribute colonization is less clear.
    [Show full text]